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Upper bounds on parity-violating γ -ray asymmetries in compound nuclei from polarized cold
neutron capture
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Parity-odd asymmetries in the electromagnetic decays of compound nuclei can sometimes be amplified above
values expected from simple dimensional estimates by the complexity of compound nuclear states. Using a
statistical approach, we estimate the root-mean-square of the distribution of expected parity-odd correlations
�sn · �kγ , where �sn is the neutron spin and �kγ is the momentum of the γ , in the integrated γ spectrum from the
capture of cold polarized neutrons on Al, Cu, and In. We present measurements of the asymmetries in these and
other nuclei. Based on our calculations, large enhancements of asymmetries were not predicted for the studied
nuclei and the statistical estimates are consistent with our measured upper bounds on the asymmetries.
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I. INTRODUCTION

One might assume that a quantitative treatment of symmetry
breaking in neutron reactions with heavy nuclei would not be
feasible. However, theoretical approaches exist that exploit the
large number of essentially unknown coefficients in the Fock
space expansion of complicated compound nuclear states in
heavy nuclei to perform calculations that can be compared
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to experiment. If we assume that it is possible to treat the
Fock space components of the states as independent random
variables, one can devise statistical techniques to calculate, not
the value of a particular observable, but the root-mean-square
(rms) of the distribution of expected values. This strategy has
been used successfully to understand certain global features
of nuclear structure and reactions [1]. The distribution of
neutron resonance widths, for example, have long been known
to obey a Porter-Thomas distribution [2] in agreement with the
predictions of random matrix theory, and statistical approaches
have been used to understand isospin violation in heavy
nuclei [3].

The complexity of the compound nuclear states can also
amplify the size of the parity-odd asymmetries by several
orders of magnitude relative to single-particle estimates. This
large amplification makes it practical to use nuclear parity
violation, generically expected on dimensional grounds to
possess amplitudes seven orders of magnitude smaller than
strong interaction amplitudes, as a new setting to investigate
the validity of these statistically based theoretical approaches.
Statistical analyses have successfully been applied recently
to an extensive series of measurements of the parity-odd
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correlation �sn · �pn in the A = 100–200 mass region in neutron-
nucleus scattering performed at Dubna, KEK, and Los Alamos
Neutron Science Center (LANSCE) [4–7]. Although the
comparison between theory and experiment in this work is
still hampered somewhat by the lack of precise knowledge
of the weak NN amplitudes and their possible modifications
in the nuclear medium, theory and experiment appear to be
in agreement at about the 50% level. Given the extreme
complexity of the states involved, agreement between theory
and experiment at this level must be counted as an overall
success for the statistical approach.

Parity violation in the γ decays of nuclei is another example
where statistical methods may be employed to estimate
observables. In this case the observables involve the parity-odd
correlation �sn · �kγ , where �sn is the neutron spin and �kγ is
the momentum of the γ photon [6–8]. Just as for neutron
scattering, neutron capture on elements with a large number of
nucleons produces compound nuclei in highly excited states.
These nuclei exhibit a huge (>106) number of possible state
configurations with different angular momenta and parity,
and the number of transitions with different amplitudes that
the compound nucleus may make to its ground state is
correspondingly large as well. Because of the large number
of energy levels in the compound nucleus, formed by neutron
capture, one may hope that the calculation of the mean-square
matrix elements for the transition amplitudes may also amount
to a summation of a large number of uncorrelated random
contributions as in the case of the total cross section. One can
then use statistical arguments to estimate the rms value of the
parity-odd γ -ray asymmetry.

However, the case of parity violation in (n,γ ) reactions
in heavy nuclei is not quite as simple as parity violation in
the total cross section for both theoretical and experimental
reasons. For the total cross section, the amplification of parity
violation effects is dominated by the mixing amplitude of the
weak interaction, between two compound nuclear states of
opposite parity (in practice S-wave and P -wave compound
states). Because the total cross section is proportional to the
forward elastic scattering amplitude, by the optical theorem,
there is only one such contribution for any pair of opposite
parity compound states. For inelastic processes such as the
(n,γ ) reaction, however, the weak mixing between compound
states can occur in either the initial or final nuclear states, and
because these states are distinct in an inelastic reaction there
are two possible sources of compound nuclear amplification of
the parity-odd effect rather than one [7]. Because of the large
density of states in the initial state near neutron separation
energy, the initial state mixing will involve a larger number of
components in the wave function for γ transitions to low-lying
states and therefore lead to a larger amplification. However,
one also has contributions from transitions to higher-lying
states where final-state mixing is somewhat more important.
Experimentally, precise measurements of parity-odd asymme-
tries are more practical for the total integrated γ spectrum
rather than individual γ transitions. But a calculation of the
asymmetry of the integral γ spectrum requires an additional
averaging over the large number of distinct final states. In
addition the integral measurement also senses γ cascades in

addition to single transitions. Parity-odd correlations in the
integrated γ spectra of 35Cl, 81Br, 113Cd, 117Sn, and 139La
have previously been calculated by Flambaum and Sushkov
[6] and by Bunakov et al. [9]. However, more experimental
information on parity-odd asymmetries in integral γ spectra
from heavy nuclei are needed in any attempt to make progress
in this area.

