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Conversion of a neutron star to a strange star: A two-step process
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The conversion of a neutron star to a strange star is studied. Such a transition may be viewed as a two-step
process in which the hadronic matter first gets converted to two-flavor quark matter, which, in turn, converts
to strange quark matter in the second step of the process. Relativistic hydrodynamical equations are employed
to obtain the velocity of propagation of the first conversion front. The second transition front, arising from the
conversion of two-flavor to three-flavor quark matter, is studied by using an appropriate weak interaction rate.
The propagation velocity of the first conversion front initially shoots up near the core of the star to eventually
saturate to some ultrarelativistic value. The first conversion takes about a millisecond, during which the second
conversion front is likely to be generated. The second process takes about a hundred seconds to convert the whole
quark star into a strange star.
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I. INTRODUCTION

It has been conjectured that strange quark matter, consisting
of almost equal numbers of u, d, and s quarks, may be the true
ground state of strongly interacting matter [1,2] at high density
and/or temperature. This conjecture is supported by bag model
calculations [3] for a certain range of values for the strange
quark mass and the strong coupling constant. By considering
realistic values for the strange quark mass (150–200 MeV) [4],
it may be shown that the strangeness fraction in chemically
equilibrated quark matter is close to unity for large baryon
densities. Such bulk quark matter would be referred to as
“strange quark matter” (SQM) in what follows.

This hypothesis may lead to important consequences
both for laboratory experiments as well as for astrophysical
observations. Normal nuclear matter at high enough density
and/or temperature would be unstable against conversion to
two-flavor quark matter. The two-flavor quark matter would
be metastable and would eventually decay to SQM in a weak
interaction time scale, releasing a finite amount of energy in the
process. Such a two-step conversion process may take place
in the interior of a neutron star where the densities can be as
high as (8–10)ρ0, with ρ0 being the nuclear matter density
at saturation [5,6]. If Witten’s conjecture [1] is correct, the
whole neutron star may then convert to a strange star with a
significant fraction of strange quarks in it. (Neutron star may
also become a hybrid star with a core of SQM in case the entire
star is not converted to a strange star. Such a hybrid star would
have a mixed-phase region consisting of both quark matter
and hadronic matter [7].) Hadron to quark phase transition
inside a compact star may also yield observable signatures
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in the form of quasi-periodic oscillations (QPOs) and γ -ray
bursts [8,9].

There are several ways in which conversion may be
triggered at the center of the star. A few possible mechanisms
for the production of SQM in a neutron star have been
discussed by Alcock, Farhi, and Olinto [10]. The conversion
from hadron matter to quark matter is expected to start as
the star comes in contact with a seed of an external strange
quark nugget. Such a seed would then grow by “eating up”
baryons in the hadronic matter during its travel to the center
of the star, thus converting the neutron star either to a strange
star or a hybrid star. Another mechanism for the initiation of
the conversion process was given by Glendenning [7], who
suggested that a sudden spin down of the star may increase the
density at its core, thereby triggering the conversion process
spontaneously.

Conversion of neutron matter to strange matter has been
studied by several authors. Olinto [11] viewed the conversion
process to proceed via weak interactions as a propagating slow-
combustion (i.e., a deflagration) front and derived the velocity
of such a front. Olesen and Madsen [12] and Heiselberg, Baym,
and Pethick [13] estimated the speed of such a conversion
front to range between 10 m/s to 100 km/s. The combustive
conversion front was assumed to have a microscopic width
of a few tens to a few hundreds of femtometers in these
calculations.

Collins and Perry [14], however, assumed that the hadronic
matter gets converted first to a two-flavor quark matter, which
eventually decays to a three-flavor strange matter through
weak interactions. Lugones, Benvenuto, and Vucetich [15]
argued that the hadron to SQM conversion process may rather
proceed as a detonation than as a deflagration even in the
case of strangeness production occurring through seeding
mechanisms [10].

