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Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are
studied in Pb+Pb at SPS energies within the Hadron-String Dynamics (HSD) transport model. We reveal an
important role of the fluctuations in the number of target nucleon participants. They strongly influence all
measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to
check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of
collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the
event-by-event fluctuations of electric charge in central collisions at 20A, 30A, 40A, 80A, and 158A GeV are in a
good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma.
This demonstrates that the distortions of the initial fluctuations by the hadronization phase and, in particular, by
the final resonance decays dominate the observable fluctuations.
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I. INTRODUCTION

The aim of the present article is to study the fluctuations of
the net baryon number and electric charge in nucleus-nucleus
(A + A) collisions at energies at Super-Proton-Synchrotron
(SPS) of 20, 30, 40, 80, and 150A GeV. We use the HSD
[1] transport approach which reproduces both the different
particle multiplicities and longitudinal differential rapidity
distributions for central collisions of Au+Au (or Pb+Pb) from
AGS to SPS energies rather well [2]. The fluctuation in High
energy nuclear collisions (see, e.g., Refs. [3–12] and references
therein) reveal a new physical information. The fluctuations
in A + A collisions are studied on an event-by-event basis: a
given observable is measured in each event and the fluctuations
are evaluated for a specially selected set of these events. We
recall that the statistical model has been successfully used
to describe the data on hadron multiplicities in relativistic
A + A collisions (see, e.g., Ref. [13] and a recent review [14])
as well as in elementary particle collisions [15]. This gives
rise to the question whether the fluctuations, in particular
the multiplicity fluctuations, do also follow the statistical
hadron-resonance gas results. Recently the particle number
fluctuations have been studied in different statistical ensembles
[16]; the statistical fluctuations can be closely related to phase
transitions in QCD matter, with specific signatures for 1st
and 2nd order phase transitions as well as for the critical
point [6,7].

In addition to the statistical fluctuations the complicated
time evolution of A + A collisions generates dynamical fluctu-
ations. The fluctuations in the initial energy deposited inelasti-
cally in the statistical system yield dynamical fluctuations of all
macroscopic parameters, like the total entropy or strangeness
content. The observable consequences of the initial energy
density fluctuations are sensitive to the equation of state and
can therefore be useful as signals for phase transitions [12].

Even when the data are obtained with a centrality trigger
the number of nucleons participating in inelastic collisions
still fluctuates considerably. In the language of statistical
mechanics, these fluctuations in the participant nucleon num-
ber correspond to volume fluctuations. Secondary particle
multiplicities scale linearly with the volume; hence, volume
fluctuations translate directly to particle number fluctuations.

The present work is a continuation of our recent study [17]
where we analyzed the charged particle number fluctuations
in Pb+Pb collisions at 158A GeV within the Ultra-relativistic
Quantum Molecular Dynamics (UrQMD) and HSD transport
approaches. The net baryon number and electric charge event-
by-event fluctuations are studied in different rapidity regions
of the projectile and target hemispheres.

The article is organized as follows. Section II presents the
HSD results for the fluctuations of the number of nucleon
participants while Secs. III and IV give the net baryon number
fluctuations and electric charge fluctuations, respectively. In
Sec. V we discuss the fluctuations in the samples of most
central collisions, Sec. VI shows a comparison of our calcula-
tions with experimental data from the NA49 Collaboration, and
Sec. VII finally concludes the present study.

II. FLUCTUATIONS OF THE NUMBER OF PARTICIPANTS

In each A + A collision only a fraction of all 2A nucleons
interact. These are called participant nucleons and are denoted
as N

proj
P and N

targ
P for the projectile and target nuclei,

respectively. The nucleons, which do not interact, are called the
projectile and target spectators, Nproj

S = A − N
proj
P and N

targ
S =

A − N
targ
P . The fluctuations in high energy A + A collisions

are dominated by a geometrical variation of the impact
parameter. However, even for the fixed impact parameter the
number of participants, NP ≡ N

proj
P + N

targ
P , fluctuates from
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FIG. 1. (Color online) The HSD simulations in Pb+Pb collisions at 158A GeV for the average value 〈N targ
P 〉 (left) and the scaled variances

ω
targ
P (right) as functions of N

proj
P .

event to event. This is because of the fluctuations of the initial
states of the colliding nuclei and the probabilistic character
of the interaction process. The fluctuations of NP form
usually a large and uninteresting background. To minimize
its contribution the NA49 Collaboration has selected samples
of collisions with a fixed number of projectile participants.
This selection is possible because of a measurement of N

proj
S

in each individual collision by a calorimeter that covers the
projectile fragmentation domain. However, even in the samples
with N

proj
P = const the number of target participants fluctuates

considerably. Hence, an asymmetry between projectile and
target participants is introduced; i.e., N

proj
P is constant by

constraint, whereas N
targ
P fluctuates independently.