We have searched for parity-odd directional γ -ray asym-
metries in the capture of cold polarized neutrons on 27Al,
Cu, and 115In at LANSCE. We have performed a simple
statistical estimate of the mean-square value for the parity-
odd asymmetries in these nuclei and obtain expected upper
bounds that are consistent with experiment. In addition, we
performed measurements of the directional γ -ray asymmetry
for polarized cold neutron capture on 35Cl and on 10B. 35Cl is
known to possess a large parity-odd γ asymmetry [10,11] and
it is used to verify the sensitivity of our apparatus. 10B is used
extensively throughout the experiment for neutron shielding.
Searches for parity-odd γ asymmetries on several other nuclei
(45Sc, 51V, 59Co, 48Ti, 55Mn) are in progress.

The motivation for further measurements in the mass region
30 < A < 100 is that these additional measurements may
make it possible to improve our knowledge of the weak
spreading width using statistical methods similar to those
developed by the TRIPLE collaboration [5]. The TRIPLE
collaboration measured many parity-violating asymmetries
in the helicity dependence in compound-nuclear total cross
sections. They extracted the weak spreading width for the
mass region around 100 and 240 using a likelihood approach.
We show in equation Eq. (11), below, that the average
parity-violating asymmetry in capture γ s is a product of
the parity-violating admixture in the capture state, ε, and a
Gaussian random variable Bγ . We calculate the rms width of
the Gaussian random variable. Bowman et al. [12] give the
distribution of ε in situations involving different degrees of
a priori knowledge of spectroscopic information. The present
work allows the construction of the likelihood function for
the weak spreading width from data on parity violation in
capture γ s.

The measurements in this article are being conducted in
preparation for an experiment to search for the parity-violating
γ -ray asymmetry in the capture of polarized neutrons on
protons by the NPDGamma collaboration. The apparatus
constructed for the NPDGamma experiment is capable of
measuring γ -ray asymmetries with an accuracy of 10−8.
The motivation for choosing the above targets is that they
are components of the NPDGamma apparatus. Neutrons form
the beam and scattered neutrons capture on these components.
We therefore needed to measure their γ asymmetries to control
potential systematic errors.

The remainder of the article is organized as follows. We
first provide a brief theory section in which we outline
the calculation and estimate the expected rms of the γ -
ray asymmetry in a current mode γ -ray detector from the
nuclei used in the experiment. We give a short overview of the
experimental layout and then describe the measurements. We
conclude with a discussion on the results and the associated
implications.
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II. THEORY AND STATISTICAL ESTIMATES

The simplest nuclear reaction that can produce a parity-
odd directional distribution of γ rays is the capture of
polarized neutrons on protons. The differential cross section
in this simple system can be calculated explicitly from the
transition amplitudes of the electro-magnetic part of the
Hamiltonian between initial (capture) and final (bound) two-
nucleon states, which possess mixed parity due to the NN
weak interaction. In the �n + p → d + γ reaction the primary
process is the strong interaction induced parity conserving
M1 transition between the singlet and triplet S-wave states
1S0,

3S1.The weak interaction introduces a small parity non-
conserving admixture of P -wave states in the initial singlet
and the final triplet S-wave states. The largest contribution
to the hadronic weak interaction comes from pion exchange
and the measurement of the parity violating up-down asym-
metry, Aγ , in the angular distribution of 2.2-MeV γ rays with
respect to the neutron spin direction

dσ

d�
∝ 1

4π
(1 + Aγ cos θ ), (1)

almost completely isolates the term proportional to the weak
pion-nucleon coupling constant f 1

π [13]. Here cos θ is the angle
between the neutron spin direction and the γ -ray momentum.

For the �n + p → d + γ reaction, it can be shown that there
is a simple expression for the γ -ray asymmetry in terms of the
matrix elements between initial and final states

Aγ ∝ Re
ε
〈
3P1

∣∣E1
∣∣3S1

〉
〈
3S1

∣∣M1
∣∣1S0

〉 . (2)

Here

ε = 〈ψα′ |W |ψα〉
	E

(3)

and α = {J,L, S, p} (p = parity).
In heavy nuclei the interference term that produces the

asymmetry is much more complicated, involving many states.
Here, a neutron may capture into an S- or P -wave state
close to the neutron separation energy (Sn) and the weak
interaction mixes the corresponding amplitudes perturba-
tively. For almost all nuclei except in few-body systems
it is essentially impossible to calculate the parity-violating
asymmetry from the strong and weak Hamiltonian, because
of the large number of γ -ray transitions. However, because of
the large number of possible electromagnetic transitions in the
compound nucleus, the calculation of the mean-square matrix
elements for the transition amplitudes amounts to a summation
of a large number of uncorrelated random amplitudes that are
approximately independent of the transition energy for E � Sn.
One can then hope to use statistical arguments to estimate the
rms value of the asymmetry from nuclei close to a certain
neutron separation energy.