Horvath and Benvenuto [16] examined the hydrodynamic
stability of the combustive conversion in a nonrelativistic
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framework. These authors inferred that a convective instability
may increase the velocity of the deflagration front, so that
a transition from slow combustion to detonation may occur.
They argued that such a detonation may as well be responsible
for the type II supernova explosions [17]. In a relativistic
framework, Cho, Ng, and Speliotopoulos [18] examined
the conservation of the energy-momentum and the baryonic
density flux across the conversion front. Using Bethe-Johnson
[19] and Fermi-Dirac neutron gas [20] equations of state
(EOSs) for the nuclear matter and the bag model for SQM,
they found that the conversion process was never a detonation
but a slow combustion only for some special cases. Recently,
Tokareva et al. [21] modeled the hadron to SQM conversion
process as a single-step process. They argued that the mode
of conversion would vary with the temperature of the SQM
and with the value of the bag constant in the bag model EOS.
Berezhiani et al. [22], Bombaci, Parenti, and Vidana [23],
and Drago, Lavagno, and Pagliara [24], however, suggest that
the formation of SQM may be delayed if the deconfinement
process takes place through a first-order transition [25] so that
the purely hadronic star can spend some time as a metastable
object.

In this paper, we model the conversion of nuclear matter to
SQM in a neutron star as occurring through a two-step process.
Deconfinement of nuclear matter to a two- (up and down) flavor
quark matter takes place in the first step in a strong interaction
time scale. The second step concerns the generation of strange
quarks from the excess of down quarks via a weak process.
We may add here that this is the first instance where a realistic
nuclear matter EOS is used to study the nuclear matter to SQM
conversion as a two-step process. Previously, Drago, Lavagno
and Pagliara [24] studied the burning of nuclear matter directly
to SQM in detail by using the conservation conditions and the
compact star models.

To study the conversion of nuclear matter to a two-flavor
quark matter, we here consider relativistic EOSs describing
the forms of the matter in their respective phases. Along with
such EOSs, we would also consider hydrodynamical equations
depicting various conservation conditions to examine such
conversion processes in a compact neutron star. Development
of the conversion front, as it propagates radially through
the model star, would be examined. We would next study
the conversion of two-flavor quark matter to a three-flavor
SQM through a nonleptonic weak interaction process by
assuming β equilibrium for the SQM. The paper is organized
as follows. In Sec. II, we discuss the EOSs used for the present
work. In Sec. III, we discuss the conversion to two-flavor
quark matter. Conversion to three-flavor SQM is discussed in
Sec. IV. In Sec. V, we summaries the results and also present
conclusions that may be drawn from these results regarding
the actual conversion process that may take place in a neutron
star.

II. THE EQUATION OF STATE

The nuclear matter EOS has been evaluated using the
nonlinear Walecka model [26]. The Lagrangian density in this

model is given by

L =
∑

i

ψ̄i

(
iγ µ∂µ − mi + gσiσ + gωiωµγ µ

− gρiρ
a
µγ µTa

)
ψi − 1

4
ωµνωµν + 1

2
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ωωµωµ

+ 1

2

(
∂µσ∂µσ − m2

σ σ 2
) − 1

4
ρa

µνρ
µν
a + 1
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µρµ

a

− 1

3
bmN (gσNσ )3 − 1

4
c(gσNσ )4

+ ψ̄e(iγ µ∂µ − me)ψe. (1)

The Lagrangian in Eq. (1) includes nucleons (neutrons
and protons), electrons, and isoscalar scalar, isoscalar vector,
and isovector vector mesons denoted by ψi, ψe, σ, ωµ, and
ρa,µ, respectively. The Lagrangian also includes cubic and
quartic self-interaction terms of the σ field. The parameters
of the nonlinear Walecka model are meson-baryon coupling
constants, meson masses, and the coefficient of the cubic
and quartic self-interaction of the σ mesons (b and c,
respectively). The meson fields interact with the baryons
through linear coupling. The ω and ρ meson masses have
been chosen to be their physical masses. The rest of the
parameters, namely, the nucleon-meson coupling constants
( gσ

mσ
,

gω

mω
, and gρ

mρ
) and the coefficients of cubic and quartic

terms of the σ meson self-interaction (b and c, respectively) are
determined by fitting the nuclear matter saturation properties,
namely, the binding energy/nucleon (−16 MeV), baryon
density (ρ0 = 0.17 fm−3), symmetry energy coefficient
(32.5 MeV), Landau mass (0.83 mn), and nuclear matter
incompressibility (300 MeV).

