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Net charge fluctuations and local charge compensation
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We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in
terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as
satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on
both the local charge correlation length and the size of the observation window. When the observation window
is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge
correlation length, while forward-backward charge fluctuations always have strong dependence on the observation
window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy
ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot
all be understood within this simple model.
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I. INTRODUCTION

Particle correlation in longitudinal phase space, i.e.,
two-particle rapidity correlation, has been well studied in
low-energy hadron-hadron collisions [1,2]. Strong short-range
correlations over a region of ±1 unit in rapidity were observed.
These short-range correlations can be understood in terms of a
model in which low-mass clusters decay into a small number of
charged and neutral pions. An interesting possibility is that the
clusters have the same properties in all reactions at all energies.
This possibility is in the spirit of the multiperipheral models,
but it is certainly not the only possibility. Multiperipheral
models obey the local compensation of quantum numbers [3].
An additive quantum number Q is said to be locally compen-
sated if each particle carrying the value q is almost always
surrounded by a small number of particles in the neighboring
region of rapidity space carrying a total quantum number
of −q [4,5]. The STAR experiment at BNL’s Relativistic
Heavy Ion Collider (RHIC) measured charge particle angular
correlation and suggested local charge conservation during
hadronization in heavy ion collisions as in pp collisions [6].
Other theoretical investigations suggested that two-particle
correlation in ultrarelativistic heavy ion collisions might
be significantly altered because of the formation of quark
gluon plasma (QGP) [7]. It would be interesting to test
whether this local conservation of charge is still valid in
heavy ion collisions and compare it with the corresponding pp

collisions.
Net charge in a rapidity region yi ∈ [ya, yb], ya < yb, can

be defined as

Q(ya, yb) =
∑

i

qiθ (yi − ya)θ (yb − yi), (1)

where qi is the charge of particle i and θ (x) is the step function
defined as usual by θ (x) = 1, if x � 0, and θ (x) = 0, if x < 0.
The reduction of the fluctuation of net charge

σ 2(Q) = 〈Q2〉 − 〈Q〉2 (2)
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has been suggested as a signal of the formation of the QGP
state because the charge carriers in the plasma state carry less
charge than that in ordinary hadronic state [8,9]. Available
experimental investigations of net charge fluctuations [10,11]
show no indication of the QGP state, and the results are
consistent with resonance gases. In this paper, we will
demonstrate that the measure of net charge fluctuation could
also be used as a test of local conservation of charge and as a
measure of the local charge correlation length.

We study net charge fluctuations in terms of a schematic
multiperipheral model in Sec. II. In Sec. III, modifications on
the results from Sec. II due to limited rapidity coverage are
studied. Section IV discusses the STAR experiment results on
net charge fluctuations and compares them with our model
studies. In Sec. V, a related measurement, forward-backward
charge fluctuation, is discussed briefly. A summary is given in
Sec. VI.

II. NET CHARGE FLUCTUATION IN
A MULTIPERIPHERAL PICTURE

Quigg and Thomas studied charge transfer fluctuations in a
schematic multiperipheral model [12]. The charge transfer is
defined as

u(y) = [QF (y) − QB(y)]/2, (3)

where QB(y) = ∑
i qiθ (y − yi) is the net charge in the rapid-

ity region backward of y. Similarly, QF (y) = ∑
i qiθ (yi − y)

is the net charge in the rapidity region forward of y. It is
assumed that the full rapidity range is measured. An “ω” model
was used as an example to study charge transfer fluctuations in
their original paper. In that model, pions are produced in a basic
cluster of triplets (π+π−π0) for which a cluster produced at
rapidity yi will yield pions at rapidities yi − �, yi, and yi + �.
� is a “mobility” parameter which characterizes the emergence
of pions from a cluster. It is assumed that the clusters are
produced independently with a flat rapidity distribution. It
is easy to see that only those clusters with rapidities within
the interval [y − �, y + �] have the potential to contribute
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to u(y). The central result they obtained on charge transfer
fluctuation is

σ 2(u(y)) = 〈u(y)2〉 − 〈u(y)〉2 = 2

3
2�

N

Y
, (4)

in which N is the number of clusters produced in the
rapidity interval [−Y/2, Y/2] in an event. This result was later
extended by Chao and Quigg [13] to yield the smooth rapidity
distribution

σ 2(u(y)) = κ
dnch

dy
, (5)

where dnch/dy is the charged particle density after elimination
of the leading particles. The proportion coefficient κ is
determined by the mobility parameter � in the cluster model
and directly related to the local charge correlation length.
The Quigg-Thomas relation has been observed in low-energy
pp collisions, and κ is found to remain nearly constant with
rapidity [14]. These results can be taken as an indication of
local compensation of charge in hadron-hadron collisions.