In the following, the variance, Var(n) ≡ 〈n2〉 − 〈n〉2, and
scaled variance, ωn ≡ Var(n)/〈n〉, where n stands for a given
random variable and 〈· · ·〉 for event-by-event averaging, will
be used to quantify fluctuations. In each sample with N

proj
P =

const, the number of target participants fluctuates around its
mean value, 〈N targ

P 〉, with the scaled variance ω
targ
P . From

an output of the HSD minimum bias simulations of Pb+Pb
collisions at 158A GeV we form the samples of events with
fixed values of N

proj
P . Figure 1 presents the HSD average value

〈N targ
P 〉 (left) and the scaled variances ω

targ
P (right) as functions

of N
proj
P . One finds 〈N targ

P 〉 � N
proj
P ; the deviations are only seen

at very small (Nproj
P ≈ 1) and very large (Nproj

P ≈ A) numbers
of projectile participants. The fluctuations of N

targ
P are quite

strong: ω
targ
P > 2 at N

proj
P = 10–80.

The consequences of the asymmetry between projectile
and target hemispheres depend on the A + A dynamics.
According to Ref. [18] different models of hadron production
in relativistic A + A collisions can be divided into three
limiting groups: transparency (T), mixing (M), and reflection
(R) models. The rapidity distributions resulting from the T, M,
and R models are sketched in Fig. 2 taken from Ref. [18]. We
note that there are models that assume the mixing of hadron
production sources but the transparency of baryon flows, e.g.,
the three-fluid hydrodynamical model [19]. R models appear
rather unrealistic and are included for completeness in our
discussion.

III. NET BARYON NUMBER FLUCTUATIONS

We begin with a quantitative discussion by first considering
the fluctuations of the net baryon number in different regions
of the participant domain in collisions of two identical nuclei.
These fluctuations are most closely related to the fluctuations
of the number of participant nucleons because of baryon
number conservation.

The HSD results for ωB in Pb+Pb at 158A GeV are
presented in Fig. 3. In each event we subtract the nucleon
spectators when counting the number of baryons. The net
baryon number in the full phase space, B ≡ NB − NB , equals
then the total number of participants NP = N

targ
P + N

proj
P . At

fixed N
proj
P , the NP number fluctuates because of fluctuations

of N
targ
P . These fluctuations correspond to an average value,

〈N targ
P 〉 � N

proj
P , and a scaled variance, ωtarg

P (see Fig. 1). Thus,
for the net baryon number fluctuations in the full phase space

FIG. 2. (Color online) The sketch of the rapidity distributions of
the baryon number or the particle production sources (horizontal rect-
angles) in nucleus-nucleus collisions resulting from the transparency,
mixing, and reflection models. The spectator nucleons are indicated
by the vertical rectangles. In the collisions with a fixed number of
projectile spectators only matter related to the target shows significant
fluctuations (vertical arrows). See Ref. [18] for more details.
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FIG. 3. (Color online) The HSD simulations
for Pb+Pb collisions at 158A GeV for fixed
values of N

proj
P . (Left) The baryon number fluc-

tuations in full acceptance, ωB , in projectile
hemisphere, ω

p

B (lower curve), and in target
hemisphere, ωt

B (upper curve). The dashed line,
0.5ω

targ
P , demonstrates the validity of the relation

(1). (Right) The scaled variances of the baryon
number fluctuations in different rapidity intervals.

we find,

ωB = Var(NP )

〈NP 〉 �
〈(
N

targ
P

)2〉 − 〈
N

targ
P

〉2
2
〈
N

targ
P

〉 = 1

2
ω

targ
P . (1)

A factor 1/2 on the right-hand side of Eq. (1) appears
because only half of the total number of participants
fluctuates.

Let us introduce ω
p

B and ωt
B , where the superscripts p

and t mark quantities measured in the projectile and target
momentum hemispheres, respectively. Figure 3 demonstrates
that ωt

B > ω
p

B , both in the whole projectile-target hemispheres
and in the symmetric rapidity intervals. On the other hand
one observes that ω

p

B ≈ ωt
B in most central collisions. This

is because the fluctuations of the target participants become
negligible in this case, i.e., ω

targ
P → 0 (Fig. 1, right). As

a consequence the fluctuations of any observable in the
symmetric rapidity intervals become identical in most central
collisions. Note also that transparency-mixing effects are
different at different rapidities. From Fig. 1 (right) it follows
that ω

p

B in the target rapidity interval [−2,−1] is much larger
than ωt

B in the symmetric projectile rapidity interval [1,2]. This
fact reveals the strong transparency effects. On the other hand,
the behavior is different in symmetric rapidity intervals near
the midrapidity. From Fig. 1 (right) one observes that ω

p

B in
the target rapidity interval [−1, 0] is already much closer to
ωt

B in the symmetric projectile rapidity interval [0, 1]. This
gives a rough estimate of the width, �y ≈ 1, for the region
in the rapidity space where projectile and target nucleons
communicate with each others.