In the present paper, we first consider the conversion of
nuclear matter, consisting of only nucleons (i.e., without
hyperons) to a two-flavor quark matter. The final composition
of the quark matter is determined from the nuclear matter
EOS by enforcing baryon number conservation during the
conversion process. That is, for every neutron, one up and two
down quarks are produced and, for every proton, one down and
two up quarks are produced, with electron number being same
in the two phases. While describing the state of matter for the
quark phase we consider a range of values for the bag constant.
The nuclear matter EOS is calculated at zero temperature,
whereas, the two-flavor quark matter EOS is obtained both at
zero temperature as well as at finite temperatures.

III. CONVERSION TO TWO-FLAVOR MATTER

In this section we discuss the conversion of neutron proton
(n-p) matter to two-flavor quark matter, consisting of u

and d quarks along with electrons for the sake of ensuring
charge neutrality. We heuristically assume the existence of
a combustive phase transition front. Using the macroscopic
conservation conditions, we examine the range of densities
for which such a combustion front exists. We next study the
outward propagation of this front through the model star by
using the hydrodynamic (i.e., Euler) equation of motion and
the equation of continuity for the energy density flux [27]. In
this study, we consider a nonrotating, spherically symmetric
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neutron star. The geometry of the problem effectively reduces
to a one-dimensional geometry for which radial distance from
the center of the model star is the only independent spatial
variable of interest.

Let us now consider the physical situation where a combus-
tion front has been generated in the core of the neutron star.
This front propagates outward through the neutron star with a
certain hydrodynamic velocity, leaving behind a u-d-e matter.
In the following, we denote all the physical quantities in the
hadronic sector by subscript 1 and those in the quark sector by
subscript 2.

The condition for the existence of a combustion front is
given by [28]

ε2(p,X) < ε1(p,X), (2)

where p is the pressure and X = (ε + p)/n2
B , with nB being

the baryon density. Quantities on opposite sides of the front
are related through the energy density, the momentum density,
and the baryon number density flux conservation. In the rest
frame of the combustion front, these conservation conditions
can be written as [21,27,29]

ω1v
2
1γ

2
1 + p1 = ω2v

2
2γ

2
2 + p2, (3)

ω1v1γ
2
1 = ω2v2γ

2
2 , (4)

and

n1v1γ1 = n2v2γ2. (5)

In these three conditions vi (i = 1, 2) is the velocity, pi

is the pressure, γi = 1/

√
1 − v2

i is the Lorentz factor, ωi =
εi + pi is the specific enthalpy, and εi is the energy density of
the respective phases.

Besides the conservation conditions given in Eqs. (2)–(5),
the condition of entropy increase across the front puts an
additional constraint on the possibility of the existence of the
combustion front. This entropy condition is given by [30]

s1v1γ1 � s2v2γ2, (6)

with si being the entropy density.
The velocities of the matter in the two phases, given

by Eqs. (3)–(5), are written as [27]

v2
1 = (p2 − p1)(ε2 + p1)

(ε2 − ε1)(ε1 + p2)
(7)

and

v2
2 = (p2 − p1)(ε1 + p2)

(ε2 − ε1)(ε2 + p1)
. (8)

It is possible to classify the various conversion mechanisms
by comparing the velocities of the respective phases with the
corresponding velocities of sound, denoted by csi , in these

FIG. 1. Variation of different velocities with baryon number
density for T = 0 MeV, B1/4 = 160 MeV, and strange quark mass
ms = 200 MeV. The dark-shaded region corresponds to deflagration,
the light-shaded region corresponds to detonation, and the unshaded
region corresponds to supersonic conversion processes.

phases. These conditions are [31]

strong detonation : v1 > cs1, v2 < cs2,

Jouget detonation : v1 > cs1, v2 = cs2,

supersonic or weak detonation : v1 > cs1, v2 > cs2,

strong deflagration : v1 < cs1, v2 > cs2,

Jouget deflagration : v1 < cs1, v2 = cs2,

weak deflagration : v1 < cs1, v2 < cs2.