In terms of the ω model, QB(y) = −QF (y) is satisfied for
every event. From the definition of charge transfer, we have
u(y) = QF (y) = −QB(y). All the derivations in Ref. [12] for
charge transfer fluctuation σ 2(u(y)) are valid for the net charge
fluctuation σ 2(QB(y)) [or σ 2(QF (y))], and these lead to

σ 2(QB(y)) = σ 2(QF (y)) = σ 2(u(y)) = κ
dnch

dy
. (6)

To examine the above relation, we analyzed 1 000 000
HIJING-simulated [15] 200-GeV pp collision events. The
results of σ 2(QB(y)) as a function of rapidity are shown
in Fig. 1. Since σ 2(QB(y)) and σ 2(QF (y)) are the same,
we only show the results for σ 2(QB(y)). Also shown in
the figure are σ 2(u(y)) and scaled dnch/dy. Indeed, we see
that net charge fluctuations σ 2(QB(y)) and charge transfer
fluctuations σ 2(u(y)) as a function of rapidity y are identical.
The Quigg-Thomas relation is fulfilled for both σ 2(u(y))
and σ 2(QB(y)) in the HIJING simulation. The proportion

FIG. 1. Net charge fluctuations as a function of rapidity (stars)
compared with charge transfer fluctuations (open squares) and
charged particle rapidity distribution scaled by a factor of 0.55
(line). The results are from 1 000 000 HIJING-simulated 200-GeV
pp collision events.

coefficient κ ≈ 0.55, and it remains nearly constant with
change in rapidity.

In the above discussion, it was assumed that the effects of
the leading particles are eliminated. This is approximately true
in the central rapidity region for RHIC heavy ion collisions
[16]. In this paper, we will concentrate on the study of net
charge fluctuations. A detailed analysis of charge transfer
fluctuations is available in Ref. [17].

Equation (6) indicates that if there is clustering in many-
particle production, the net charge fluctuation depends on the
charged particle density dnch/dy. In a stochastic scenario
of independent emission, as we already know, net charge
fluctuation depends on the total charged multiplicity σ 2(Q) =
nch. We might take these as two limiting cases. If particles
are produced independently, then σ 2(Q)/nch is a constant. If
particles are produced through clusters, then σ 2(Q)/(dnch/dy)
is a constant (assuming the same cluster everywhere) while
σ 2(Q)/nch will decrease with the increase of the rapidity
range; see, for example, Figs. 1(a) and 1(d) in Ref. [18].

III. NET CHARGE FLUCTUATION IN
LIMITED RAPIDITY REGIONS

In Sec. II, we assumed that the complete rapidity range
could be measured. This is generally not the case for current
heavy ion experiments. Most of the detectors only have a
coverage in central rapidity. It would be interesting to study
how the results for net charge fluctuation in a multiperipheral
picture would change when the observation is made in a finite
rapidity window. An example of the configuration is depicted
in Fig. 2 to help us visualize the construction of the generating
functions PN (x), where N is the number of clusters produced in
an event and x is a dummy parameter [12]. Particles are emitted
in full rapidity range [−Y/2, Y/2], while the observation is
made in the rapidity window [ya, yb]. In this case, QB(ya, y) is
defined as QB(ya, y) = ∑

i qiθ (yi − ya)θ (y − yi), and from
now on we will just write it as Q(ya, y).

Similar to Ref. [12], we consider the simple ω model.
Clusters are produced independently with flat rapidity dis-
tribution. If the detector has a full coverage over [−Y/2, Y/2],
only those clusters with rapidities lying in (−�,�) around
y have the possibility of contributing to Q(y), as discussed
in Sec. II. Clusters emitted in the interval [−Y/2, y − �] will
deposit all their charged secondaries in the region left of y, and
their charges add up to zero. If the measurement is limited to
[ya, yb], clusters emitted around ya might deposit part of their
charged secondaries inside [ya, y] and part of them outside
[ya, y] and gain the potential to contribute to Q(ya, y). How
the clusters produced around y and ya will affect Q(ya, y)
depends on how far away y is from ya . Let us say y − ya = δy.

y
yyy−Y/2  Y/2

∆ ∆ ∆

ba

∆

δy

FIG. 2. Center-of-mass system rapidity observation window used
in the analysis of net charge fluctuations.