By assumption, the mixing of the projectile and target
participants is absent in T and R models. Therefore, in T
models, the net baryon number in the projectile hemisphere
equals N

proj
p and does not fluctuate, i.e., ω

p

B(T ) = 0, whereas
the net baryon number in the target hemisphere equals to
N

targ
p and fluctuates with ωt

B(T ) = ω
targ
P . These relations are

reversed in R models. We introduce now a mixing of baryons
between the projectile and target hemispheres. Let α be the
probability for a (projectile) target participant to be detected
in the (target) projectile hemisphere. We denote by nt and np

the number of baryons that end up in the target and projectile
hemispheres, respectively, from the opposite hemisphere.
Then the probabilities to detect Bt baryons in the target
hemisphere and Bp baryons in the projectile hemisphere can be

written as

P
(
Bt ;Nproj

P

) =
∑
N

targ
P

W
(
N

targ
P ;Nproj

P

) N
targ
P∑

nt=1

N
proj
P∑

np=1

αnp

(1 − α)N
targ
P −np

× N
targ
P !

np!
(
N

targ
P − np

)
!
αnt

(1 − α)N
proj
P −nt

× N
proj
P !

nt !
(
N

proj
P − nt

)
!
δ
(
Bt − N

targ
P − nt + np

)
,

(2)

P
(
Bp;Nproj

P

) =
∑
N

targ
P

W
(
N

targ
P ;Nproj

P

) N
targ
P∑

nt=1

N
proj
P∑

np=1

αnp

(1 − α)N
targ
P −np

× N
targ
P !

np!
(
N

targ
P − np

)
!
αnt

(1 − α)N
proj
P −nt

× N
proj
P !

nt !
(
N

proj
P − nt

)
!
δ
(
Bp − N

proj
P − np + nt

)
,

(3)

where W (N targ
P ; Nproj

P ) is the probability distribution of N
targ
P

in a sample with fixed value of N
proj
P . From Eqs. (2) and (3)

with a straightforward calculation we find

ωt
B = (1 − α)2ω

targ
P + 2α(1 − α),

(4)
ω

p

B = α2ω
targ
P + 2α(1 − α).

A (complete) mixing of the projectile and target participants
is assumed in M models. Thus each participant nucleon with
equal probability, α = 1/2, can be found either in the target
or in the projectile hemispheres. In M models the fluctuations
in both projectile and target hemispheres are identical. The
limiting cases, α = 0 and α = 1, of Eq. (4) correspond to T
and R models, respectively. In summary, the scaled variances
of the net baryon number fluctuations in the projectile, ω

p

B ,
and target, ωt

B , hemispheres are

ω
p

B(T ) = 0, ωt
B(T ) = ω

targ
P , (5)

ω
p

B(M) = ωt
B(M) = 1

2 + 1
4ω

targ
P , (6)

ω
p

B(R) = ω
targ
P , ωt

B(R) = 0, (7)
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FIG. 4. (Color online) The ωt
B (left) and ω

p

B (right) of the HSD simulations in comparison to T, M, and R models (5)–(7), with ω
targ
P taken

from Fig. 1.

in the T (5), M (6) and R (7) models of the baryon number flow.
The different models lead to significantly different predictions
for ω

p

B and ωt
B .

In Fig. 4 we show the predictions of T, M, and
R models (5)–(7) with ω

targ
P from Fig. 1 for Pb+Pb collisions at

158A GeV. From Fig. 4 one concludes that the HSD results
are close to the T-model estimates for baryon flow. However,
the deviations from the results (5) are clearly seen: ω

p

B > 0
and ωt

B > ω
targ
P . One cannot fit the HSD values of ωt

B and
ω

p

B by Eq. (4). To make ω
p

B > 0 one needs α > 0, but this
induces ωt

B < ω
targ
P , i.e., a mixing of baryons between the

projectile and target hemispheres creates a non-zero baryon
number fluctuation in the projectile hemisphere on the expense
of fluctuations in the target hemisphere. Indeed, it follows
from Eq. (4) that ω

p

B increases with α for all α, if ω
targ
P > 1,

and for α < (2 − ω
targ
P )−1, if ω

targ
P < 1. On the other hand, ωt

B

increases with α if α < (1 − ω
targ
P )(2 − ω

targ
P )−1. This shows

that an increase of ωt
B with α is only possible for ω

targ
P < 1.