For the conversion to be physically possible, velocities
should satisfy an additional condition, namely, 0 � v2

i � 1.
We here find that the velocity condition, along with the
inequality (2), puts a severe constraint on the allowed equations
of state.

To examine the nature of the hydrodynamical front arising
from the neutron to two-flavor quark matter conversion, we
plot, in Fig. 1, the quantities v1, v2, cs1, and cs2 as functions
of the baryon number density (nB). As mentioned earlier, the
u and d quark content in the quark phase is kept the same as
that corresponding to the quark content of the nucleons in the
hadronic phase. With these fixed densities of the massless
u and d quarks and electrons, the EOS of the two-flavor
matter has been evaluated using the bag model prescription.
We find that both the energy condition [Eq. (2)] and velocity
condition (v2

i > 0) are satisfied only for a small window of
≈ ±5.0 MeV around the bag pressure B1/4 = 160 MeV. The
constraint imposed by these conditions results in the possibility
of deflagration, detonation, or a supersonic front as shown in
Figs. 1 and 2.

In Fig. 1, we considered both the phases to be at zero
temperature. The possibility, however, exists that part of the
internal energy can be converted to heat energy, thereby
increasing the temperature of the two-flavor quark matter
during the exothermic combustive conversion process. Instead
of following the prescription for the estimation of temperature
as given in Refs. [17,24], we study the changes in the properties
of combustion with the temperature of the newly formed
two-flavor quark phase in the present paper. In Fig. 2, we plot
the variation of velocities with density, with the temperature
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FIG. 2. Variation of velocities with baryon number density for
T = 50 MeV, B1/4 = 160 MeV, and strange quark mass ms =
200 MeV. Here the temperature refers to the two-flavor quark phase
only; the temperature of the nuclear matter is zero. Different regions
correspond to the different modes of conversion as in Fig. 1.

of the two-flavor quark matter being 50 MeV. This figure
show that the range of values of baryon density, for which
the flow velocities are physical, increases with temperature.
Figure 3 shows the variation of velocities with temperature for
values of baryon number densities given by nB ≈ 3ρ0 and 7ρ0,
respectively. In this figure, the difference between velocities
v1 and v2 increases with temperature of the two-flavor quark
matter. In the present paper we have considered only the
zero-temperature nuclear matter EOS. However, the two-flavor
quark matter has a finite temperature because of the effect of
the combustion front.

The preceding discussion is mainly a feasibility study for
the possible generation of the combustive phase transition front
and its mode of propagation. Having explored such possi-
bilities, we now study the evolution of the hydrodynamical
combustion front with position as well as time. This might
give us some insight regarding the actual conversion of a
hadronic star to a quark star and the time scale involved in
such a process. To examine such an evolution, we move to
a reference frame in which the nuclear matter is at rest. The
speed of the combustion front in such a frame is given by
vf = −v1, with v1 being the velocity of the nuclear matter in
the rest frame of the front.

In the present work, we use the special relativistic formalism
to study the evolution of the combustion front as it moves
outward in the radial direction inside the model neutron star.
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FIG. 3. Variation of velocities with temperature: (a) v1 for density
3ρ0, (b) v2 for density 3ρ0, (c) cs1, (d) cs2 for 3ρ0, (e) v2 for 7ρ0,
(f) v1 for 7ρ0, and (g) cs2 for 7ρ0.

The relevant equations are the equation of continuity and the
Euler’s equation, which are given by [21]

1

ω

(
∂ε

∂τ
+ v

∂ε

∂r

)
+ 1

W 2

(
∂v

∂r
+ v

∂v

∂τ

)
+ 2

v

r
= 0 (9)

and

1

ω

(
∂p

∂r
+ v

∂p

∂τ

)
+ 1

W 2

(
∂v

∂τ
+ v

∂v

∂r

)
= 0, (10)

where v = ∂r
∂τ

is the front velocity in the nuclear matter rest
frame, k = ∂p

∂ε
is taken as the square of the effective sound

speed in the medium, and W = 1/γi is the inverse of Lorentz
factor.

