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Methods for jet studies with three-particle correlations
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We present a method based on three-particle azimuthal correlation cumulants for studying jet interactions with
the medium produced in heavy ion collisions (at RHIC) where jets cannot be reconstructed on an event-by-event
basis with conventional jet-finding algorithms. The method is specifically designed to distinguish a range of jet
interaction mechanisms such as Mach cone emission, gluon Cerenkov emission, jet scattering, and jet broadening.
We describe how anisotropic flow contributions of second order (e.g., v2

2) are suppressed in three-particle
azimuthal correlation cumulants, and discuss specific model representations of dijets, away-side scattering, and
Mach cone emission.
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I. INTRODUCTION

Recent measurements at RHIC unraveled the production of
strongly interacting quark gluon plasma (sQGP) in Au+Au
collisions. This conclusion is based on the observation in
Au+Au collisions of large collective flow, in agreement
with hydrodynamic calculations, and dramatic suppression of
particle production at high transverse momentum relative to
expectations based on p+p interactions scaled by the number
of binary collisions in Au+Au [1–3]. Comparison of azimuthal
two-particle correlations measured in Au+Au, d+Au, and
p + p collisions indicates the production of jets is strongly
modified by their propagation through dense matter produced
in Au+Au. Modifications are manifested for low pt jets (e.g.,
3 < pt < 4 GeV/c) by a complete disappearance of the away-
side jet [4,5], and for higher pt jets by a large suppression of
the associated particle production on the away-side jet. Various
mechanisms are proposed in the recent literature to explain the
observed jet modifications. Typically, these assume the trigger
jet is produced near the surface of the dense matter (produced
by the colliding nuclei) and thus escape mostly unscathed
while the away-side jet has to penetrate through the dense
matter and can therefore undergo a number of interactions.
Attenuation and modification mechanisms range from multiple
scattering of the initial parton, gluon radiation before and after
fragmentation [6–9]. Recently, the PHENIX Collaboration
reported it observed a dip and anomalous peak structures
in two-particle correlations for trigger particle in the range
2.5–4 GeV/c and associates in the range 1–2.5 GeV/c [10]. A
number of authors argue conical flow (also called Mach cone
emission) caused by the away-side jet [11,12] or Cerenkov
effect (gluon radiation) may be responsible for the dip and
peak structures [13]. The issue is, however, strongly debated.
The authors of Ref. [14] argue the jet energy loss is too small
and jet interaction with the medium should lead to very small
effects, while Voloshin [15] argues the observed correlation
can be due to jet flow caused by the underlying flowing matter.

The interpretation of two-particle correlations in A + A

collisions is complicated by the fact their shapes are rather
sensitive to the measured pt ranges. The STAR Collaboration
reported at QM05 the progressive re-appearance of away-side
jets when higher pt trigger particles are selected (i.e., for

pt > 8 GeV). While the changing shape of the two particle
correlations may arise, in part, because of the pt dependence
of jet interaction with the medium we seek to understand, it
may also result from the interplay of various, less interesting
(in this specific context) particle production processes such
as resonance decays, radial and elliptical flow, momentum,
and quantum numbers conservation. It is thus desirable to
reduce ambiguities by performing a more complete set of
measurements. Since explicit reconstruction of jets, event-by-
event, is impractical in Au+Au collisions, one is limited to
correlations studies. We contend that one can gain additional
insight into the jet interaction with the medium through
measurements of three-particle correlations.

Measurements of three-particle correlations should enable
a straightforward elimination of a simple two-particle process
and enable unambiguous identification of genuine multi-
particle production phenomena, e.g., jets, Mach cone, etc.
Measurements of three-particle correlations should also, in
principle, enable one to distinguish some of the proposed jet
attenuation mechanisms. Measuring a triplet of particles’ yield
alone is, however, not sufficient to actually eliminate contribu-
tions from two-body processes and collective processes (also
known as flow). Additional steps must be taken to eliminate
such effects from measured triplet cross sections.

In this paper, we describe a measurement technique based
on cumulants and “predict” the measurement outcome for
some simple key models of particle production. The technique
is described in detail in Sec. II. We then apply the technique
to simple particle production models that can be computed
analytically, or through Monte Carlo calculations in Sec. III.
Our results are summarized and discussed in Sec. IV.

II. THE CUMULANT METHOD

Correlation measurements are based on the simultaneous
measurement of two-, three- or n-particles. In such mea-
surements, one has no a priori knowledge of the process or
processes leading to the production of these particles. Indeed
one may be dealing with one, two, or many (distinct or not)
production processes: radial flow, elliptical flow, resonance
decay, jets, Mach cone, etc. Given these processes are
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intrinsically stochastic (random) in nature, it is not possible a-
priori, to determine which of such processes lead to production
of a specific pair or triplet of particles. Members of a given
triplet of measured particles may be produced by one of many
multi particle (n > 2) production processes, or a combination
of such processes. More explicitly stated, it is possible that
all three particles of a triplet are correlated because the same
process produced them. It is, however, also possible that only
two of the three particles are actually from the same process,
while the third is from an independent, uncorrelated process.
Additionally, it is also possible that all three particles of given
triplet were produced by different and independent processes.
For the study of jet related phenomena, we are interested
in identifying those triplets that consist of three particles
produced by the same process or phenomenon. Unfortunately,
given the stochastic nature of particle production in nuclear
interactions, it is obviously impossible to distinguish on
a pair by pair, or triplet-by-triplet basis, which are truly
correlated, i.e., from the same process, than those amounting
to random combinations. It is therefore necessary to utilize
statistical techniques, only valid for an ensemble of triplets (or
pairs), when endeavoring to separate the different processes
contributing to particle production. The cumulant method is
specifically designed to accomplish this task.

Cumulants were introduced by Berger [16] and discussed
by Carruthers et al. [17] and are now used in a variety of
analyses [18]. We summarize here the definition and essential
properties of two- and three-particle cumulants relevant for
the discussion in this work. We restrict the discussion and
notation to azimuthal angle measurements. We note single
particle densities by ρ1(ϕi) = dN/dϕi , two particle densities
ρ2(ϕi, ϕj ) = dN/dϕidϕj , and three-particles densities with
ρ3(ϕi, ϕj , ϕk) = dN/dϕidϕjdϕk .