Thus for ω
targ
P > 1 one finds an increase of ω

p

B with α and a
decrease of ωt

B with α for all physical values of α from 0 to
1. Therefore, we conclude that the HSD values of ωt

B (i.e.,
the fact that ωt

B > ω
targ
P ) cannot be explained by Eq. (4) with

α > 0.
The numbers of target and projectile participants are

defined as N
targ
P ≡ A − N

targ
S and N

proj
P ≡ A − N

proj
S . The

actual event-by-event numbers of baryons in the target and

projectile hemispheres, Nt
B and N

p

B , may differ from N
targ
P

and N
proj
P . This is because a transfer of baryons between the

projectile and target hemispheres arises from the production of
baryon-antibaryon pairs. The partners of each newly created
bb-pair can be detected with non-zero probability in different
hemispheres. We introduce bt ≡ Nt

B − N
targ
P and the number

of antibaryons in the target hemisphere, b
t
. Similarly, bp ≡

N
p

B − N
proj
P , while b

p
is the number of antibaryons in the

projectile hemisphere. One finds

ωt
B ≡ Var

(
N

targ
P + bt − b

t)
〈Bt 〉 = ω

targ
P + 1

N
proj
P

[
Var(bt ) + Var(b

t
)

+ 2�
(
N

targ
P , bt

) − 2�
(
N

targ
P , b

t) − 2�(bt , b
t
)
]
, (8)

ω
p

B ≡ Var
(
N

proj
P + bp − b

p)
〈Bp〉

= 1

N
proj
P

[Var(bp) + Var(b
p

) − 2�(bp, b
p

)], (9)

where

�(N1, N2) ≡ 〈N1 · N2〉 − 〈N1〉 · 〈N2〉. (10)

As N
proj
P = const in the sample, it follows that ω

proj
P =

0,�(Nproj
P , bp) = 0,�(Nproj

P , b
p

) = 0; these terms are absent
in the r.h.s. of Eq. (9). Different terms of Eqs. (8) and (9) found

FIG. 5. (Color online) Different terms of Eq. (8), left, and Eq. (9), right, are presented as a function of N
proj
P .
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FIG. 6. (Color online) The HSD re-
sults for Pb+Pb collisions at 158A GeV
for the rapidity distributions of baryon
numbers in nonsymmetric samples with
N

proj
P = 50, N

targ
P = 78 (left) and N

proj
P =

50, N
targ
P = 20 (right).

from the HSD simulations are presented in Fig 5. One observes
that the terms of Eqs. (8) and (9) expressing the fluctuations
of antibaryons, Var(b

p
)/Nproj

P , and the correlation terms,

2�(N targ
P , b

t
)/Nproj

P and −2�(bt , b
t
)/Nproj

P , with antibaryons
included, are small. Therefore, one finds, ωp

B
∼= Var(bp)/Nproj

P .
In the target hemisphere, the ω

targ
P gives the main contribution

to ωt
B in Eq. (8). The term Var(bt )/Nproj

P also contributes
to ωt

B , similarly to that, Var(bp)/Nproj
P , in the projectile

hemisphere. However, the main additional term to ωt
B is

2�(N targ
P , bt )/Nproj

P , which is due to (positive) correlations
between N

targ
P and bt . This implies that in events with large

N
targ
P (i.e., N

targ
P > 〈N targ

P 〉 ∼= N
proj
P ) some additional baryons

move from the projectile to the target hemisphere, and when
N

targ
P is small (i.e., N

targ
P < 〈N targ

P 〉 ∼= N
proj
P ) the baryons move

in the reverse direction from the target to the projectile
hemisphere as shown in Fig. 6.

This HSD result looks rather unexpected. We note that
Eq. (4) predicts for ωt

B the opposite behavior: because of a
simple mixing of baryons between the target and projectile
hemispheres the initially large fluctuations, ω

targ
P , are trans-

formed into smaller ones, ωt
B . It seems that the origin of

this effect is the following: For N
targ
P > N

proj
P each projectile

nucleon interacts, in average, more often than the target
nucleon. The projectile participant loses then a larger part
of its energy, and in the rapidity space its position becomes
closer to yc.m. = 0 than the position of target participants. This
gives to projectile participants more chances to move due to
further rescatterings from projectile to target hemisphere, in
comparison with target participants to move in the opposite
direction. For N

targ
P < N

proj
P there is a reverse situation. This

fact was not taken into account in Eqs. (2) and (3) where it
has been assumed that the mixing probability α is the same for
projectile and target participants and independent of N

targ
P .