Due to the large density of states close to the neutron
separation energy and the correspondingly small level spacing
D � 	Ec, parity violation is expected to be dominated by the
mixing of the two closest S- and P -wave states near Sn, in the
initial or capture state, and it is expected on general grounds
that parity violation due to mixing with lower-lying states
may be neglected. The parity-violating asymmetry comes

from interference between E1 and M1 γ transitions. The
γ -ray asymmetry from the decaying compound nucleus as
measured in a current-mode γ detector is given by

Aγ = εBγ . (4)

Where

Bγ = ξ · F (JT , Ji)

×
2 Re

[∑
Jf

〈
J

p

f

∣∣E1
∣∣Jp′

i

〉〈
J

p

i

∣∣M1
∣∣Jp

f

〉
E4

γ,if

]
∑

Jf

(∣∣〈Jp

f

∣∣M1
∣∣Jp

i

〉∣∣2 + ∣∣〈Jp

f

∣∣E1
∣∣Jp′

i

〉∣∣2)E4
γ,if

(5)

characterizes the γ cascade and, with the numerator being a
sum of independent random variables, will have a Gaussian
distribution, according to the central-limit theorem. Here the
transitions are between initial (i) and final (f ) compound
nuclear states with total angular momentum (Ji, Jf ) and parity
(p, p′). F (JT , Ji) is the angular-momentum coupling factor
resulting from the compound state polarization [6]

F (JT , Ji) = (−1)2Ji+1/2+JT 3(2Ji + 1)

{
1 1/2 1/2
JT Ji Ji

}
,

where JT is the angular momentum of the target nucleus before
neutron capture.

The dependence on the γ -ray transition energy Eγ in
Eq. (5) comes from the phase-space factor (E3/2

γ ) in the
transition amplitude and the linearity (∝ Eγ ) of the detector
response as a function of energy in a current mode γ detector.
The factor

ξ =
∑

f Iγ,if Eγ,if

Sn

⇒ 1

Sn

∫ Sn

0 E4
γ ρf (Eγ )dEγ∫ Sn

0 E3
γ ρf (Eγ )dEγ

arises because the current mode γ detector possesses no energy
resolution and therefore sees a superposition of currents from
all transitions. This has the effect of diluting the asymmetry
(0 < ξ�1). Here,

Iγ,if =
(∣∣〈Jp

f

∣∣M1
∣∣Jp

i

〉∣∣2 + ∣∣〈Jp

f

∣∣E1
∣∣Jp′

i

〉∣∣2)E3
γ,if∑

Jf

(∣∣〈Jp

f

∣∣M1
∣∣Jp

i

〉∣∣2 + ∣∣〈Jp

f

∣∣E1
∣∣Jp′

i

〉∣∣2)E3
γ,if

is the relative intensity of a given transition.
We estimate the density of final states using the back-shifted

Fermi gas model (BSFGM) as [14,15],

ρf (Ex) =
∑

J

2J + 1

24
√

2σ 3a1/4

× exp[2
√

a(Ex − 	) − J (J + 1)/2σ 2]

(Ex − 	 + t)5/4
, (6)

where J is summed over Jf − 1, Jf , Jf + 1 for each final
compound nuclear state. Here, a [MeV−1] and 	 [MeV]
are determined from experimental data and the temperature
parameter t is defined by Ex − 	 = at2 − t . σ 2 = Ieff t/h̄

2 �
0.015A5/3t is the spin cut-off parameter and the effective
moment of inertia Ieff takes on values between 50 and 100%
of the rigid-body moment of inertia Irig = 2

5MR2. The level
density Eq. (6) is derived assuming random coupling of angular
momenta and the spin cut-off parameter arises as a result of
this treatment [15]. The excitation energy Ex = Sn − Eγ is
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FIG. 1. Density of final states in the excited compound nuclei
investigated in this work as a function of γ -ray transition energy up
to the neutron separation energy. There are many more states at low
γ energies than at high energies, and the decaying nucleus emits
many low-energy γ rays before reaching the ground state. The level
density is calculated according to the back-shifted Fermi gas model.

the energy of the nucleus after the γ -ray transition from the
capture state. Ex may be zero if the transition is to the ground
state. Figure 1 shows the predicted density of final states, using
this model, for the 27Al , Cu, and 115In, nuclei as a function of
γ -ray energy.

For comparison and to estimate the uncertainty in the
calculated asymmetries due to the model we also determine
the asymmetries using a constant temperature model (CTM)
of the final density of states [14]

ρf (Ex) = 1

T
exp (Ex − 	)/T . (7)

The aim of this calculation is to find a simple “generic”
formula that holds for many nuclei and provides a good
estimate of the size of an asymmetry one can expect in a
measurement of this nature. The denominator in Eq. (5) is the
parity-allowed transition from the initial compound state (Ji)
after capture of an S-wave neutron. This transition has the
largest amplitude and basically determines the intensity of the
γ signal. In general E1 transitions outnumber M1 transitions
and the denominator is primarily E1 for most nuclei. We point
out, though, that if one has initial states such that all or most
parity-allowed transitions are M1 in the range of expected
γ -ray energies, as determined by the density of states (as is
the case for Al and In), then the denominator would be M1.

The rms of the γ -ray asymmetry can then be estimated as
follows. We use the electric and magnetic dipole transition
rates that are given by

�E1 = 2π
〈∣∣〈Jp′

f

∣∣E1
∣∣Jp

i

〉∣∣2〉ρf (Sn),
(8)

�M1 = 2π
〈∣∣〈Jp

f

∣∣M1
∣∣Jp

i

〉∣∣2〉ρf (Sn),

respectively. The transition rates are strength functions. As the
density of states increases, the average matrix element squared
decreases and the transition rates are constant or slowly varying
functions of energy.