Measurements of “n-plet” of particles may yield “n”
truly correlated particles, “n-1” truly correlated particles in
combination with an uncorrelated one, “n-2” truly correlated
in combination with a pair of particles from one or two other
processes, etc. In the case of a measurement of two and
three-particle densities, this can be written

ρ2(ϕi, ϕj ) = ρ̂2(ϕi, ϕj ) + ρ1(ϕi)ρ1(ϕj )

ρ3(ϕi, ϕj , ϕk) = ρ̂3(ϕi, ϕj , ϕk) + ρ̂2(ϕi, ϕj )ρ1(ϕk)

+ ρ̂2(ϕi, ϕk)ρ1(ϕj ) + ρ̂2(ϕj , ϕk)ρ1(ϕi)

+ ρ1(ϕi)ρ1(ϕj )ρ1(ϕk). (2.1)

The truly correlated particle densities, indicated with “ˆ”, are
obtained by solving the two equations above for ρ̂2(ϕi, ϕj )
and ρ̂3(ϕi, ϕj , ϕk). One obtains the definition of the two- and
three-cumulants in terms of measured densities

ρ̂2(ϕi, ϕj ) = ρ2(ϕi, ϕj ) − ρ1(ϕi)ρ1(ϕj )

ρ̂3(ϕi, ϕj , ϕk) = ρ3(ϕi, ϕj , ϕk) − ρ2(ϕi, ϕj )ρ1(ϕk)

− ρ2(ϕi, ϕk)ρ1(ϕj ) − ρ2(ϕj , ϕk)ρ1(ϕi)

+ 2ρ1(ϕi)ρ1(ϕj )ρ1(ϕk). (2.2)

In this work, we consider particle production as arising from a
superposition of “s” independent processes such as collective
flow, two-body decays, jet production, etc. Identifying
these processes on the basis on a generic index α, with

α = 1, . . . , s, it is straightforward to show that if all processes,
α, are statistically independent, the single particle density and
measured two- and three- cumulants may be expressed as a sum
of the cumulants of each of these “s” independent processes.

ρ̂1(ϕi) =
s∑

α=1

ρ̂1,s(ϕi),

ρ̂2(ϕi, ϕj ) =
s∑

α=1

ρ̂2,s(ϕi, ϕj ), (2.3)

ρ̂3(ϕi, ϕj , ϕk) =
s∑

α=1

ρ̂3,s(ϕi, ϕj , ϕk),

where ρ̂3,α(ϕi, ϕj , ϕk) and ρ̂2,α(ϕi, ϕj ) correspond to the two-
and three-particle cumulants for process “α.” This applies
whether one deals with independent processes of the same or
different types. If there are on average N rho-meson decay
per collision, then the cumulant associated with these shall be
simply N times the cumulant of one rho decay.

Experimentally, cumulant measurements are subject to
the same limitations associated with finite acceptance and
detection efficiency as those involved in measurements of
single particle densities. While it is not possible to compensate
for finite acceptance in a model-independent way, one can
express the cumulants in terms of probability densities, rather
than densities, and obtain experimentally robust quantities.
While it is, in principle, possible to perform detailed cal-
culations of the single, ε1(ϕi), pair, ε2(ϕi, ϕj ) and triplet,
ε3(ϕi, ϕj , ϕk), efficiencies for the phase space of interest
based on Monte Carlo simulations of the detector response,
such simulations may become prohibitively CPU expensive in
practice. However, to the extent that it is reasonable to assume
that the two- and three-particle detection efficiencies can be
factorized as the product of single particle efficiencies, e.g.,
ε3(ϕi, ϕj , ϕk) ≈ ε1(ϕi)ε1(ϕj )ε1(ϕk), then ratios of two- and
three-particle cumulants to products of two and three single
particle densities yield robust experimental quantities:

ρM
2 (ϕi, ϕj )

ρM
1 (ϕi)ρM

1 (ϕj )
= ε2(ϕi, ϕj )

ε1(ϕi)ε1(ϕj )

ρA
2 (ϕi, ϕj )

ρA
1 (ϕi)ρA

1 (ϕj )
;

� ρA
2 (ϕi, ϕj )

ρA
1 (ϕi)ρA

1 (ϕj )
(2.4)

ρM
3 (ϕi, ϕj , ϕk)

ρM
1 (ϕi)ρM

1 (ϕj )ρM
1 (ϕk)

= ε3(ϕi, ϕj , ϕk)

ε1(ϕi)ε1(ϕj )ε1(ϕk)

ρA
1 (ϕi, ϕj , ϕk)

ρA
1 (ϕi)ρA

1 (ϕj )ρA
1 (ϕk)

≈ ρA
3 (ϕi, ϕj , ϕk)

ρA
1 (ϕi)ρA

1 (ϕj )ρA
1 (ϕk)

,

where “M” and “A” denote measured and actual quantities,
respectively. An alternative approach to account for finite
detection efficiencies is the use of the “mixed events” technique
first introduced by Kopylov [19]. Unfortunately, with that
technique, the absolute normalization of the correlations may
be lost. There are also issues of reliability connected to the
necessity of preserving the event multiplicity, net charge, and
other conserved quantity distributions.

The recent discovery of disappearance and reappearance
[20] of jets reported at RHIC were based on two-particle
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correlation studies. Much was, and can still be learned from
two-particle correlations. The interpretation of two-particle
correlations is, however, somewhat ambiguous: structures
found in analyses reported by PHENIX [10], and STAR
may be interpreted as resulting from parton scattering, Mach
cone emission [11,12,14,21], Cerenkov gluon radiation [22],
jet flow [15], and possibly other mechanisms as well. We
argue that ambiguities can be reduced, and jet properties
further studied with three-particle correlations. Consider, for
instance, the observation of away-side jet broadening. With
two particle correlations, the high pt “trigger” or “tag” usually
defines the direction of the nearside jet. The second particle
is generally assumed to come from the away-side jet or
from some associated process (e.g., Mach cone emission).
Observations with low pt particles have shown that the away
side is typically much broader than the near side or shows
a dip at 180◦ and exhibits side peaks near 120◦ and 240◦.
Observations also reveal the width of the away-side peak
decreases for increasing pt . The problem then arises that
it is not possible, based on a two-particle correlation, to
distinguish whether the broadening of the away—side is due to
scattering of the jet leading parton with no actual broadening
of the jet, as schematically illustrated in Fig. 1(c), or due
to the interactions and dispersion of jet fragments by the
medium shown in Fig. 1(b). The ambiguity is eliminated
in three-particle correlations by measuring the width of the
correlation between two away-side particles. If the jet structure
is unchanged except for initial scattering of the leading jet
parton, then the width of the away-side particles remains
unchanged between p + p and Au+Au collisions. If, on the
other hand, the jet fragments are dispersed (scattered) by
the medium, then the width of the away-side should indeed
increase as schematically illustrated in Fig. 1(b). These two
scenarios are discussed on the basis of a toy model in Secs. III B
and III E. Three-particle azimuthal correlations shall also
be useful for identifying Mach cone emission or Cerenkov
radiation. In the case of predicted Mach cone emission, the
propagation of the away-side parton in the dense medium
formed by the A+A collisions leads to the production of a
wake at an angle determined by the ratio of parton speed and
sound velocity in the medium. For a QGP plasma, the sound
velocity is expected [23] to be on the order of 0.33c whereas the
parton speed is near c. This may then lead to particle emission
at 60◦ to 70◦ from the away-side direction [23], as illustrated
in Fig. 1(d) and 1(e). While the number of particles emitted
in the Mach cone is expected to be fairly modest, it should
be nonetheless possible, with appropriate kinematical cuts,
to identify Mach cone emission in three-particle correlations
by the emergence of four-side structures 60◦ to 70◦ from the
away-side direction as schematically illustrated in Fig. 1 (see,
however, the discussion in Sec. III H). By contrast, parton
deflection (scattering) should instead lead to an elongation
along the diagonal of the away-side jet peak. Cerenkov gluon
emission is predicted to have similar three-particle emission
structures as Mach cone emission, although the characteristics
of this emission are not as clearly understood. Three-particle
correlations might also be useful to identify the production of
a backsplash by the away-side parton. The authors of Ref. [14]
have argued, based on transport calculations conducted with a