IV. NET ELECTRIC CHARGE FLUCTUATIONS

The T, M, and R models give very different predictions
for ω

p

B and ωt
B for the samples of events with fixed values

of N
targ
P . Additional interesting correlations between the Bt

and Bp numbers, such as those seen in the HSD simulations,
can be expected. Unfortunately, they may be difficult to
test experimentally as an identification of protons and a
measurement of neutrons in a large acceptance in a single event
is difficult. Measurements of the charged particle multiplicity
in a large acceptance can be performed with the existing
detectors. In this section we consider the HSD results for the
net electric charge, Q, fluctuations. As Q ∼= 0.4B in the initial
heavy nuclei one can naively expect that Q fluctuations are
quite similar to B fluctuations. We stress, however, a principal
difference between Q and B in relativistic A + A collisions.
Figure 7 demonstrates the rapidity distributions of the net
baryon number, B = NB − NB (left), and total number of
baryons, NB + NB (right), for different centralities in Pb+Pb
collisions at 158A GeV. One observes that both quantities are
very close to each other; the y dependence and absolute values
are very close for B and NB − NB distributions. This is, of
course, because the number of antibaryons is rather small,
NB � NB .

Figure 8 shows the same as Fig. 7 but for the electric charge
Q = N+ − N− (left) and the total number of charged particles,
Nch ≡ N+ + N− (right). The y dependence of dQ/dy and

FIG. 7. (Color online) The HSD rapidity distributions in Pb+Pb collisions at 158A GeV for the net baryon number, B = NB − NB (left),
and total number of baryons, NB + NB (right), at different N

proj
P and in the minimum bias (m.b.) sample.
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FIG. 8. (Color online) The same as in Fig. 7 but for the electric charge Q = N+ − N− (left), and total number of charged particles,
Nch ≡ N+ + N− (right).

dNch/dy is quite different. Besides, the absolute values of Nch

are about 10 times larger than those of Q. This implies that
Q � N+ ≈ N−.

In the previous section we use the scaled variance ωB to
quantify the measure of the net baryon fluctuations. It appears
to be a useful variable as ωB is straightforwardly connected
to ω

targ
P and due to the relatively small number of antibaryons.

Figure 8 shows that ωQ is a bad measure of the electric charge
fluctuations in high energy A + A collisions. One observes
that ωQ ≡ Var(Q)/〈Q〉 is much larger than 1 simply because
of the small value of 〈Q〉 in a comparison with N+ and N−. If
the A + A collision energy increases, it follows 〈Q〉 → 0, and
thus ωQ → ∞. The same will happen with ωB , too, at much
larger energies. A useful measure of the net electric charge
fluctuations is the quantity (see, e.g., [10])

XQ ≡ Var(Q)

〈Nch〉 . (11)

A value of XQ can be easily calculated for the Boltzmann
ideal gas in the grand canonical ensemble. In this case the
number of negative and positive particles fluctuates according
to the Poisson distribution (i.e., ω− = ω+ = 1), and the
correlation between N+ and N− is absent (i.e., 〈N+N−〉 =
〈N+〉〈N−〉), so that XQ = 1. On the other hand, the canonical
ensemble formulation (i.e., when Q = const fixed exactly
for all microscopic states of the system) leads to XQ = 0.

Figure 9 shows the results of the HSD simulations for the full
acceptance, for the projectile and target hemispheres (left), and
also for symmetric rapidity intervals in the c.m.s. (right).

The Q fluctuation in the full acceptance is due to N
targ
P fluc-

tuations. As Q ∼= 0.4B in colliding (heavy) nuclei, one may
expect Var(Q) ∼= 0.16 Var(B). In addition, 〈Nch〉 ∼= 4〈NP 〉 at
158A GeV, so that one estimates XQ

∼= 0.04 ωB for the
fluctuations in the full phase space. The actual values of XQ

presented in Fig. 9 (left) are about three times larger. This
is because of Q fluctuations due to different event-by-event
values of proton and neutron participants even in a sample
with fixed values of N

proj
P and N

targ
P .