064912-2



NET CHARGE FLUCTUATIONS AND LOCAL CHARGE . . . PHYSICAL REVIEW C 74, 064912 (2006)

TABLE I. Net charge fluctuation from ω model for different sizes of rapidity observation window.

δy = y − ya Generating function PN (x) σ 2(Q(y, ya)) = σ 2(Q(δy))

δy � � [(1 − 3 δy

Y
) + δy

Y
(x + 1 + x−1)]N 2δy N

Y

� < δy < 2� [(1 − δy+2�

Y
) + 1

3
δy+2�

Y
(x + 1 + x−1)]N 2

3 (δy + 2�) N

Y

δy � 2�
[(

1 − 4 �

Y

) + 4
3

�

Y

(
x + 1 + x−1

)]N 2
3 (2� + 2�) N

Y

If δy > 2�, as sketched in Fig. 2 , clusters emitted in both
[y − �, y + �] and [ya − �, ya + �] have the possibility of
contributing to Q(ya, y). In this case, the clusters emitted in
the intervals [y − �, y + �] and [ya − �, ya + �] are called
“active.” Depending on the distance δy between y and ya ,
the intervals for active clusters might be different, which
makes the generating function different. Clusters emitted in
[y + �,Y/2] are not relevant to the measurement of Q(ya, y).
With the foregoing analysis, one could readily write down the
generating function for different values of δy. The results are
listed in Table I, together with the resultant σ 2(Q(ya, y)).

Since only charged particles in the region [ya, y] are
counted in the measurement of Q(ya, y), we will call [ya, y]
the observation window, and δy is the size of the observation
window. Some characteristic features from the results in
Table I are noteworthy, and they are more general than the
special implementation of the ω model. First, net charge
fluctuation measured in a finite rapidity window depends on
the charged particle density dnch/dy as that measured in the
full rapidity region. Second, when δy � �, the net charge
fluctuation divided by dnch/dη depends only on δy, the size
of the observation window; when � < δy < 2�, it depends
on both δy and the cluster model mobility parameter �; when
δy � 2�, it only depends on �. These features lead to the
observation that if all the clusters have the same �, as assumed
in multiperipheral models, the net charge fluctuation divided
by dnch/dη will first increase with the increase of δy and
then saturate when δy � 2� at a value which is two times
that when no rapidity cut is implemented [cf. Eq. (4)]. Notice,
although net charge fluctuation and charge transfer fluctuation
in the ω model are identical when the whole rapidity range
is measured, their behavior in finite rapidity windows could
be quite different [19], because clusters emitted in the interval
[y + �,Y/2] need to be included in the calculation of charge
transfer fluctuation. In this sense, net charge fluctuation keeps
the property of charge transfer fluctuation and simplifies the
calculation.

All the arguments above do not depend on the phase space
variable we used. For an easy comparison with experiment, we
will exclusively use pseudorapidity in the following analysis.

Again we use HIJING 200 GeV pp collision simulations
to see if these features obtained from model analysis could be
observed there; the results are shown in Fig. 3.

We assumed three cases of detector coverage in pseu-
dorapidity as [−2.2, 2.2], [−1.6, 1.6], and [−1.0, 1.0], and
the measurements are made at ηs with 0.2 intervals in
each case. σ 2(Q(ya, y))/(dnch/dη) is now simply written
as σ 2(Q)/(dnch/dη). For all three cases, σ 2(Q)/(dnch/dη)
first increases with the increase of observation window size
δη and starts to saturate when the observation window size

δη is about 2 units of pseudorapidity, consistent with what
we obtained from the ω model analysis. The saturating
value of σ 2(Q)/(dnch/dη) is about two times the κ(=0.55)
measured in Sec. II from the same simulation. When δη

is the same, the resulting σ 2(Q)/(dnch/dη) values almost
do not depend on how we choose the detector coverage.
The measured results from three different coverages are
almost parallel to each other. This feature can be observed
more clearly in Fig. 4, where the observations are made at
η = −1.5,−0.5, 0.5, and 1.5, and the observation windows
at each η are chosen as [η − δη/2, η + δη/2] with δη =
0.2, 0.4, 0.6, 0.8, and 1.0. The results indicate that when δη

is the same, σ 2(Q))/(dnch/dη) almost does not change with
η, especially when δη is small. According to Table I, this is
because σ 2(Q)/(dnch/dη) depends only on δη and �. When
δη is same, σ 2(Q)/(dnch/dη) does not change with η, which
means that the local charge correlation length does not change
with η. A measure of net charge fluctuation can therefore be
used as a measure of local charge correlation length.