FIG. 1. (Color online) Left: Schematic illustration in transverse
plane of (a) in vacuum back-to-back dijet event, (b) in bulk
broaden away-side dijet event, (c) deflected jet, (d) Mach cone with
particle emission perpendicular to the beam direction, and (e) Mach
cone with particle emission at all azimuths relative to the away-side
parton direction. Right: Schematic illustration of the three-particle
correlations expected for each mechanism shown on the left. See text
for details.
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2D hydro calculation, that due to radial outward flow, and given
the relatively small energy deposited by the away-side parton,
the production of a Mach cone is rather unlikely. They instead
discuss the possibility of a backsplash. Such a backsplash
might be visible as an excess of particle production at small
angles relative to the near side peak.

We thus discuss the formulation of three-particle cumulants
as correlations based on two azimuthal angle differences.
Here we will illustrate the method with differences between
azimuthal angles of particle 1 and 2, �ϕ12, and particle 1
and 3, �ϕ13. The technique is trivially extended to full phase
space. The remainder of this section presents a discussion
of experimental techniques used in the determination of
cumulants. Specific models relevant for the study of away-side
parton scattering, Mach cone emission, and backgrounds are
discussed in Sec. III.

Calculating the three-cumulant and the normalization to
singles, in terms of these two variables, requires the calculation
of terms such as ρ2ρ1(�ϕ12,�ϕ13), and ρ1ρ1ρ1(�ϕ12,�ϕ13).
First consider the calculation of the ρ1ρ1ρ1(�ϕ12,�ϕ13) term.
Calculating this term requires the knowledge of the singles
density ρ1(ϕ1), ρ1(ϕ2), and ρ1(ϕ3) with ϕ1, ϕ2, and ϕ3 being
the azimuthal angle at which each of the particles are measured.

The index 1 refers to the trigger particle, and indices
2 and 3 refer to the associate particles. Kinematic ranges
for each of these variables may be chosen arbitrarily to be
identical, distinct, or to partially overlap. Here we will assume
the trigger range is distinct, while the two associates have
identical kinematic ranges. Typically, at a given collision
centrality, the single particle distributions may be measured
with 1D profile histograms with finitely many bins, n, for
azimuthal angles between 0◦ and 360◦. The ρ1ρ1(�ϕ12)
and ρ1ρ1ρ1(�ϕ12,�ϕ13) terms are then calculated using
respectively 1D and 2D histograms or arrays using a binning of
n and n × n in �ϕ12,�ϕ13 and summing over all combinations
ϕ1, ϕ2, and ϕ3 that yield the same angle differences:

ρ1ρ1(�ϕ12) ≡ ρ1ρ1(m) =
n∑

i,j=1

ρ1(i)ρ1(j )δ(m − i + j)

ρ1ρ1ρ1(�ϕ12,�ϕ13) ≡ ρ1ρ1ρ1(m,p)
(2.5)

=
n∑

i,j,k=1

ρ1(i)ρ1(j )ρ1(k)

× δ(m − i + j )δ(p − i + k)

with m,p = 1, . . . , n. Calculating the ρ2ρ1(�ϕ12,�ϕ13)
terms requires the knowledge of ρ2(ϕi, ϕj ), and ρ1(ϕk). The
term ρ2(ϕi, ϕj ) may be measured using a 2D profile histogram
as for the singles. The difference, of course, is that we need to
account for which of the three particles are paired. Again, here
one uses n x n binning, but in actual angles rather than angle
differences. The three ρ2ρ1(�ϕ12,�ϕ13) terms are obtained
by folding ρ2(ϕi, ϕj ), and ρ1(ϕk) using the following formula:

ρ2ρ1(�ϕ12,�ϕ13)123 ≡ ρ2ρ1(m,p) =
n∑

i,j,k=1

ρ2(i1, j2)ρ1(k3)

× δ(m − i1 − j2)δ(p − i1 − k3),

ρ2ρ1(�ϕ12,�ϕ13)231 ≡ ρ2ρ1(m,p) =
n∑

i,j,k=1

ρ2(i2, j3)ρ1(k1)

× δ(m − i1 − j2)δ(p − i1 − k3),

ρ2ρ1(�ϕ12,�ϕ13)132 ≡ ρ2ρ1(m,p) =
n∑

i,j,k=1

ρ2(i1, j2)ρ1(k3)

× δ(m − i1 − j2)δ(p − i1 − k3)

(2.6)

with m,p = 1, . . . , n. The subindex “123,” “231,” and “132”
notation is used above to distinguish which of the three
particles are taken from the two-particle density ρ2(ϕi.ϕj ).
The three-particle density ρ3(�ϕ12,�ϕ13) may be obtained
in a number of ways. The most straightforward technique
is to use three nested loops and consider, for each event
entry, all possible triplet permutations and fill a 2D profile
histogram or array. We note that for efficiency correction
purposes (which require division of the cumulant terms by
singles), best results are achieved using same binning and
integer arithmetic while computing the cumulant and singles
term ρ1ρ1ρ1(�ϕ12,�ϕ13).

We emphasize that three-cumulants are indeed a measure of
the degree of three-particle correlation between three measured
particles. As such, they may be zero, positive or even negative.
This is true for both differential values of the cumulant (as
in the above expression) and integrals of the cumulant over
phase space. We illustrate this point as follows. Consider the
numbers of particles, ni , measured in (arbitrary) kinematic
bins i = 1, 2, and 3 in any given event. Clearly these can be
expressed as a sum of the means 〈ni〉, obtained by averaging
over many events, plus some “small” random quantity ri which
varies event-by-event

ni = 〈ni〉 + ri,

By definition of the mean 〈ni〉, one has 〈ri〉 = 0. The average
number of pairs 〈n1n2〉 and triplets 〈n1n2n3〉 are thus

〈n1n2〉 = 〈(〈n1〉 + r1)(〈n2〉 + r2)〉 = 〈n1〉〈n2〉 + 〈r1r2〉
(2.7)

〈n1n2n3〉 = 〈(〈n1〉 + r1)(〈n2〉 + r2)(〈n3〉 + r3)〉
= 〈n1〉〈n2〉〈n3〉 + 〈n1〉〈r2r3〉 + 〈n2〉〈r1r3〉

+ 〈n3〉〈r1r2〉 + 〈r1r2r2〉. (2.8)

Applying the definition (2.2) with the above, one finds the
three-cumulant reduces to 〈r1r2r3〉, and indeed verifies it can
be positive, negative, or null depending on the nature of the
particle production processes involved.