From Fig. 9 (right) one sees only a tiny difference between
the XQ values in the symmetric rapidity intervals in the
projectile and target hemispheres and slightly stronger effects
for the whole projectile and target hemispheres (Fig. 9, right).
In fact, the fluctuations of N+ and N− are very different in the
projectile and target hemispheres, and the scaled variances ωt

+
and ωt

− have a very strong N
proj
P dependence. This is shown in

Fig. 10 obtained in our previous study [17].
The XQ can be presented in two equivalent forms

XQ = ω+
〈N+〉
〈Nch〉 + ω−

〈N−〉
〈Nch〉 − 2

�(N+, N−)

〈Nch〉
= 2ω+

〈N+〉
〈Nch〉 + 2ω−

〈N−〉
〈Nch〉 − ωch. (12)

FIG. 9. (Color online) (Left) The HSD simulations in Pb+Pb collisions at 158A GeV for XQ at different values of N
proj
P in the full

acceptance (lower curve), for the projectile hemisphere (middle curve), and for the target hemisphere (upper curve). (Right) The same, but for
symmetric rapidity intervals in the c.m.s.
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FIG. 10. (Color online) The HSD results for the scaled variances of negatively (left) and positively (right) charged hadrons in Pb+Pb
collisions at 158A GeV for the projectile (lower curves) and target (upper curves) hemispheres.

Equation (12) is valid for any region of the phase space:
full phase space, projectile or target hemisphere, etc. As seen
from Fig. 10, both ωt

+ and ωt
− are large and strongly N

proj
P -

dependent. This is not seen in Xt
Q because of strong correla-

tions between Nt
+ and Nt

−, i.e., the term 2�(N+, N−)/〈Nch〉
compensates the ω+ and ω− terms in Eq. (12). This is also
seen from Fig. 11. A cancellation of strong N

proj
P dependence

in the target hemisphere takes place between the sum of ωt
+

and ωt
− terms of Eq. (12), and the ωt

ch term.
Figure 12 shows a comparison of the HSD results for

XQ with NA49 data in Pb+Pb collisions at 158A GeV
for the forward rapidity interval 1.1 < y < 2.6 inside the
projectile hemisphere with an additional pT filter imposed. As
an illustration, the HSD results in the symmetric backward
rapidity interval −2.6 < y < −1.1 (target hemisphere) are
also included. One observes no difference between the XQ

results for the NA49 acceptance in the projectile and target
hemispheres. The HSD values for ω+, ω−, and ωch are rather
different in the projectile and target hemispheres for the NA49
acceptance (see Figs. 10 and 11). This is not seen in Fig. 12
for XQ. As explained above a cancellation between the ω+, ω−,
and ωch terms takes place in Eq. (12). In fact, NA49 did
not perform the XQ measurements. The XQ data (solid dots)
presented in Fig. 12 are obtained from Eq. (12) using the
NA49 data for ω+, ω−, and ωch as well as 〈N+〉, 〈N−〉, and
〈Nch〉 [20]. Such a procedure leads, however, to very large

FIG. 11. (Color online) The HSD results for the scaled variances
of all charged hadrons, ωch, in Pb+Pb collisions at 158A GeV for the
projectile (lower curve) and target (upper curve) hemispheres.

errors for XQ (which are not indicated in Fig. 12), which
excludes any conclusion about the (dis)agreement of HSD
results with NA49 data.

V. FLUCTUATIONS IN MOST CENTRAL COLLISIONS

In this section we consider the baryon number and electric
charge fluctuations in the symmetric rapidity interval [−y, y]
in the c.m.s. for the most central Pb+Pb events. We chose
the sample of most central events by restricting the impact
parameter to b < 2 fm. It gives about 2% of the most central
Pb+Pb collisions from the whole minimum bias sample.
Figure 13 shows the HSD results for electric charge fluctu-
ations in 2% of the most central Pb+Pb collisions for the sym-
metric rapidity interval �Y = [−y, y] in the c.m.s. as the func-
tion of �y = �Y/2. For �Y → 0, one finds XQ → 1. This
can be understood as follows: For �Y → 0 the fluctuations
of negatively, positively, and all charged particles behave as
for the Poisson distribution: ω+ ∼= ω− ∼= ωch

∼= 1. Then from
Eq. (12) it follows that XQ

∼= 1, too. From Fig. 13 (right) one
observes that ω+, ω−, and ωch all increase with the increasing
interval �Y . However, XQ decreases with �Y and—because

FIG. 12. (Color online) The HSD results for XQ for Pb+Pb
collisions at 158A GeV for the forward rapidity interval 1.1 < y <

2.6 inside the projectile hemisphere. The solid dots are the estimates
obtained from Eq. (12) using the NA49 experimental data [20] (the
error bars are not indicated here). For illustration, the HSD results in
the symmetric backward rapidity interval −2.6 < y < −1.1 (target
hemisphere) are also presented.
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FIG. 13. (Color online) The HSD results for electric charge fluctuations in 2% of the most central Pb+Pb collisions at 158A GeV in the
symmetric rapidity interval �Y = [−y, y] as a function of �y = �Y/2 in the c.m.s. The left panel shows the behavior of XQ, and the right
one demonstrates separately ω+, ω−, and ωch.

of global Q conservation—it goes approximately to zero when
all final particles are accepted.