The rms of the detected intensity of the γ rays that
depopulate the initial state is given by taking the average
of the squared denominator in Eq. (5). Then, invoking the
randomness in the transition amplitudes (under the assumption
that the correlation is zero, so that the cross terms vanish), we
find〈∑

Jf

(∣∣〈Jp′
f

∣∣E1
∣∣Jp

i

〉∣∣2 + ∣∣〈Jp

f

∣∣M1
∣∣Jp

i

〉∣∣2)E4
γ,if




2〉

�

∑

Jf

〈∣∣〈Jp′
f

∣∣E1
∣∣Jp

i

〉∣∣2〉E4
γ,if




2

+

∑

Jf

〈∣∣〈Jp

f

∣∣M1
∣∣Jp

i

〉∣∣2〉E4
γ,if




2

=
[∫ Sn

0
E4

γ

�E1

2πρf (Sn)
ρf (Sn)dEγ

]2

+
[∫ Sn

0
E4

γ

�M1

2πρf (Sn)
ρf (Eγ )dEγ

]2

= �2
E1 + �2

M1

4π2ρ2
f (Sn)

[∫ Sn

0
E4

γ ρf (Eγ )dEγ

]2

. (9)

The factor ρf (Eγ )dEγ arises in the standard fashion, when
converting the sum over final states into an integral.

The rms of the interference term in the numerator gives

4

〈∑
Jf

〈
J

p′
f

∣∣E1
∣∣Jp

i

〉〈
J

p

i

∣∣M1
∣∣Jp

f

〉
E4

γ,if




2〉

� 4
∑
Jf

〈∣∣〈Jp′
f

∣∣E1
∣∣Jp

i

〉∣∣2〉〈∣∣〈Jp

i

∣∣M1
∣∣Jp

f

〉∣∣2〉E8
γ,if

= 4
∫ Sn

0
E8

γ

�E1

2πρf (Sn)

�M1

2πρf (Sn)
ρf (Eγ )dEγ

= �E1�M1

π2ρ2
f (Sn)

∫ Sn

0
E8

γ ρf (Eγ )dEγ , (10)

where we again used the randomness in the transition ampli-
tudes in going to the second line. With this, the rms asymmetry
can be estimated for each target from√〈

A2
γ

〉 � εσBγ
. (11)

Where

σBγ
= 2F (JT , Ji)ξ

√√√√ �E1�M1

�2
E1 + �2

M1

∫ Sn

0 E8
γ ρf (Eγ )dEγ( ∫ Sn

0 E4
γ ρf (Eγ )dEγ

)2 .

(12)

To calculate the rms asymmetry for a particular nucleus,
one must then determine whether the transitions to the ground
state are mostly E1 or M1 and omit the corresponding
amplitude in the denominator. In the case of 27Al and 115In we
then have �M1/�E1, whereas for Cu we have �E1/�M1.
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TABLE I. rms γ -ray asymmetry values and associated variables, as estimated from the statistical approach (I ≡∫ Sn

0 dEγ E8
γ ρ(Eγ )/(

∫ Sn

0 dEγ E4
γ ρ(Eγ ))2,D ≡ Do

∑
2Ji + 1)Do was taken from [19,20].

Calculated rms γ -ray Asymmetries (BSFGM)

Sn[MeV] JT Ji F (JT , Ji) D[eV] ξ 2 ε2 I
√

〈A2
γ 〉

27Al 8.0 5/2 2, 3 0.3 1.2 × 105 0.6 2.4 × 10−13 6.5 × 10−2 1.3 × 10−7

63Cu 7.9 3/2 1, 2 -0.4 4.8 × 103 0.5 6.0 × 10−12 1.6 × 10−3 1.4 × 10−8

65Cu 7.1 3/2 1, 2 -0.4 8.0 × 103 0.5 3.6 × 10−12 2.7 × 10−3 1.4 × 10−8

115In 6.8 9/2 4, 5 0.4 400 0.4 7.2 × 10−11 7.3 × 10−5 7.5 × 10−8

Calculated rms γ -ray Asymmetries (CTM)

Sn[MeV] JT Ji F (JT , Ji) D[eV] ξ 2 ε2 I
√

〈A2
γ 〉

27Al 8.0 5/2 2, 3 0.3 1.2 × 105 0.7 2.4 × 10−13 5.0 × 10−2 1.3 × 10−7

63Cu 7.9 3/2 1, 2 -0.4 4.8 × 103 0.6 6.0 × 10−12 2.5 × 10−3 1.8 × 10−8

65Cu 7.1 3/2 1, 2 -0.4 8.0 × 103 0.6 3.6 × 10−12 3.7 × 10−3 1.7 × 10−8

115In 6.8 9/2 4, 5 0.4 400 0.4 7.2 × 10−11 9.9 × 10−5 8.8 × 10−8

Substituting the experimental value of the hadronic weak
spreading width (�W = 1.8+0.4

−0.3 × 10−7 eV) [5] and using

ε2 = �W

2πρi

1

D2
� �W

2πD

together with the fact that E1 transitions are approximately
10 times faster than M1 transitions, �E1 � 10�M1 [16,17],
the rms asymmetry can be calculated for different nuclei and
neutron separation energies. When evaluating Eq. (11) for
aluminum, for example, the single-particle level spacing is
approximately D � 120 keV, the dilution factor ξ 2 � 0.6, and
the ratio of integrals in Eq. (11) can be numerically evaluated to
give �6.5 × 10−2. The expected rms value of the γ asymmetry
is then about 1.3 × 10−7. The rms γ -ray asymmetry values and
other associated variables for the nuclei studied in this work
are listed in Table I.