IV. NET CHARGE FLUCTUATIONS IN RELATIVISTIC
HEAVY ION COLLISIONS

Net charge fluctuations have been measured in a couple of
relativistic heavy ion collision experiments [10,11]. Because
of the limited rapidity coverage of detectors, they are all
measured in finite rapidity windows. The STAR experiment

FIG. 3. Net charge fluctuation divided by dnch/dη for differ-
ent pseudorapidity coverage chosen as [−2.2, 2.2] (full triangles),
[−1.6, 1.6] (open triangles), and [−1.0, 1.0] (full dots). The mea-
surements are made at ηs with 0.2 intervals in each case.
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FIG. 4. Net charge fluctuations divided by dnch/dη for different
pseudorapidity observation windows as a function of pseudorapidity.
Observations were made at η = −1.5, −0.5, 0.5, and 1.5; observation
windows at each η were chosen as [η − δη/2, η + δη/2], with the δη

values as shown in figure.

at RHIC has measured net charge fluctuation as a function
of the pseudorapidity range [10]. In their original paper, they
measured ν+−,dyn. We convert it to σ 2(Q) with the formula
σ 2(Q)
〈nch〉 ≈ 1 + 1

4 〈nch〉ν+−,dyn [20], and the results are shown in
Fig. 5 (stars). Charged particle density used in the conversion
are from Ref. [21]. Ten pseudorapidity ranges are measured
from a minimal −0.1 < η < 0.1 to a maximal −1 < η < 1 in
discrete steps of 0.1 units of pseudorapidity.

We made the same measurement with HIJING simulations
while extending the observation windows to −2 < η < 2 in
the same manner. The results for 130-GeV HIJING Au-Au
collisions are indicated as open circles in Fig. 5; the results
from 130-GeV HIJING pp collisions as open triangles. Errors

FIG. 5. Net charge fluctuations divided by dnch/dη as a function
of pseudorapidity range from STAR experiment compared with
those from HIJING Au-Au and pp collisions. For STAR data, the
pseudorapidity ranges are −0.1 < η < 0.1 to −1 < η < 1 in discrete
steps of 0.1 units of pseudorapidity. For HIJING simulations, the
pseudorapidity ranges are chosen in the same way but extended to
−2 < η < 2.

for STAR data are not included. For the HIJING simulation,
errors are within the data points. The HIJING Au-Au and pp

collision results are quite similar. The STAR data points for
σ 2(Q)/(dnch/dη) increase with the pseudorapidity range as
expected from the multiperipheral model, and most of them
can be described by HIJING simulations except the last point
for −1 < η < 1. The STAR data show a sudden increase
at −1 < η < 1, far beyond that of the previous point at
−0.9 < η < 0.9, while HIJING results start to saturate around
−1 < η < 1. Since only one point from experiment cannot be
explained consistently within the model, further investigations
are needed to understand why the last STAR data point does
not follow the saturation trend and to make a conclusion on
what this discrepancy implies, whether it comes from the onset
of different correlation length or from long-range correlations
or is caused by some other dynamics.

In the same paper [10], STAR also measured ν+−,dyn as a
function of collision centrality in |η| � 0.5. The event sample
is divided into eight centrality classes based on the fraction of
triggered events: 6%, 11%, 18%, 26%, 34%, 45%, 58%, and
84%. The converted results for σ 2(Q)/(dnch/dη) are plotted
in Fig. 6 together with the HIJING simulation results for
130-GeV Au-Au collisions. Class 1 in the figure represents
the most central events. The STAR data show a decrease
of σ 2(Q)/(dnch/dη) from peripheral to central. In view of
cluster models, because the pseudorapidity intervals are all
the same, this decrease means a slight decrease of local
charge correlation length from peripheral to cental. It is
consistent with the balance function measurement from the
same experiment [22]. HIJING simulation results show much
less dependence on centrality.