Substituting these expressions for v and k in Eqs. (9) and
(10) we get

2v

ω

∂ε

∂r
+ 1

W 2

∂v

∂r
(1 + v2) + 2v

r
= 0 (11)

and

n

ω

∂ε

∂r
(1 + v2) + 2v

W 2

∂v

∂r
= 0. (12)

Equations (11) and (12) ultimately yield a single differential
equation, which is written as

dv

dr
= 2vkW 2(1 + v2)

r[4v2 − k(1 + v2)2]
. (13)

Equation (13) is integrated, with respect to r(t), starting
from the center toward the surface of the star. The nuclear
and quark matter EOSs have been used to construct the
static configuration of the compact star, for different central
densities, by using the standard Tolman-Oppenheimer-Volkoff
equations [32]. The velocity at the center of the star should
be zero from symmetry considerations. However, the 1/r
dependence of the dv

dr
in Eq. (13) suggests a steep rise in

velocity near the center of the star.
Our calculation proceeds as follows. We first construct

the density profile of the star for a fixed central density.
Equations (7) and (8) then specify the respective flow velocities
v1 and v2 of the nuclear and quark matter in the rest frame of
the front, at a radius infinitesimally close to the center of the
star. This would give us the initial velocity of the front (−v1),
at that radius, in the nuclear matter rest frame. We next start
with Eq. (13) from a point infinitesimally close to the center
of the star and integrate it outward along the radius of the star.
The solution gives us the variation of the velocity with the
position as a function of time of arrival of the front, along the
radius of the star. Using this velocity profile, we can calculate
the time required to convert the whole star using the relation
v = dr/dτ .

In Fig. 4, we show the variation of the velocity for central
baryon density values of 3ρ0, 4.5ρ0, and 7ρ0, respectively.
The respective initial velocities corresponding to such central
densities are taken to be 0.66, 0.65, and 0.47. The figure shows
that the velocity of the front, for all the central densities, shoots
up near the center and then saturates at a certain velocity for

065804-4



CONVERSION OF A NEUTRON STAR TO A STRANGE . . . PHYSICAL REVIEW C 74, 065804 (2006)

0 2×10
5

4×10
5

6×10
5

8×10
5

Radial distance (cm) 

0.4

0.5

0.6

0.7

0.8

0.9

1

V
el

oc
it

y 
(u

ni
ts

 o
f 

c=
1)

 

a
b
c

FIG. 4. Variation of velocity of the conversion front with radius of
the star, with temperature T = 0 MeV for three different values of the
central densities, namely, (a) 4.5ρ0, (b) 3ρ0, and (c) 7ρ0, respectively.
Here ρ0 is the nuclear density. The initial velocities for the three cases
are 0.66, 0.65, and 0.47, respectively.

higher radius. Such a velocity behavior near the central point is
apparent from Eq. (13). The numerically obtained saturation
velocity varies from 0.92 for central baryon density 3ρ0 to
0.98 for 7ρ0. The existence of a saturation velocity, at large
r , is apparent from the asymptotic behavior of Eq. (13). A
comparison with Fig. 1 shows that, for densities of 3ρ0 and
4.5ρ0, the conversion starts as weak detonation and stays in
the same mode throughout the star. In contrast, for 7ρ0, the
initial detonation front changes over to weak detonation and
the velocity of the front becomes almost 1 as it reaches the
outer crust. The corresponding time taken by the combustion
front to propagate inside the star is plotted against the radius
in Fig. 5. The time taken by the front to travel the full length
of the star is of the order of a few milliseconds. According
to the present model, the initial neutron star thus becomes a
two-flavor quark star in about 10−3 s. The results discussed
here correspond to the case in which both nuclear and quark
matter are at zero temperature. For finite-temperature quark
matter, results vary only by a few percent of the front velocities
for the quark matter at zero temperature.