A. Theory discussion

The results in Tables I and IV show no large enhancements.
There are several reasons why one may expect this behavior.
For example, the levels are highly degenerate, the sign of
the asymmetry is random, and the transitions mix incoher-
ently, producing a 1/

√
N suppression. There is also no kR

enhancement for the direct capture calculations done here,
which are appropriate for the low neutron energies used in
these experiments.

In Ref. [6] Flambaum and Sushkov calculated the average
value for the integral γ -ray spectrum relative to the S-wave
amplitude for thermal neutrons,

ao = g

4k2

T 2
s �

(γ )
eff

(E − Es)2 + 1
4�2

s

,

which is far from P -wave resonance so that its contribution
to the cross section can be neglected. The rms asymmetry is

given, in their notation, by

〈A9〉 = −2 Re

(
ε

E − Ep − 1
2 i�p

)
F (JT , Ji)

3
√

2Ji + 1
(r).

(13)

Where r is an integral over the E1 and M1 radiative strength
functions, detection efficiency, and density of final states,
corresponding to our integral in Eq. (10). Equation (13) may
be compared to our result above. Flambaum and Sushkov
also state that the γ -ray asymmetry arises as a result of the
E1-M1 interference, that the transitions are random, and that
the asymmetry is statistically suppressed after averaging.

The main difference between our calculations and those
done by Flambaum and Sushkov is that they consider a P -wave
resonance near the thermal (or cold) region mixed by parity
violation with one S-wave resonance, whereas our treatment
takes account of all S- and P -wave resonances, but in the tail,
far from resonance, at the average spacing D or more.

III. EXPERIMENT

The NPDGamma apparatus used for the measurements is
located on flight path 12 at the Manuel Lujan Jr. Neutron Scat-
tering Center at LANSCE. The LANSCE linear accelerator
delivers 800-MeV protons to a storage ring, which compresses
the beam to 250-ns-wide pulses at the base. The protons from
the storage ring are incident on a split tungsten target at a rate of
20 Hz and the resulting spallation neutrons are cooled by and
backscattered from a cold H2 moderator with a surface area of
12 × 12 cm2. For the measurements described here, the cold
neutrons were transported to the experimental apparatus by a
neutron guide and then transversely polarized by transmission
through a polarized 3He cell. Three 3He ion chambers were
used to monitor beam intensity and polarization. A radio
frequency spin flipper was used to reverse the neutron spin
direction on a pulse-by-pulse basis. The polarized neutrons
then captured on a target placed in the center of the γ detector
array. The γ rays from the neutron capture were detected
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FIG. 2. Schematic of the experimental setup.

by an array of 48 CsI(Tl) detectors operated in current mode
[20,21]. The entire apparatus was in a homogeneous 10-G field,
which was required to maintain the neutron spin downstream
of the polarizer, with a gradient of less than 1 mG/cm to
make spin-dependent Stern-Gerlach steering of the polarized
neutron beam negligible.

Figure 2 shows the flight path and experimental setup. The
distance between the moderator and target is about 22 m. The
flight path 12 beam line consists of a neutron guide, a shutter,
and a beam chopper. The pulsed spallation neutron source
allowed us to know the neutron time of flight or energy accu-
rately. The chopper is used to define the time of flight frame and
to prevent neutrons from different frames from mixing and thus
diluting the neutron energy information. In this experiment
the chopper was used to close the beam line before the end
of the frame, which allowed us to take beam-off (pedestal)
data for �6 ms at the end of each neutron pulse that is needed
for detector pedestal and background studies (Fig. 3). The last
10 ms after sampling stops is used by the DAQ for data transfer.
A detailed description of the FP12 neutron guide and perfor-
mance is given in Ref. [22]. The measured moderator bright-
ness has a maximum of 1.25 × 108 n/(s · cm2 · sr · meV · µA)
for neutrons with an energy of 3.3 meV.

The neutrons were polarized by passing through a
12-cm-diameter glass cell containing polarized 3He ([23,24]
and references within). The beam polarization was measured
with the beam monitors using neutron transmission. (The 3He
polarization can be monitored using nuclear magnetic reso-
nance). For γ -asymmetry measurements, the figure of merit is
the statistical accuracy that can be reached for a certain running
time, which is proportional to the product Pn

√
Tn, where Tn

is the neutron transmission through the cell and Pn is the
neutron polarization [25]. The neutron transmission increases
with energy, whereas the neutron polarization decreases with
energy. In the analysis of the data the neutron polarization was
calculated separately for each run by fitting the transmission
spectrum to the expression Pn = tanh (σcnlPHe), using a 3He
thickness of 4.84 bar · cm, which was separately measured.
Here, σc = σo/

√
E with neutron energy E in units of meV,

and σo = 27168 b, nl = 4.84 · 2.688 × 1023 atoms/m2.