PHENIX experiment at RHIC measured net charge fluc-
tuation as a function of collision centrality in |η| < 0.35 and
found it to be almost flat [11] within errors. A higher statistics
measurement will provide us with a better understanding of
the dependance of net charge fluctuations on centrality.

FIG. 6. Net charge fluctuation measured in |η| � 0.5 as a function
of the collision centrality from STAR experiment (stars) and HIJING
130-GeV Au-Au simulation (open circles).
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η
−η η

 d
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δη δη

FIG. 7. Forward and backward pseudorapidity intervals.

V. FORWARD-BACKWARD CHARGE FLUCTUATIONS

Recently, a related measurement of forward-backward
charge fluctuations was made by the PHOBOS experiment
at RHIC for Au+Au collisions at

√
sNN = 200 GeV [23].

They defined an eventwise variable C = nF −nB√
nF +nB

, where nF

and nB are the number of charged particles in two symmetric
pseudorapidity intervals centered at ±η with equal width δη,

as depicted in Fig. 7. They measured the variance σ 2
C for both

central and peripheral collisions.
The η and δη dependence of forward-backward charge

fluctuations could also be estimated in a multiperipheral
picture. To simplify the derivation, we chose an even simpler
“ρ” model in which a cluster produced with pseudorapidity η

results in π+π− at η ± �. None of the qualitative conclusions
we wish to draw depends on this special implementation of
the model. How a cluster deposits its charged secondaries
depends on the pseudorapidity of the cluster and the position
and size of the forward and backward pseudorapidity intervals.
The results of the generating function PN (x) and σ 2(nF − nB)
for different situations are listed in Table II, where N is the
number of clusters produced in an event and Y is the full
(pseudo)rapidity interval width for particle production. For the
model we used, there are six possible situations with increasing
size of δη and d, where d is the distance between the upper
edge of the backward interval and the lower edge of the forward
interval, as depicted in Fig. 7.

The results indicate that, similar to net charge fluctuation,
forward-backward charge fluctuation depends on the charged
particle density N

Y
or dnch

dη
. When the largest separation

between the forward and backward intervals is less than
the local charge correlation length, which is case 1 in the
table, the forward-backward charge fluctuation is determined
by only the forward and backward bin width δη. As the
bin size δη increases or their separation d increases, a
cluster might deposit one of its charged secondaries in the
forward bin and the other in the backward bin, and their

contributions to nF − nB add up to zero. These correspond
to cases 2 and 3 in the table, where clustering reduces the
fluctuations. In case 4, the separation between the forward
and backward bins increases even farther to larger than the
typical charge correlation length, and the forward-backward
charge fluctuations become dependent only on the bin size
again. In the model we used, local charge correlation is
assumed to have a fixed correlation length 2�. In the real
situation, short-range correlations between charged particles
as a function of their pseudorapidity differences are believed to
have a continuous (exponential) distribution. For these reasons,
when we fix the forward and backward bin sizes and measure
the η dependence of σ 2(nF − nB)/(dnch/dη), we observe the
first few points to be lower, because the short-range correlation
reduces the fluctuation; and when d becomes larger than the
charge correlation length, σ 2(nF − nB)/(dnch/dη) saturates at
a constant value determined by the bin size δη. Cases 5 and 6 in
the table are for forward and backward bin sizes larger than the
typical charge correlation length. In these cases, two charged
particles from one cluster might fall into the same forward
or backward bin together, which makes the forward-backward
charge fluctuations have an even stronger dependence on the
bin size (larger coefficient in front of δη). To summarize, in a
multiperipheral picture, forward-backward charge fluctuations
have strong dependence on the forward and backward bin size.
When the bin size is the same and the separation between
the two bins is not too small, σ 2(nF − nB)/(dnch/dη) should
be approximately the same. When the forward and backward
bin size increases, σ 2(nF − nB)/(dnch/dη) increases linearly
with the bin size. Compared with net charge fluctuations,
forward-backward charge fluctuations are more controlled by
the forward and backward window size than by the local
charge correlation length. These features are understandable
because only clusters on the border contribute to net charge
fluctuations, while clusters depositing in the whole observation
window contribute to forward-backward charge fluctuations.