The cumulant calculation may be performed inclusively
for a wide range of collision centralities or semi-inclusively.
Semi-inclusive measurements are carried at fixed reference
multiplicity. Averages over large centrality ranges (or bins)
of semi-inclusive measurements may be achieved with a
simple or cross-section weighted average across centrality
bins. Assuming here the centrality is estimated on the basis
of some reference particle multiplicity, m, measured over a
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given experimental acceptance, one gets

C3(�ϕ12,�ϕ13) = ρ̂3(�ϕ12,�ϕ13)BIN

=
∑max

m=min w(m)ρ̂3(�ϕ12,�ϕ13)m∑max
m=min w(m)

, (2.9)

where the subindices “BIN” and “m” refer to the bin average,
and fixed reference multiplicity, respectively. The weights,
w(m), can be taken as unity for simple arithmetic average
or as the number of events at the given reference multiplicity
for cross section weighted averages.

In the following, we will use the notations C2(�ϕ12),
and C3(�ϕ12,�ϕ13) to identify the two- and three-cumulants
average over collisions as defined per Eq. (2.9). Experimen-
tally, this quantity is subject to finite efficiencies. It is thus
convenient to consider the ratio of C2 and C3 to products of
single particle densities to cancel out efficiencies as discussed
above. We use the notation Rs

k, R
i
k to respectively identify

semi-inclusive and inclusive averages over collision centrality
of the ratio of k-cumulants and products of single particle
densities. Rs

3, and Ri
3 are defined as follows:

Rs
3(�ϕ12,�ϕ13) =

∑max
m=min w(m) ρ̂3(�ϕ12,�ϕ13)m

ρ1ρ1ρ1(�ϕ12,�ϕ13)m∑max
m=min w(m)

,

(2.10)

Ri
3(�ϕ12,�ϕ13) =

∑max
m=min w(m)ρ̂3(�ϕ12,�ϕ13)m∑max

m=min w(m)ρ1ρ1ρ1(�ϕ12,�ϕ13)m

with similar definitions for Rs
2, and Ri

2. Given the quantity
ρ3/ρ1ρ1ρ1 amounts to a probability density, the semi-inclusive
normalized cumulant Rs

k is thus a cumulant of probabilities
densities. While the interpretation of Ri

k is not as straightfor-
ward, it is easier to calculate given finite statistics. We note
that because detection efficiencies are, in general, a function
of the detector occupancy (and hence particle multiplicity)
finite efficiencies involved in measuring ρ3 and ρ1ρ1ρ1 do not,
in general, cancel in the expression of Ri

k but do for Rs
k . An

efficiency-corrected particle density cumulant is obtained by
multiplying the ratio Re

2 and Re
3 by the angle averaged products

ρ1ρ1 and ρ1ρ1ρ1, respectively. The single particle densities
ρ1(ϕ) can be efficiency corrected via standard techniques such
as event embedding. It is thus straightforward to compute
the angle averaged ρ1ρ1 and ρ1ρ1ρ1 and their products to
Re

2 and Re
3, respectively, thereby yielding efficiency-corrected

particle density cumulants. Again in this case, the calculation
may be performed inclusively or semi-inclusively. We use
the notations Si

k and Ss
k for the inclusive and semi-inclusive

cumulants respectively. These are defined as follows:

Ss
3(�ϕ12,�ϕ13) =

∑max
m=min w(m)ρ1ρ1ρ1(m) ρ̂3(�ϕ12,�ϕ13)m

ρ1ρ1ρ1(�ϕ12,�ϕ13)m∑max
m=min w(m)

,

Si
3(�ϕ12,�ϕ13) =

∑max
m=min w(m)ρ1ρ1ρ1∑max

m=min w(m)
(2.11)

×
∑max

m=min w(m)ρ̂3(�ϕ12,�ϕ13)m∑max
m=min w(m)ρ1ρ1ρ1(�ϕ12,�ϕ13)m

.

We note once again that while the calculation of Si
3(�ϕ12,

�ϕ13) is simpler and requires less storage than the calculation
of the semi-inclusive quantity Ss

3(�ϕ12,�ϕ13), the efficiency

correction on Si
3(�ϕ12,�ϕ13) is less accurate given the

efficiency is typically a function of the event multiplicity.

III. MULTIPARTICLE CORRELATIONS TOY MODELS

The structure of three-particle correlations can be rather
complicated. It is thus useful to consider simple analytical
models to guide one’s intuition in the study of jet properties in
A+A collisions, based on two- and three-particle correlation
studies. We consider, for illustrative purposes, a range of
simple models. We begin in Sec. III A, with pencil-like
correlations and consider collisions producing a superposition
of pencil-like jets of particles, i.e., jets consisting of particles
emitted in the same direction. We proceed, in Sec. III B,
to consider a semirealistic case of Gaussian-shaped jets of
particles mixed with background particles with flat distribu-
tion. We discuss the important case of harmonic anisotropies
in Sec. III C. In Sec. III D, we consider the production of
jets simultaneous to harmonic flow. We use the result of
these sections to study dijet, Mach cone production and
similar phenomena in Sec. III E. These results are contrasted
to simulations of two-body (ρ-meson) decay in Sec. III F,
where we illustrate through simple examples, that two-particle
correlations may have a wide-range of shapes, depending on
the kinematic cuts used to construct them. We also show how
the complicated, three-particle density obtained with ρ-meson
decays are reduced to a null signal in three-particle azimuthal
correlation cumulant. Seemingly independent processes, such
as anisotropic flow and jet-like Gaussian structures found in
two-particle correlations, may have a common origin. We
describe in Sec. III G how differential attenuation of jets by
the medium may produce both of these types of correlation
structures simultaneously. Finally, we discuss the case of Mach
cone emission in Sec. III H.