The primary technique for reducing false asymmetries
generated by gain nonuniformities, slow efficiency changes
and beam fluctuations is frequent neutron spin reversal. This
allows asymmetry measurements to be made in each spin state
for opposing pairs of detectors and for consecutive pulses
with different spin states, thereby suppressing the sensitivity
of the measured asymmetry to detector gain differences,
drifts, and intensity fluctuations. By carefully choosing the
sequence of spin reversal, the linear and quadratic components
of time-dependent detector gain drifts in a sequence can be
greatly suppressed. To achieve the neutron spin reversal, the
experiment employed a radio frequency adiabatic neutron spin
rotator (RFSR) [26] that operates at 29 kHz for the 10-G guide
field. The neutron spin direction is reversed when the RFSR
is on and is unaffected when it is off. The spin flip efficiency
averaged over the beam cross section (5 cm diameter) was
measured to be about 99%.

The polarized neutrons then captured on a target placed in
the center of the γ detector array. The targets were thick enough
to stop most of the neutron beam by capture or scattering with
diameters larger than the beam cross section. The capture γ
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FIG. 3. Normalized signal from the first beam monitor down-
stream of the guide exit. The solid triangles show the signal obtained
from a run where the chopper was parked open. The open circles
correspond to a run taken with the chopper running.
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TABLE II. Targets with their relative
background contributions (target in versus
target out). In each case the maximum value
is stated for the detector with the largest
background signal. The relative amount of
background varies, because the magnitude
of the γ -ray signal varies with target,
whereas the target-out background remains
constant.

Relative background

B4C � 17%
Al � 15%
In � 11%
CCl4 � 8%
Cu � 7%

signals from all of the targets measured were large compared
to noise and background.

The housing for the 33-cm3 liquid CCl4 target was made of
Teflon. The CCl4 liquid is 99.9% chemically pure, with less
than 0.01% water content. The aluminum and copper targets
consisted of a number of sheets supported by an aluminum
frame. Each target sheet is a square with 8.5-cm sides and
of ∼1 mm in thickness. The arrangement of the target into
sheets with a gap between the sheets reduced γ attenuation in
the target. The total length of the target (including gaps) was
30 cm. Target-out background runs and runs with the empty
frame were conducted as well, and the background is taken
into account in the final determination of the asymmetry (see
Table II). The boron target consists of a 1-cm-thick, 15 × 15 cm
sheet of sintered B4C glued to an aluminum holder consisting
of a simple (thin) aluminum sheet. The indium target was
approximately 12 mm thick, covering a circular cross-sectional
area with a radius of ∼3 cm at the center of the beam. For each
of the targets the beam was collimated to a diameter of about
5 cm.

The depolarization of neutrons via spin flip scattering
from the nuclei dilutes the asymmetry. For all targets the
neutron depolarization is a small effect that can be esti-
mated to sufficient accuracy for nonmagnetic materials using
the known neutron coherent and incoherent cross sections.
Table III lists the estimated spin-flip probabilities for the targets
used and the corresponding calculated average correction

TABLE III. Spin-flip probability estimate and
corresponding corrections to the asymmetry due to
depolarization in the target region.

Neutron depolarization

2σinc/3σtot 〈	dep(ti)〉
Al 3 × 10−3 1
Cu 2 × 10−2 0.95
CCl4 7 × 10−2 0.95
In 2 × 10−3 1
B4C 5 × 10−4 1

FIG. 4. A ring of detectors and one up-down pair, as seen with
beam direction into the page. �B is the magnetic holding field defining
the direction of the neutron polarization.

factors 〈	dep(ti)〉. The degree of spin flip scattering is neutron
energy dependent and a Monte Carlo calculation for the
depolarization as a function of neutron energy was applied
to the data.

The detector array consists of 48 CsI(Tl) cubes arranged
in a cylindrical pattern in 4 rings of 12 detectors each around
the target area (Fig. 4). In addition to the conditions set on
the detector array by the need to preserve statistical accuracy
and suppress systematic effects, the array was also designed
to satisfy criteria of sufficient spatial and angular resolution,
high efficiency, and large solid angle coverage [20]. Because
of the possible small size of the asymmetries and the proposed
measurement accuracy the average rate of neutron capture and
the corresponding γ rate in the detectors must be high to keep
the run-time reasonable. Because of the high rates and for a
number of other reasons discussed in Ref. [20], the detector
array uses current mode γ detection. Current mode detection
is performed by converting the scintillation light from CsI(Tl)
detectors to current signals using vacuum photo diodes (VPD),
and the photocurrents are converted to voltages and amplified
by low-noise solid-state electronics [21].

In current mode detection, the counting statistics resolution
is limited by the rms width in the sample distribution. For
our detector array this width is dominated by fluctuations in
the number of electrons produced at the photocathode of the
VPD, which is dominated by γ -ray counting statistics when
the beam is on. During beam on measurements, the shot noise
rms width is then given by [27]

σIshot =
√

2qI
√

fB, (14)

where q is the amount of charge created by the photo cathode
per detected γ -ray, I is the average photocurrent per detector,
and fB is the sampling bandwidth, set by the 0.4-ms time bin
width in the time of flight spectrum [20,28].