We should mention that the equations governing the
conversion of nuclear to quark matter presented so far are
purely hydrodynamic. There is no dissipative process, so
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FIG. 5. Variation of the time of arrival of the conversion front
at a certain radial distance inside the star as a function of that radial
distance from the center of the star for three different central densities.
Values of the central density and temperature corresponding to the
curves (a), (b), and (c) are the same as shown in Fig. 4.

that the combustion front continues to move with a finite
velocity depending on the density profile. Furthermore, there
is no reaction rate involved here as the deconfinement process
occurs in a strong interaction time scale and hence can be
taken to be instantaneous at any particular position of the front
inside the star. It should also be noted that two-flavor matter
is not stable relative to nuclear matter at zero pressure. But in
the absence of any dissipative process, in the present study,
the front continues to move radially outward and converts the
whole star. The crust may play a role because of its lattice
structure; we shall briefly discuss this aspect in the concluding
section.

The conversion to two-flavor matter, as described here, is
certainly very different from the second-step process, to be
discussed in the next section, where the two-flavor matter
converts to three-flavor matter. Here, the governing rate
equations are weak interaction rates, which play a decisive
role in the conversion. By comparing the total time (≡10−3 s)
taken by the combustion front to travel through the star with
the weak interaction time scale (10−7–10−8 s), it is evident
that the second step may start before the end of the first-step
process. In that case, perhaps, one should ideally consider two
fronts, separated by a finite distance, moving inside the star.
In the present paper, we have taken a much simplified picture
and considered the conversion of a chemically equilibrated
two-flavor to three-flavor quark matter as the second-step
process. Our results may provide us with more information
regarding the necessity of considering two fronts.

IV. THE CONVERSION TO THREE-FLAVOR SQM

In this section we discuss the conversion of two-flavor quark
matter to three-flavor SQM in a compact star. Similar to the
discussion in the previous section, we assume the existence
of a conversion front at the core of the star that propagates
radially outward leaving behind the SQM as the combustion
product. This conversion is governed by weak interactions that
take place inside the star.

For a three-flavor quark matter, the charge neutrality and
the baryon number conservation conditions yield

3nB = nu + nd + ns, (14)

2nu = nd + ns + 3ne− , (15)

where ni is the number density of particle i (i = u, d, s,
and e−).

The weak reactions that govern the conversion of excess
down quarks to strange quarks can be written as

d → u + e− + νe−;

s → u + e− + νe−;

d + u → s + u.

(16)

We assume that the neutrinos escape freely from the site of
reaction and that the temperature of the star remains constant.
The nonleptonic weak interaction in such a case becomes the
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governing rate equation. The semileptonic weak decays, then,
are solely responsible for the chemical equilibration, which
can be incorporated through the following relations:

µe− = µd − µu; µd = µs, (17)

where µi is the chemical potential of the ith particle. The
number densities (ni) of the quarks and electrons are related
to their respective chemical potentials by

ni = gi

∫ ∞

0
d3p/(2π )3[f + − f −], (18)

where f +and f − are given by

f + = 1

exp[(Ep − µ)/T ] + 1
,

f − = 1

exp[(Ep + µ)/T ] + 1
.

(19)

In Eqs. (18) and (19), gi is the degeneracy factor and T

the temperature. Equations (14)–(19) can be solved self-
consistently to calculate the number densities of quarks and
electrons.

The conversion to SQM starts at the center (r = 0) of the
two-flavor star. Assuming that the reaction region is much
smaller than the size of the star, we have considered the
front to be one dimensional. Moreover, as we are considering
spherical static stars only, there is no angular dependence. The
combustion front, therefore, moves radially toward the surface
of the star. As the front moves outward, excess d quarks get
converted to s quarks through the nonleptonic weak process.
The procedure employed in the present work is somewhat
similar to that of Ref. [11], although the physical boundary
conditions are different.

We now define a quantity

a(r) = [nd (r) − ns(r)]/2nB (20)

such that a(r = 0) = a0 at the core of the star. The quantity
a0 is the number density of the strange quark at the center
for which the SQM is stable, and its value lies between 0
and 1. For equal numbers of d and s quarks, a(r) = 0.
Ideally, at the center of the star a0 should be zero for strange
quark mass ms = 0. Since the s quark has a mass ms ∼
150–200 MeV, at the center of the star a0 would be a small finite
number, depending on the EOS. The s quark density fraction,
however, decreases along with the decrease of the baryon
density toward the surface of the star, so that a(r → R) → 1,

with R being the radius of the star. At any point along the
radius, say r = r1, the initial a(r1), before the arrival of
the front, is decided by the initial two-flavor quark matter
EOS. The final a(r1), after the conversion, is obtained from
the equilibrium SQM EOS at the density corresponding to r1.