A. Pencil-like jets (model PJ)

We begin with a simple, albeit unrealistic, jet model where
we assume all jet fragments are emitted exactly in the direction
of the parton initiating the jet. The direction of the jet (parton)
is chosen to have a flat probability distribution in azimuth,
PJ (φ) = (2π )−1. The conditional probability of observing a
particle at an angle ϕi relative to the jet direction is taken to be
a delta function

PPJ (ϕi |φ) = δ(ϕi − φ). (3.1)

We further assume there exist definite probabilities, PJ (J ), and
PJ (Ai) for, respectively, observing J jets in a given event, and
Ai fragments associated with a given jet. The joint probability,
P (ϕi, φ, J,Ai), of finding one of Ai jet fragments at angle ϕi ,
from a jet emitted in direction φ, while there are J jets in an
event is given by

PJ (ϕi, φ, J,Ai) = PPJ (ϕi |φ)PJ (φ)PJ (Ai)PJ (J ). (3.2)
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We obtain the single particle density by integrating (marginal-
ization1) unmeasured observables (e.g., in this case φ) and
averaging:

ρ1(ϕi) = (2π )−1〈J 〉〈Ai〉, (3.3)

where 〈J 〉 and 〈Ai〉 are, respectively, the average number of
jets in an event and the average number of particles associated
with a jet. The two-particle density is similarly obtained by
integrating the joint probability of finding jet fragments at
angles ϕi , and ϕj , from a jet emitted in direction φ, while there
are J jets in an event. Note the two measured particles may be
either from the same or different jets. The two-particle density
is thus a sum of two terms as follows:

ρ2,J (ϕi, ϕj ) =
∫

JAiAjPPJ (ϕi |φ)PPJ (ϕj |φ)

×PJ (φ)PJ (Ai,Aj )PJ (J )dJdAidAjdφ

+
∫

J (J − 1)AiAjPPJ (ϕi |φα)

×PPJ (ϕj |φβ)PJ (φα)PJ (φβ)

×PJ (Ai,Aj )PJ (J )dJdAidAjdφαdφβ. (3.4)

The first term corresponds to the two-particle being emitted
from the same jet, while the second term is for particles from
two different jets α, and β. Integration yields:

ρ2,J (ϕi, ϕj ) = (2π )−1〈J 〉〈AiAj 〉P2,PJ (ϕi, ϕj )

+ (2π )−2〈J (J − 1)〉〈Ai〉〈Aj 〉, (3.5)

where the probability P2,PJ (ϕi, ϕj ) is given by

P2,PJ (ϕi, ϕj ) =
∫ 2π

0
δ(ϕi − φ)δ(ϕj − φ)dφ = δ(ϕi − ϕj ).

(3.6)

The two-cumulant is obtained by applying the definition
(2.2)

ρ̂2,PJ (ϕi, ϕj ) = (2π )−1〈J 〉〈AiAj 〉P2,PJ (ϕi, ϕj )

+ (2π )−2〈Ai〉〈Aj 〉(〈J (J − 1)〉 − 〈J 〉2).

(3.7)

Note the second, constant term in the above expression
vanishes if a Poissonian process determines the number of
jets for which 〈J (J − 1)〉 = 〈J 〉2.

The three-particle density and three-cumulant are obtained
in a similar manner as the two-particle cumulant. It is possible
for particles to be from the same, two, or three distinct jets.
Integration of the multiplicity weighted joint probability yields

ρ3,J (ϕi, ϕj , ϕk) = (2π )−1〈J 〉〈AiAjAk〉P3,PJ (ϕi, ϕj , ϕk)

+ (2π )−2〈J (J − 1)〉〈AiAj 〉〈Ak〉P2,PJ (ϕi, ϕj )

+ (2π )−2〈J (J − 1)〉〈AiAk〉〈Aj 〉P2,PJ (ϕi, ϕk)

+ (2π )−2〈J (J − 1)〉〈AjAk〉〈Ai〉P2,PJ (ϕj , ϕk)

+ (2π )−3〈J (J − 1)(J − 2)〉〈Ai〉〈Aj 〉〈Ak〉, (3.8)

1See definitions of joint probability and marginalization in Review
of Particle Physics by the Particle Data Group [29].

where the probability P2,PJ (ϕi, ϕj ) is given by Eq. (3.6), and
P3,PJ (ϕi, ϕj , ϕk) by

P3,PJ (ϕi, ϕj , ϕk) =
∫ 2π

0
δ(ϕi − φ)δ(ϕj − φ)δ(ϕk − φ)dφ

= δ(ϕj − ϕi)δ(ϕk − ϕi). (3.9)

The three-cumulant is

ρ̂3,PJ (ϕi, ϕj , ϕk) = (2π)−1〈J 〉〈AiAjAk〉
×P3,PJ (ϕi − ϕj , ϕi − ϕk)

+ (2π )−2(〈J (J − 1)〉 − 〈J 〉2)

×




〈AiAj 〉〈Ak〉P2,PJ (ϕi − ϕj )
+〈AiAk〉〈Aj 〉P2,PJ (ϕi − ϕj )
+〈AjAk〉〈Ai〉P2,PJ (ϕi − ϕj )




+ (2π )−3(〈J (J − 1)(J − 2)〉
−3〈J (J − 1)〉〈J 〉 + 2〈J 〉3)〈Ai〉〈Aj 〉〈Ak〉.

(3.10)

We remark that if the number of jets, J , is determined
by a Poissonian process, then one has 〈J (J − 1)〉 = 〈J 〉2,

〈J (J − 1)(J − 2)〉 − 3〈J (J − 1)〉 − 2〈J 〉3 = 0 and the above
expression therefore reduces to the following:

ρ̂Poisson
3,PJ

(ϕi, ϕj , ϕk) = (2π )−1〈J 〉〈AiAjAk〉
× δ(ϕi − ϕj )δ(ϕi − ϕk). (3.11)

We consider more realistic cases of jets and particle production
in the following sections. It is worth noting that while the
specifics of the angular dependencies varies from case to
case, cumulants will have similar expressions as in Eqs. (3.7)
and (3.10) where appropriate angular distributions must be
substituted to P2,PJ and P3,PJ .

B. Gaussian jets (model GJ)

We consider the production of jets with a finite size (opening
angle) and formulate the hypothesis that produced jets are not
coupled to the bulk of produced particles. We can then separate
the calculation of the jet and background correlations. We
assume a given event consists of background particles, and
jets. As in the previous section, we denote the probability
distribution for finding “J ” jets in a given event and Ai

associated particles by PJ (J ), and PJ (Ai), respectively. We
use a Gaussian profile to describe the fragment azimuthal
distributions relative to the jet direction φ. The conditional
probability of observing a particle at angle ϕi given the initial
parton direction φα is written

PJ(ϕi|φα) = G(ϕi ; φα,σi) ≡ 1√
2πσi,α

exp

(
− (ϕi − φα)2

2σ 2
i

)
.

(3.12)

For simplicity, we assume in this section the Gaussian widths
are independent of the jet energy and other event attributes.
We further assume the jets (partons) are emitted uniformly in
azimuth, i.e., the probability of observing a jet at angle φα is
noted PJ (φα) = (2π )−1. One finds the single particle density,
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two- and three-particle cumulants are given by expressions
(3.7) and (3.10) where the two- and three-particle probabilities
are replaced by the following Gaussian profiles:

P2,GJ (ϕ1, ϕ2) = 1√
2πσ1,2

exp

(
− (ϕ1 − ϕ2)2

2σ 2
1,2

)
,

P3,GJ (ϕ1, ϕ2, ϕ3) = 1

2πσ 2
1,2,3

× exp

(
− (σ3(ϕ1 − ϕ2)2 + σ2(ϕ1 − ϕ3)2 + σ1(ϕ2 − ϕ3)2)

2σ 2
1,2,3

)
,

(3.13)

where σ 2
ij = σ 2

i + σ 2
j and σ 4

i,j,k = σ 2
i σ 2

j + σ 2
i σ 2

k + σ 2
j σ 2

k .