In Fig. 14 (left) the HSD results for the scaled vari-
ances are presented in full acceptance as functions of N

proj
P .

Figure 14 (right) demonstrates the probability distribution of
events with b < 2 fm over N

proj
P . One observes that even in the

2% centrality sample the values of N
proj
P are noticeably smaller

than the maximum value, A = 208. As seen from Fig. 14 (left)
the HSD values of ω+, ω−, and ωch become then essentially
larger than 1 in agreement with those presented in Fig. 13.

Figure 15 shows the net baryon number fluctuations in the
symmetric rapidity interval [−y, y] in the c.m.s. as the function
of �Y . As a measure of the net baryon number fluctuations
we have used the quantity,

XB ≡ Var(B)

〈NB + NB〉 . (13)

As for the electric charge, one finds that XB → 1 at �Y → 0
(this is because all ωNB

, ωNB
, and ωNB+NB

go to 1 in this limit
(see Fig. 15, left), and XB → 0 at upper limit of �Y because
of global baryon number conservation.

Writing the variance Var(B) in the form,

Var(B) = 2Var(NB) + 2Var(NB) − Var(NB + NB), (14)

we find

XB = 2ωNB

〈NB〉
〈NB + NB〉

+ 2ωNB

〈NB〉
〈NB + NB〉 − ωNB+NB

.

(15)

The behavior of the different terms in Eq. (15) is the following:
As seen from Fig. 15, right, ωNB

∼= 1 for all values of �Y . This
is because NB � NB , and baryon number conservation does
not affect the fluctuations of antibaryons. Due to the small
number of antibaryons in comparison to baryons, one also
observes ωB

∼= ωNB
∼= ωNB+NB

.

VI. ELECTRIC CHARGE FLUCTUATIONS IN CENTRAL
Pb + Pb COLLISIONS AT 20, 30, 40, 80, AND 160A GeV

In this section we present the HSD results for the
event-by-event electric charge fluctuations as measured by
the NA49 Collaboration in central Pb+Pb collisions at
20A, 30A, 40A, 80A, and 160A GeV [22]. The interest in
this observable (as a signal of deconfinement) is related to
the predicted (in Refs. [23,24]) suppression of event-by-event
fluctuations of the electric charge in a quark-gluon plasma
(QGP) relative to a hadron gas. However, these predictions
were based on the assumption that the initial electric charge
fluctuations survive the hadronization phase.

FIG. 14. (Color online) The HSD results in Pb+Pb collisions at 158A GeV. (Left) The scaled variances ω+, ω−, and ωch in the full
acceptance. (Right) The distributions of events over N

proj
P in the most central collisions with b < 2 fm.
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FIG. 15. (Color online) The HSD results for net baryon number fluctuations in 2% most central Pb+Pb collisions at 158 AGeV in the
symmetric rapidity interval �Y = [−y, y] as a function of �y = �Y/2 in the c.m.s. The left panel shows the behavior of XB , and a right panel
presents separately ωNB

, ωN
B

, and ωNB+N
B

.

The first experimental measurement of charge fluctuations
in central heavy-ion collisions by PHENIX [25] and STAR
[26] at the Relativistic Heavy Ion Collider (RHIC) and by
the NA49 [22] at SPS showed a quite moderate suppression
of the electric charge fluctuations. This observation has been
attributed to the fact that the initial fluctuations are distorted
by the hadronization. In particular, the observed fluctuations
might be related to the final resonance decays.

In this respect it is important to compare the experimental
data with the results of microscopic transport models such
as HSD where the resonance decays are included by default.
To quantify the event-by-event electric charge fluctuations we
have calculated the quantity � defined as [22,27]

�q =
√

〈Z2〉
〈N〉 −

√
z2, (16)

where

z = q − q, Z =
N∑

i=1

(qi − q). (17)

Here q denotes a single particle variable, i.e., electric charge
q; N is the number of particles of the event within the

acceptance; and the overbars and angle brackets denote
averaging over a single particle inclusive distribution and over
events, respectively. By construction, � of the system, which
is an independent sum of identical sources of particles, is equal
to the � for a single source [27,28].

To remove the sensitivity of the final signal to the trivial
global charge conservation (GCC) the measure ��q is defined
as the difference

��q = �q − �q,GCC. (18)

Here the value of �q is given by [29,30]

�q,GCC = √
1 − P − 1, (19)

where

P = 〈Nch〉
〈Nch〉tot

(20)

with 〈Nch〉 and 〈Nch〉tot being the mean charged multiplicity in
the detector acceptance and in the full phase space (excluding
spectator nucleons), respectively.