The conversion to SQM occurs via decay of the down quark
to the strange quark (u + d → s + u) and the diffusion of the
strange quark across the front [11]. The corresponding rate

of change of a(r) with time is governed by following two
equations:

da

dt
= −R(a) (21)

and

da

dt
= D

d2a

dr2
, (22)

In Eq. (21) R(a) is the rate of conversion of d to s quarks.
Equation (22) yields the rate of change of a(r) owing to
diffusion of s quarks, with D being the diffusion constant.
Following Olinto [11], assuming the one-dimensional steady-
state solution, and using Eqs. (21) and (22) we get

Da′′ − va′ − R(a) = 0, (23)

where v is the velocity of the fluid. In Eq. (23) a′ = da
dr

.
Conservation of baryon number flux at any position yields

nqvq = nsvs . The subscripts q and s denote the two-
flavor quark matter phase and SQM phase, respectively. The
baryon flux conservation condition yields the initial boundary
condition at any point r along the radius of the star:

a′(r) = − v

D
[ai(r) − af (r)], (24)

where ai(r) and af (r) are the values for the a(r) before and
after the combustion, respectively.

The reaction rate for the nonleptonic weak interaction u +
d → u+s is in general a five-dimensional integral for nonzero
temperature and ms [33,34]. Here, instead, we have taken the
zero-temperature, small-a limit [11]

R(a) ≈ 16

15π
G2

F cos2θcsin2θcµ
5
u

(a

3

)3
, (25)

where GF is the weak coupling constant and θc is the Cabibbo
angle. This equation can be written in the following form:

R(a) ≈ a3

τ
, (26)

where

τ = 16

27 × 15π
G2

F cos2θcsin2θcµ
5
u

depends on the position of the front.
Following the line of arguments given in Ref. [11], we write

down the analytic expressions for D and v as

D = λv̄

3
≈ 10−3

(µ

T

)2
cm2/s, (27)

and

v =
√

D

τ

af (r)4

2[ai(r) − af (r)]
. (28)

Our calculation proceeds as follows. First, we get the star
characteristics for a fixed central baryon density ρc. For a given
ρc, number densities of u, d, and s quarks, in both the two-
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FIG. 6. Variation of a(r) (as in the text) with radius of the star for
different central densities, for which the central density is (a) 3ρ0,
(b) 4.5ρ0, and (c) 7ρ0. Here B1/4 = 160 MeV, T = 2 MeV, the up
and down quark mass mu = md = 0 MeV, and the strange quark
mass ms = 200 MeV.

and three-flavor sectors, are known at any point inside the star.
That means ai(r) and af (r) are fixed. Equations (25)–(28) are
then used to get the diffusion constant and hence the radial
velocity of the front.

The central baryon densities considered here are the same
as those of Sec. III. Assuming that the neutrinos leave the star,
the temperature is kept constant at some small temperature,
T = 2 MeV, so that we can use Eq. (25), evaluated in the
zero-temperature limit. The variation of a(r) with the radius
of the star is given in Fig. 6. The plot shows that a(r) increases
radially outward, which corresponds to the fact that, as density
decreases radially, the number of excess down quarks that are
being converted to strange quarks by the weak interaction
also decreases. Hence, it takes less time to reach a stable
configuration and hence the front moves faster, as shown in
Figs. 7 and 8.