IV. ANALYSIS AND RESULTS

A. Asymmetry definition

For a point target and a detector array with perfect spatial
resolution, the measured γ -ray angular distribution would
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be proportional to the differential cross-section Y = 1 +
Aγ cos θ , where θ is the angle between the neutron polarization
and the momentum of the emitted photon and Aγ,UD is the
parity-odd up-down (UD) asymmetry. A third term is present if
a parity-conserving (PC) left-right (LR) asymmetry exists [29].
In that case Y = 1 + Aγ,UD cos θ + Aγ,LR sin θ . However, the
relationship between the basic expression for the γ -ray yield
and the measured asymmetry is complicated by a number of
small neutron energy-dependent effects. A separate asymmetry
is calculated for each detector pair, as defined in Fig. 4.

The physics asymmetry for a given detector pair p, spin
sequence j , and neutron time of flight ti is given by

[
A

j,p

UD(ti) + βA
j,p

UD,b(ti)
]〈GUD(ti)〉

+ [
A

j,p

LR(ti) + βA
j,p

LR,b(ti)
]〈GLR(ti)〉

=
[
A

j,p
raw(ti) − A

p
gAf (ti) − A

p
noise

]
Pn(ti)	dep(ti)	sf (ti)

(15)

Here, A
j,p
raw(ti) is the measured asymmetry. The background

asymmetries (Aj,p

UD,b, A
j,p

LR,b) and the relative signal level (β)
must be measured in auxiliary measurements. A

p
g is the

gain asymmetry between the detector pair and Af (ti) is the
asymmetry from pulse to pulse beam fluctuations. The neutron
energy and detection efficiency weighted spatial average
detector cosine (up-down asymmetry) with respect to the
(vertical) neutron polarization is given by 〈GUD(ti)〉 � cos θ ,
whereas the detector sine (left-right asymmetry) is given by
〈GLR(ti)〉 � sin θ . These detector-target geometry corrections
have been modeled for each target geometry. Also included
are the correction factors due to the neutron beam polarization
[Pn(ti)], the spin flip efficiency [	sf (ti)], and the neutron
depolarization in the target [	dep(ti)].

The measured asymmetry (Aj,p
raw) for each detector pair and

neutron energy can be extracted in the usual way, by forming
a ratio of differences between cross sections to their sum.
However, to suppress first- and second-order detector gain
drifts [30] the raw asymmetries were formed for all valid
sequences of eight macro pulses with the correct neutron spin

state pattern

Aj,p
raw(ti) =

∑
s=↑[Us(ti) − Ds(ti)] −∑

s=↓[Us(ti) − Ds(ti)]∑
s=↑[Us(ti) + Ds(ti)] +∑

s=↓[Us(ti) + Ds(ti)]
.

(16)

Here the sum is over all four signals with the corresponding
spin state in a spin sequence for the up (U ) and down (D) detec-
tor in a pair. A so-called valid eight-step sequence of spin states
is defined as (↑↓↓↑↓↑↑↓). Asymmetries were measured for
55 different neutron energies between approximately 2 and
16 meV, with a resolution of ∼0.2 to 1.0 meV per time bin,
respectively.

It is important to realize that signal fluctuations that are
not correlated with the switching of the neutron polarization
direction, such as beam and detector gain fluctuations, will
average out and do not contribute to the asymmetry. It is,
however, essential that these signals have an rms width that
is small compared to the rms width in the asymmetries
of interest (driven by counting statistics) so that they do
not reduce the statistical significance of the result and are
averaged to zero quickly compared to the time it takes to
measure the asymmetry to the desired accuracy. Possible false
asymmetries due to spin-state correlated electronic pickup
(additive asymmetry) and possible magnetic field-induced gain
changes (multiplicative asymmetry) in the detector VPDs have
previously been measured and are consistent with zero to
within 5 × 10−9 [20].

The detector pair physics asymmetries as represented by
Eq. (15) can then be combined in error weighted aver-
ages over the neutron time-of-flight spectrum to form a
single asymmetry for each detector pair in the array, for
a single eight-step sequence of beam pulses. If beam intensity
levels are sufficiently stable over the measurement time these
sequence asymmetries can be histogrammed for each pair.
Typical run lengths were ∼8.3 min and included 10,000 beam
pulses or 1,250 eight-step sequences and the asymmetry mea-
surements performed usually extended over several hundred
runs.
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FIG. 5. (Left) CCl4 asymmetries for each pair, plotted versus angle of the first detector in the pair with respect to the vertical. The total
array asymmetry is extracted from the fit. (Right) Noise asymmetries.
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TABLE IV. Up-down and left-right asymmetries for the target materials. Stated errors
are statistical only. The rms widths are taken from histograms with single eight-step sequence
asymmetries for a detector pair as individual entries.

Asymmetries and rms width

Up-down Left-right rms width (typ.)