By construction, the value of ��q is zero if the particles are
correlated by global charge conservation only. It is negative
in the case of an additional correlation between positively and

FIG. 16. (Color online) The dependence of the �q (l.h.s.) and ��q (r.h.s.) on the fraction of accepted particles for central Pb+Pb collisions
at 20A–158A GeV. The NA49 data [22] are shown as solid symbols, whereas the open symbols (connected by lines) represent the HSD results.
The dashed line shows the dependence expected for the case if the only source of particle correlations is the global charge conservation �q,GCC,
Eq. (19).
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FIG. 17. (Color online) The energy dependence of ��q measured in central Pb+Pb collisions for a narrow rapidity interval �y =
1.2 (l.h.s.) and a broad rapidity interval �y = 3 (r.h.s.). The NA49 data [22] are shown as solid symbols, whereas the the open symbols
(connected by lines) reflect the HSD results.

negatively charged particles, and it is positive if the positive
and negative particles are anti-correlated [30].

Figure 16 shows the HSD results for the dependence of �q

(l.h.s.) and ��q (r.h.s.) on the fraction of accepted particles
〈Nch〉 and 〈Nch〉tot (calculated for ten different rapidity intervals
increasing in size from �y = 0.3 to �y = 3 in equal steps)
for central Pb+Pb collisions at 20A, 30A, 40A, 80A, and
158A GeV. The NA49 data [22] are shown as full symbols,
whereas the open symbols (connected by lines) reflect the HSD
results. The dashed line shows the dependence expected for
the case if the only source of particle correlations is the global
charge conservation �q,GCC [Eq. (19)].

The data as well as the HSD results for �q (Fig. 16, l.h.s.)
are in a good agreement and show a monotonic decrease with
increasing fraction of accepted particles. After substraction
of the contribution by global charge conservation (the dashed
line in Fig. 16), the values of ��q vary between 0 and −0.05,

which are significantly larger than the values expected for QGP
fluctuations (−0.5 < ��q < −0.15 [30]).

Figure 17 presents the energy dependences of ��q for two
selected rapidity intervals—the intermediate rapidity interval
�y = 1.2 (l.h.s.) and the largest rapidity interval �y =
3 (r.h.s.). Both the data and the HSD results show a slight
decrease of ��q with increasing energy.

The fact that the HSD model, which includes no explicit
phase transition, describes the experimental data can be
considered an independent proof that the event-by-event
charge fluctuations are driven by the hadronization phase
and dominantly by the resonance decays (which are naturally
included in HSD) and are no longer sensitive to the initial
phase fluctuations from a QGP.

VII. SUMMARY AND CONCLUSIONS

The goal of this study was to investigate the sensitivity
of event-by-event fluctuations of baryon number and
electric charge to the early stage dynamics of hot and
dence nuclear matter created in heavy-ion collisions at SPS
energies and the influence of the further hadronization

and rescattering phase. For that purpose we explored the
microscopic HSD transport model which allowed us to
also investigate (on event-by-event basis) the influence of
the experimental acceptance and the setup on the final
observables.

It has been found that the fluctuations in the number of
target participants strongly influences the baryon number and
charged multiplicity fluctuations. The consequences of this
fact depend crucially on the dynamics of the initial flows of
the conserved charges and inelastic energy.

For a better quantitative understanding of the microscopic
transport model (HSD) results we considered three limiting
groups of models for nucleus-nucleus collisions: transparency,
mixing, and reflection. These “pedagogical” considerations
indicate that the HSD model (as well as UrQMD, cf. Ref. [17])
shows only a small mixing on initial baryon flow and is closer
to the T model. This supports the findings from Ref. [2] about
the influence of the partonic degrees of freedom on the initial
phase dynamics which might increase the mixing by additional
strong parton-parton interactions. Thus, the measurement of
the net baryon number fluctuations helps to quantify the mixing
of initial baryon flow.

The first microscopic event-by-event calculations of the
charge fluctuations ��q within the HSD model show a
good agreement with the NA49 data at SPS energies.
Thus, this observable is dominated by the final stage
dynamics, i.e., the hadronization phase and the reso-
nance decays, and is rather insensitive to the initial QGP
dynamics.
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[13] H. Stöcker and W. Greiner, Phys. Rep. 137, 277 (1986);
J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993); J. Sollfrank,
M. Gaździcki, U. Heinz, and J. Rafelski, ibid. 61, 659 (1994);
G. D. Yen, M. I. Gorenstein, W. Greiner, and S. N. Yang,
Phys. Rev. C 56, 2210 (1997); F. Becattini, M. Gaździcki, and
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