The PHOBOS experiment reported the η dependence of σ 2
C

for δη = 0.5 units wide forward and backward bins and the δη

dependence of σ 2
C for a fixed bin center position η = 2.0. The

PHOBOS results do indicate σ 2
C increases linearly with the

forward and backward bin size δη. When the bin size is fixed,
the PHOBOS results from central collisions do not change
with η except for the first point, which is understandably

TABLE II. Forward-backward charge fluctuations from ρ model for different positions and sizes of forward and backward pseudorapidity
intervals.

δη, d Generating function PN (x) σ 2(nF − nB )

Case 1 2δη + d � 2� [(1 − 4 δη

Y
) + 2 δη

Y
(x + x−1)]N 4δη N

Y

Case 2 2δη + d >2�,

δη + d � 2�

[(1 − 4 �

Y
+ 2 d

Y
) + (2 �

Y
− d

Y
)(x + x−1)]N (4� − 2d) N

Y

Case 3 δη + d >2�,

δη � 2�, d � 2�

[(1 + 4 �

Y
− 4 δη

Y
− 2 d

Y
) + (2 δη

Y
+ d

Y
− 2 �

Y
)(x + x−1)]N (4δη + 2d − 4�) N

Y

Case 4 δη � 2�, d > 2� [(1 − 4 δη

Y
) + 2 δη

Y
(x + x−1)]N 4δη N

Y

Case 5 δη > 2�, d � 2� [(1 − 2 δη

Y
− 2 d

Y
) + (2 �

Y
+ d

Y
)(x + x−1) + ( δη

Y
− 2 �

Y
)(x2 + x−2)]N (8δη + 2d − 12�) N

Y

Case 6 δη > 2�, d > 2� [(1 − 2 δη

Y
− 4 �

Y
) + 4 �

Y
(x + x−1) + ( δη

Y
− 2 �

Y
)(x2 + x−2)]N (8δη − 8�) N

Y
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lower because short-range correlations reduce the fluctuations.
The PHOBOS results from peripheral collisions for fixed bin
size seem to not follow this trend. They keep on increasing
with η, which cannot be explained within this model. Also,
the PHOBOS results show a faster increase of forward-
backward charge fluctuations with the increase of bin size
in peripheral collisions than that seen in central collisions,
which cannot be explained consistently in a multiperipheral
picture either [24]. However, it should be mentioned that the
best observable to compare with multiperipheral models is
σ 2(nF − nB)/(dnch/dη) which is not exactly the same as the
σ 2

C used in the PHOBOS experiment, and this might also cause
some differences.

VI. SUMMARY

We demonstrated in this paper that, in terms of a schematic
multiperipheral model, net charge fluctuation satisfies the
same Quigg-Thomas relation as satisfied by charge transfer
fluctuation. HIJING Monte Carlo simulation confirmed that
when the measurements are made in full rapidity range, net
charge fluctuation and charge transfer fluctuation are identical,
and they both satisfy the Quigg-Thomas relation. We studied
in detail the behavior of net charge fluctuation when the
measurements are made in finite rapidity windows. In terms
of the same ω model, net charge fluctuations in finite ra-
pidity windows show some interesting characteristic features:
(i) When the size δη of the observation window is small, net
charge fluctuation divided by charged particle density dnch/dη

will increase as the observation window size increases.
(ii) Net charge fluctuation divided by dnch/dη starts to saturate
and depends only on the local charge correlation length when
δη increases to about two times the mobility parameter of

the cluster model. (iii) When δη is the same, the net charge
fluctuation divided by dnch/dη depends only on the cluster
model mobility parameter and can be used as a measure of
local charge correlation length. HIJING simulation results
qualitatively satisfy these features.

Most of the net charge fluctuation results from the
STAR experiment can be explained in terms of the simple
schematic multiperipheral model analysis and are consistent
with HIJING simulations. No obvious change of local charge
correlation length with pseudorapidity is observed within
the STAR detector coverage except for the STAR result for
−1 < η < 1, where an unexpected large increase of net charge
fluctuation is observed. Further investigations are needed to
understand its origin.

In terms of multiperipheral models, forward-backward
charge fluctuations always have strong dependence on the
forward and backward window size. PHOBOS results on
forward-backward charge fluctuations show this window size
dependence, but its results for both central and peripheral
collisions cannot all be explained consistently within the
model.

We suggest measuring net charge fluctuation as a function
of pseudorapidity range and centrality to see if any sudden
changes of local charge correlation length occur in ultrarela-
tivistic heavy ion collisions.
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