C. Anisotropic flow (F)

Flow, or collective motion, is an important feature of heavy
ion collisions at relativistic energies. It manifests itself by
radial acceleration and modification of transverse momentum
(pt ) spectra and by azimuthal anisotropy of produced particles.
In this section, we focus our attention on azimuthal anisotropy
arising in non-central heavy ion collisions relative to the
reaction plane. It is convenient and customary to decompose
the azimuthal anisotropy in terms of harmonics relative to an
assumed reaction plane. The probability to observe a particle
at a given azimuthal angle ϕi relative to the reaction plane
angle, ψ , is written as a Fourier series

PF (ϕi |ψ) = 1 + 2
∑
m

vm(i) cos(m(ϕi − ψ)). (3.14)

The Fourier coefficients vm(i) measure the m-th order
anisotropy for particles emitted in a selected kinematic range
“i”. Measurements have shown the second order (elliptical)
anisotropy can be rather large in Au+Au collisions at RHIC
while first and fourth order harmonics are typically much
smaller. Little is known about third and fifth harmonics. Sixth
harmonics have been estimated to be rather small at RHIC.
STAR measurement shows the fourth harmonic scales roughly
as the square of the second harmonic (v4 ≈ 1.1v2

2) [24–26].
Experimental techniques for measurements of flow harmonics
are described at length in the literature. Our discussion here
focuses on the impact of flow on two- and three-particle
azimuthal correlations. We assume the harmonic coefficients
are known. Measurements at a given collision centrality lead
to average values for both the magnitude of the harmonic
coefficients and the number of produced particles. For the
purpose of this model, we describe the probability of finding Fi

particles in the kinematical range “i” according to probability
P (Fi). The exact form of this probability is not required. Only
its first, second, and third moments are needed. The joint
probability of measuring Fi , at an angle ϕi while the reaction
plane angle is at ψ is given by

PF (ϕi, Fi, ψ) = PF (ϕi |ψ)PF (Fi)PF (ψ), (3.15)

where P (ψ) = (2π )−1 is the probability of finding the reaction
plane at a given angle ψ . Integration yields the single particle
density ρ1(ϕi) = (2π )−1〈Fi〉. The probability to observe two
particles at angles ϕi , and ϕj may be written

PF (ϕi, Fi, ϕj , Fj , ψ) = PF (ϕi |ψ)PF (ϕj |ψ)P (Fi, Fj )PF (ψ).

(3.16)

Integration of this probability yields the two-particle density:

ρ2(ϕi, ϕj ) = (2π )−1〈FiFj 〉P2,F (ϕi, ϕj ), (3.17)

where P2,F (ϕi, ϕj ) is given by

P2,F (ϕi, ϕj ) = 1 + 2
∑
m

vm(i)vm(j ) cos(m(ϕi − ϕj )). (3.18)

Similarly, one finds the three-particle density is

ρ3(ϕi, ϕj , ϕk) = (2π )−3〈FiFjFk〉P3,F (ϕi, ϕj , ϕk), (3.19)

where PF (ϕi, ϕj , ϕk) is given by the following expression:

P3,F (ϕi, ϕj , ϕk) = 1 + 2
∑
m

vm(i)vm(j ) cos(m(ϕi − ϕj ))

+ 2
∑
m

vm(i)vm(k) cos(m(ϕi − ϕk))

+ 2
∑
m

vm(j )vm(k) cos(m(ϕj − ϕk))

+ 2
∑
p,m,n

vp(i)vm(j )vn(k)

×




δp,m+n cos(pϕi − mϕj − nϕk)

+δm,p+n cos(−pϕi + mϕj − nϕk)

+δn,m+k cos(−pϕi − mϕj + nϕk)


 .

(3.20)

The two- and three-cumulants are as follows:

ρ̂2,F (ϕi, ϕj ) = (2π )−2
(〈FiFj 〉 − 〈Fi〉〈Fj 〉 + 2〈FiFj 〉

×
∑
m

vm(i)vm(j ) cos(m(ϕi − ϕj ))
)
, (3.21)

ρ̂3,F (ϕi, ϕj , ϕk) = (2π )−3




2〈FiFjFk〉
∑

p,m,n vp(i)vm(j )vn(k)




δp,m+n cos(pϕi − mϕj − nϕk)
+δm,p+n cos(−pϕi + mϕj − nϕk)
+δn,m+p cos(−pϕi − mϕj + nϕk)




+2(〈FiFjFk〉 − 〈FiFj 〉〈Fk〉)
∑

m vm(i)vm(j ) cos(m(ϕi − ϕj ))
+2(〈FiFjFk〉 − 〈FiFk〉〈Fj 〉)

∑
m vm(i)vm(k) cos(m(ϕi − ϕk))

+2(〈FiFjFk〉 − 〈FjFk〉〈Fi〉)
∑

m vm(j )vm(k) cos(m(ϕj − ϕk))
−〈FiFj 〉〈Fk〉 − 〈FiFk〉〈Fi〉 − 〈FjFk〉〈Fi〉 + 2〈Fi〉〈Fj 〉〈Fk〉




. (3.22)
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Note that the above expression contains both second and third
order terms in vm. However, if the particle production process
is Poissonian, one has 〈FiFjFk〉 = 〈FiFj 〉〈Fk〉, and 〈FiFj 〉 =
〈Fi〉〈Fj 〉 so the above expression reduces to

ρ̂Poissonian
3,F (ϕi, ϕj , ϕk)

= 2(2π )−3〈Fi〉〈Fj 〉〈Fk〉
∑
p,m,n

vp(i)vm(j )vn(k)

×




δp,m+n cos(pϕi − mϕj − nϕk)

+δm,p+n cos(−pϕi + mϕj − nϕk)

+δn,m+k cos(−pϕi − mϕj + nϕk)