In Fig. 7, we have plotted the variation of velocity along the
radius of the star. The velocity shows an increase as it reaches
sufficiently low density and then drops to zero near the surface
as the d → s conversion rate becomes zero. Figure 8 shows
the variation of time taken to reach a stable configuration at
different radial positions of the star. The total time needed for
the conversion of the star, for different central densities, is of
the order of 100 s, as can be seen from the figure.
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FIG. 7. Variation of velocity of the two- to three-flavor quark
conversion front with radius of the star for different central densities,
for which the central density is (a) 3ρ0, (b) 4.5ρ0, and (c) 7ρ0; other
parameters are the same as in Fig. 6.
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FIG. 8. Variation of time taken for the two- to three-flavor quark
conversion front with radius of the star for different central densities,
for which the central density is (a) 3ρ0, (b) 4.5ρ0, and (c) 7ρ0; other
parameters are the same as in Fig. 7.

V. SUMMARY AND DISCUSSION

We have studied the conversion of a neutron star to a
strange star. This conversion takes place in two stages. In
the first stage a detonation wave is developed in the hadronic
matter (containing neutrons, protons, and electrons). We have
described this hadronic matter with a relativistic model. For
such an EOS the density profile of the star is obtained
by solving the Tolman-Openheimer-Volkoff equations. The
corresponding quark matter EOS is obtained by using the bag
model. However, this quark matter EOS is not equilibrated
and contains two flavors. Matter velocities in the two media,
as measured in the rest frame of the front, have been obtained
by using conservation conditions. These velocities have been
compared with the sound velocity in both phases.

For a particular density inside the star, flow velocities
of the matter on the two sides of the front are now fixed.
Starting from a point infinitesimally close to the center,
hydrodynamic equations are solved radially outward. The
solution of the hydrodynamic equations gives the velocity
profiles for different central densities. The velocity of the front
shoots up very near the core and then saturates at a value close
to 1. The mode of combustion is found to be weak detonation
for lower central densities. For higher central densities, the
initial detonation becomes a weak detonation as the the front
moves radially outward inside the star. This result is different
from that of Ref. [24], where the conversion process always
corresponds to a strong deflagration. The time required for
the conversion of the neutron star to a two-flavor quark star is
found to be of the order of few milliseconds. After this front
passes through, leaving behind a two-flavor matter, a second
front is generated. This second front converts the two-flavor
matter via weak interaction processes. The velocity of the front
varies along the radius of the star. As the front moves out from
the core to the crust, its velocity increases, implying faster
conversion. The time for the second conversion to take place
comes out to be ∼100 s. This is comparable to the time scale
obtained in Ref. [11].

The comparison of the time of conversion from neutron
star to two-flavor quark star and the weak interaction time
scale suggests that, at some time during the passage of the first
combustion front, the burning of two-flavor matter to strange

065804-7



BHATTACHARYYA, GHOSH, JOARDER, MALLICK, AND RAHA PHYSICAL REVIEW C 74, 065804 (2006)

matter should start. This means that, at some point of time,
there should be two fronts moving inside the star. However,
our results show that, inside the model star, the burning of the
nuclear matter to two-flavor quark matter takes much less time
than the conversion from two-flavor quark matter to SQM.
Nonetheless, the consideration of two fronts might provide
us with some more information regarding the conversion of a
neutron star to a final stable strange star. In the present case we
have considered a two-step process, there being only one type
of front, inside the star, at any instant of time. Here we would
also like to mention that ideally the second step should start
with nonequilibrated two-flavor matter [33,35]. Since this is a
numerically involved calculation, in the present case we have
taken the simplified picture of equilibrated quark matter.

We have mentioned earlier that, although at zero pressure
two-flavor matter is not stable, in the present study, the
absence of a dissipative process allows the front to move up
to the surface, converting the whole star. In a more realistic
scenario, the front should get stalled near the crust as the crust

of the star is at subnucleonic densities. We plan to investigate
these features in our future work. However, if we assume
that the first-step conversion stops as the front reaches the
crust, then depending on the size of the crust (1–0.2 km for
central densities in the range 7ρ0–3ρ0) the time scale for the
second-step process is reduced by only 2–3%.

Finally, the burning of nuclear matter to two-flavor quark
matter is studied using special relativistic hydrodynamic equa-
tions. The actual calculation should involve general relativity,
taking into account the curvature of the front for the spherical
star. Furthermore, the conversion of two- to three-flavor matter
should ideally involve hydrodynamical processes. We propose
to explore all these detailed features in our subsequent papers.
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