Al (−0.02 ± 3) × 10−7 (−2 ± 3) × 10−7 1.2 × 10−3

CCl4 (−19 ± 2) × 10−6 (−1 ± 2) × 10−6 1.0 × 10−3

B4C (−1 ± 2) × 10−6 (−5 ± 3) × 10−6 0.7 × 10−3

Cu (−1 ± 3) × 10−6 (0.3 ± 3) × 10−6 1.0 × 10−3

In (−3 ± 2) × 10−6 (3 ± 3) × 10−6 0.4 × 10−3

Noise (add.) (2 ± 5) × 10−9 (−7 ± 5) × 10−9 2.0 × 10−6

Noise (mult.) (3 ± 7) × 10−9 (−9 ± 7) × 10−9 0.2 × 10−3

Beam · gain N/A N/A 1.0 × 10−5

B. Results

The known parity-odd γ asymmetry in CCl4 was used
to verify that a nonzero asymmetry can be measured with
our apparatus. The CCl4 asymmetry was also used to verify
the geometrical dependence of the pair asymmetries. For
this purpose all 24 pair asymmetries, extracted from the
histogrammed eight-step sequence asymmetries over all data
obtained with that target, were multiplied by their mean
geometry factors and plotted versus their corresponding mean
angle, as shown in Fig. 5. The fit function used to extract the
total array asymmetry is AUD cos θ + ALR sin θ .

In general, the up-down and left-right asymmetries must
be extracted using the fit described above. Higher-order
corrections to the fitting function used here (parity violating or
not) are introduced by higher partial waves in the expansion
of the initial and final two nucleon states representing more
complicated scalar combinations between the neutron spin �sn

and outgoing γ -ray momentum direction �kγ . For the up-down
asymmetry the angular distribution is obtained from initial and
final two-nucleon states with components up to the P waves
producing the �sn · �kγ correlation. The left-right asymmetry
originates from the �sn · (�kγ × �kn) correlation. Parity-violating
corrections from higher partial waves are negligible because
they represent a second-order perturbation proportional to
the weak coupling squared. The results of the asymmetry
measurements are summarized in Table IV. Note that beam
asymmetries are only produced if there are pulse-to-pulse
fluctuations in the number of neutrons and only in combination
with a difference in gain between a given detector pair.
Neither beam fluctuations nor detector gain differences are
correlated with the neutron spin and therefore the beam gain
asymmetry contains no up-down or left-right dependence.
Due to the sum over the eight-step sequence, the beam gain
asymmetry is zero and its rms width is determined by the
size of beam fluctuations. The additive and multiplicative
noise asymmetries in Table IV are measured without a light
signal from the detectors (electronic noise only) and with a
light signal from light-emitting devices (LEDs) embedded
in the detectors, respectively. The large rms width for the
multiplicative noise asymmetry is a result of larger fluctuations
with LEDs [20].

C. Errors

The final statistical errors stated in Table IV are taken
from the distribution of sequence values σ 2

γ /N = [E(A2
γ ) −

E(Aγ )2]/N , with N histogrammed eight-step sequence asym-
metries. Any nonrandom effect such as those introduced by the
correction factors |〈G(ti)〉|,	dep(ti), Pn(ti),	sf (ti) are treated
as systematic errors. These enter as

σγ,Sys = Aγ

√(
σPn

Pn

)2

+
(

σsf

	sf

)2

+
(σG

G

)2
+
(

σdep

	dep

)2

and are added in quadrature with the statistical error.
The errors on the beam polarization and spin flip efficiency

were calculated to be 4 and 10%, respectively. The error on the
geometry factor is estimated to be less than 1% from variations
observed in the values when varying the step size in the
Monte Carlo, simulating γ -ray interaction in the detectors.
The error on the spin-flip scattering is estimated to be on
the order of a few percent. Because the systematic errors are
scaled by the asymmetry, their contribution to the overall error
on the asymmetry is negligible compared to the statistical
error, except for the case of the CCl4 target, which has a large
nonzero asymmetry. For CCl4, the systematic error is �2.3 ×
10−6. So the CCl4 up-down physics asymmetry and its total
error is (−19 ± 3) × 10−6. A previous measurement of this
asymmetry by this collaboration found (−29.1 ± 6.7) × 10−6

[31]. M. Avenier and collaborators [10] found an up-down
asymmetry for 35Cl of (−21.2 ± 1.7) × 10−6, whereas V. A.
Vesna and collaborators found (−27.8 ± 4.9) × 10−6 [11] (see
also Ref. [32]).

V. CONCLUSION

The NPDGamma collaboration has searched for γ -ray
asymmetries from polarized slow neutron capture on 27Al, Cu,
115In, and B4C. The asymmetry measurements for these targets
were consistent with zero at the few 10−7 level for 27Al and
at the few 10−6 level for Cu and 115In. All asymmetries
are consistent with zero within errors. The 35Cl asymmetries
obtained from the CCl4 measurements are consistent with
results from previous measurements. A statistical model, in
combination with previous measurements of weak matrix
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elements in compound nuclei, was used to estimate the
expected rms size of the parity violating γ -ray asymmetries
in 27Al, Cu, and 115In . Based on this model it is expected
that nonzero measured asymmetries will be smaller than the
estimated width 68.3% of the time. The upper bounds on
the measured asymmetries are therefore consistent with the
estimates obtained from these statistical calculations. Based
on the inverse relationship between the single-particle level
spacing and the size of the asymmetry, one would expect a
large number of very small or essentially zero asymmetries
when performing measurements for many larger nuclei, but
one would also expect to find a small number of nuclei
with enhanced asymmetries. We have already completed
measurements in other nuclei, with higher precision, in the
mass range A > 50 to further investigate the predictions of the
statistical approach to parity violation in compound nuclei.
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