 (3.23)

which has no second order term in harmonic vm, and
only nondiagonal terms in vm(i)vn(j )vp(k). While the above
cumulant is reduced to a rather simple form for Poissonian
processes, it is generally not warranted to assume the pro-
duction processes are Poissonian. Indeed, measurements and
comparisons of 〈NiNjNk〉, 〈NiNj 〉〈Nk〉, and 〈Ni〉〈Nj 〉〈Nk〉
reveal these quantities are generally different. That implies
the above three-cumulant shall, in fact, have finite flow
harmonics of all orders. Note that one could, in principle,
“define” flow as being a Poissonian process thereby reducing
Eq. (3.22) to the above expression by definition. Consider,
however, that realistic modeling of collisions for the purpose
of extracting jet and Mach cone signals would then require
one also includes additional terms in the model to account for
nonflow contributions arising from resonance decay, electric
(strangeness, baryon number) charge conservation, etc. It
is thus convenient to assume the harmonic anisotropies to
be non-Poissonian and subsume all nonflow effects (other
than jet+Mach cone) into harmonic anisotropies as discussed
here. This approach, however, implies one is seemingly
stuck with v2

m contributions. This is particularly disappointing
because the use of three-cumulants for jet measurements is,
in part, predicated by the notion that these second orders
can be eliminated in a straightforward manner. There is,
however, an alternative solution to this problem. The solution
resides in a modest modification of the cumulants’ definition.
Indeed, since the usual cumulants lead to the presence of
irreducible terms in 〈FiFjFk〉 − 〈FiFj 〉〈Fk〉, it is natural to
define modified three-cumulants as follows:

�
ρ3(ϕi, ϕj , ϕk) = 〈Fi〉〈Fj 〉〈Fk〉

〈FiFjFk〉 ρ3(ϕi, ϕj , ϕk)

− 〈Fi〉〈Fj 〉
〈FiFj 〉 ρ2(ϕi, ϕj )ρ1(ϕk)

− 〈Fi〉〈Fk〉
〈FiFk〉 ρ2(ϕi, ϕk)ρ1(ϕj )

− 〈Fj 〉〈Fk〉
〈FjFk〉 ρ2(ϕj , ϕk)ρ1(ϕi)

+ 2ρ1(ϕi)ρ1(ϕj )ρ1(ϕk). (3.24)

FIG. 2. Contour plot of the three-cumulant (3.24) for finite v2v2v4

harmonic flow calculated with equal arbitrary coefficients.

It is straightforward to show this modified cumulant leads to
the same result as the Poissonian hypothesis

�
ρ3,F(ϕi,ϕj ,ϕk) = 2(2π )−3〈Fi〉〈Fj〉〈Fk〉

∑
p,m,n

vp(i)vm(j )vn(k)

×




δp,m+n cos(pϕi − mϕj − nϕk)

+δm,p+n cos(−pϕi + mϕj − nϕk)

+δn,m+k cos(−pϕi − mϕj + nϕk)


 .

(3.25)

In the above expression, the Kronecker deltas imply that
only nondiagonal terms contribute to the cumulant. Ex-
amples of such terms are v1(i)v1(j )v2(k), v1(i)v2(j )v3(k),
v2(i)v2(j )v4(k), etc. Coefficients v1 measured at RHIC are
rather small [24–26], on the order of 0.01, while v2 coefficients
can be as large as 0.2. v4 coefficients have been measured [25]
to be on the order of v2

2. Little is known about v3 coefficients,
but on general grounds, one can expect them to be of the same
order or smaller than v1 coefficients. One therefore expects
the leading terms in Eq. (3.22) should be the v2(i)v2(j )v4(k)
terms. These are shown in Fig. 2 with equal coefficients for
illustrative purposes. In general, the values of the v2 and v4

coefficients depend on the kinematic ranges i, j , and k, used
to calculated them. There is, therefore, no reason to expect that
the three terms inside the sum should contribute equally.

Given the expression (3.24), one expects that the irreducible
flow harmonics can produce a rather intricate and nontrivial
shape that may partly mock-up or mask the signal expected
from proposed signals for Mach cone, and Cerenkov gluon
radiation. It is thus essential to understand and control the
magnitude of such terms before attempting to identify these
proposed exotic new phenomena.

Whether the intricate nondiagonal anisotropies must be
explicitly accounted for depends on their strength relative to
the jet three-cumulant signals. We evaluated the magnitude
of the flow harmonic coefficients on the basis of a param-
eterization of data published by STAR [27]. As a practical
example, we present an estimate of the v2v2v4 contributions
for trigger particle (1) with 4 < pt < 10 GeV/c, |η| < 1, and
associated particles (2,3) with 0.15 < pt < 4 GeV/c, |η| < 1
in Table I. The amplitude of the v2v2v4 term is largest in
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TABLE I. Estimate of the amplitude of v2v2v4 nondiagonal terms
based on published v2 data.

Centrality v2(1) v2(2), v2(3) v2(1)v2(2)v2(3)2 v2(1)2v2(2)v2(3)

1 0.193 0.074 7.7 × 10−5 2.0 × 10−4

2 0.237 0.092 1.8 × 10−4 4.7 × 10−4

3 0.197 0.095 1.7 × 10−4 3.5 × 10−4

4 0.193 0.097 1.8 × 10−4 3.5 × 10−4

5 0.180 0.094 1.5 × 10−4 2.9 × 10−4

6 0.175 0.083 9.9 × 10−5 2.1 × 10−4

10–20% 0.133 0.064 3.5 × 10−5 7.3 × 10−5

5–10% 0.094 0.044 7.8 × 10−6 1.7 × 10−5

0–5% 0.048 0.025 7.7 × 10−7 1.5 × 10−6

peripheral collisions and becomes progressively smaller for
central collisions. While amplitudes shown in Table I are
indeed rather small, one must consider that the strength of
correlations seen in three-particle are also modest, i.e., on the
order 10−3 to 10−4. The v2v2v4 terms are thus expected to form
a sizeable background in three-particle cumulant analyses.

D. Gaussian jets + harmonic flow (model GJ+F)

We explore the case of a superposition of jets and harmonic
flow treated as statistically independent processes. Many

recent analyses of RHIC data essentially reduce to such a
case. As stated in Sec. II, the cumulant of a sum of independent
processes is equal to the sum of the cumulants of each of the
processes. It is thus trivial to write the single particle density,
two- and three-cumulants for this particular model, based on
results obtained in previous sections.

The single particle density is simply

ρ(ϕi) = (2π)−1(〈J 〉〈Ai〉 + 〈Fi〉), (3.26)

where 〈J 〉, 〈Ai〉, and 〈Fi〉, respectively, denote the average
number of jets, the average number of associated jet fragments
per jet, and the average number of particles in the “flow
background” for the given kinematical range “i”. The two-
cumulant is readily found to be

ρ̂2,J+F (ϕi, ϕj ) = (2π )−1〈J 〉〈Ai〉〈Aj 〉P2,G(ϕi, ϕj ; σi, σj )

+ (2π )−2〈Ai〉〈Aj 〉(〈J (J − 1)〉 − 〈J 〉2)

+ (2π )−2[〈FiFj 〉 − 〈Fi〉〈Fj 〉 + 2〈FiFj 〉
×

∑
m

vm(i)vm(j ) cos(m(ϕi − ϕj ))], (3.27)

where P2,G given by Eq. (3.12) corresponds to the assumed jet

Gaussian profile with width
√

σ 2
i + σ 2

j . The last term contains

flow harmonics dominated by the second harmonic, although
it is also recognized that fourth harmonics may also play a
finite role. The three-cumulant is given by

ρ̂3,J+F (ϕi, ϕj , ϕk) = (2π )−1〈J 〉〈AiAjAk〉P3,G(ϕi, ϕj , ϕk; σi, σj , σk)

+ (2π )−2(〈J (J − 1)〉 − 〈J 〉2)〈AiAj 〉〈Ak〉P2,G(ϕi, ϕj ; σi, σj )

+ (2π )−2(〈J (J − 1)〉 − 〈J 〉2)〈AiAk〉〈Aj 〉P2,G(ϕi, ϕj ; σi, σk)

+ (2π )−2(〈J (J − 1)〉 − 〈J 〉2)〈AjAk〉〈Ai〉P2,G(ϕj , ϕk; σj , σk)

+ (2π )−3(〈J (J − 1)(J − 2)〉 − 3〈J 〉〈J (J − 1)〉 + 2〈J 〉2)〈Ak〉〈Aj 〉〈Ai〉

× (2π )−3




2〈FiFjFk〉
∑

p,m,n vp(i)vm(j )vn(k)




δp,m+n cos(pϕi − mϕj − nϕk)

+δm,p+n cos(−pϕi + mϕj − nϕk)

+δn,m+k cos(−pϕi − mϕj + nϕk)




+2(〈FiFjFk〉 − 〈FiFj 〉〈Fk〉)
∑

m vm(i)vm(j ) cos(m(ϕi − ϕj ))

+2(〈FiFjFk〉 − 〈FiFk〉〈Fj 〉)
∑

m vm(i)vm(k) cos(m(ϕi − ϕk))

+2(〈FiFjFk〉 − 〈FjFk〉〈Fi〉)
∑

m vm(j )vm(k) cos(m(ϕj − ϕk))

−〈FiFj 〉〈Fk〉 − 〈FiFk〉〈Fi〉 − 〈FjFk〉〈Fi〉 + 2〈Fi〉〈Fj 〉〈Fk〉




. (3.28)

While the above cumulant reduces to a rather simple form
for Poissonian processes, it is generally not warranted to
assume the production processes are Poissonian. Indeed, mea-
surements and comparisons of 〈NiNjNk〉, 〈NiNj 〉〈Nk〉, and
〈Ni〉〈Nj 〉〈Nk〉 reveal these quantities are generally different.

That implies the above three-cumulant shall, in fact, have
finite flow harmonics of all orders. It is, however, possible
in principle, to partly mitigate this problem if one can
use 〈NiNjNk〉 and 〈NiNj 〉 as estimators of 〈FiFjFk〉 and
〈FiFj 〉, respectively, and use the modified three-cumulant
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definition (3.24). One then gets an expression where only
nondiagonal, high order, harmonic components contribute.
Defining normalization coefficients α and βij as follows:

α = 〈Ni〉〈Nj 〉〈Nk〉
〈NiNjNk〉 ,

(3.29)

βij = 〈Ni〉〈Nj 〉
〈NiNj 〉 .

One obtains the following expression for the three-cumulant:

ρ̂3,J+F (ϕi, ϕj , ϕk) = (2π )−1α〈J 〉〈AiAjAk〉
×P3,G(ϕi, ϕj , ϕk; σi, σj , σk)

+ (2π )−2(α〈J (J − 1)〉 − βij 〈J 〉2)

×〈AiAj 〉〈Ak〉P2,G(ϕi, ϕj ; σi, σj )

+ (ijk) permutations of the above

+ (2π )−3〈Ak〉〈Aj 〉〈Ai〉

×




α〈J (J − 1)(J − 2)〉
−(β12 + β13 + β23)〈J 〉〈J (J − 1)〉
+ (β12 + β13 + β23 − 1)〈J 〉2




+ (2π )−32〈Fi〉〈Fj 〉〈Fk〉

×
∑
p,m,n

vp(i)vm(j )vn(k)

×




δp,m+n cos(pϕi − mϕj − nϕk)

+ δm,p+n cos(−pϕi + mϕj − nϕk)

+ δn,m+k cos(−pϕi − mϕj + nϕk)


 . (3.30)

We note this simpler expression is only valid if the estimators
〈NiNjNk〉 and 〈NiNj 〉 exactly equal 〈FiFjFk〉 and 〈FiFj 〉,
respectively. If a perfect match cannot be accomplished, there
shall be some finite residual v2(i)v2(j ) harmonic components.

E. Gaussian dijets, and scattered jets (model SJ)

We now seek a simple representation of dijets to investigate
whether jet scattering effects can be properly disentangled in
a measurement based on two- and three-particle azimuthal
correlations. Given that cumulants corresponding to a sum
of processes can be written as the sum of the cumulant of
each process, we will restrict the discussion in this section
to scattering effects. Obviously, the addition of flow terms or
other types of uncorrelated process can be added as the model
presented in the previous section. This assumption, however,
becomes invalid if the jet emission is modulated in azimuth,
relative to the reaction plane, as discussed in Sec. III G.

We model the two jets of a dijet with Gaussian distributions
centered at angles φ and φ + �φ, respectively. Effectively,
one integrates jets scattered at forward/backward rapidities and
neglects corrections of order (cos�η)−1 in the expression of

the cross-section. The joint probability distribution is taken as

PDJ (ϕi, Ai, φ,�φ, J, ) =
1∑

r=0

PG(ϕi ; σi,r , φ + r�φ)

×PJ (Ai)PJ (J )PJ (φ)(δ0,r + δ1,rPS(�φ; �φo, σ�φ)).

(3.31)

The label r = 0 is used to denote the trigger or leading jet while
r = 1 is used for the away-side jet. PG is a Gaussian probability
distribution expressing the probability of finding a fragment
at angle ϕi relative to the jet direction φ. PJ (Ai,r ) expresses
the probability of finding Ai,r fragments associated with the
lead (r = 0) and away-side (r = 1) jets, which are assigned
widths σi,r . PJ (J ) is the probability of the number of dijet J .
PJ (φ) = (2π )−1 is the probability of finding the lead jet axis at
an angle φ. The direction of the away-side jet is determined by
the angle �φ. Very high pt jets should be produced essentially
back-to-back in azimuth, i.e., with �φ ∼ 180◦. At lower pt ,
the relative angle may deviate significantly from 180o on an
event-by-event basis while the jet widths themselves do not
actually change. This can be modeled by assigning a scattering
probability PS(�φ) to each value �φ. For simplicity, we use
a Gaussian distribution with mean, 〈�φ〉 = �φo = 180◦, and
width, σ�φ , to describe the scattering in the above expression.
The same function can also be used to represent a Mach cone
type effect if one neglects forward/backward emission of glu-
ons by setting the scattering angle to ∼120◦. Indeed, according
to Shuryak et al. [11], the emission angle of the Mach cone is
determined by the speed of the away-side parton relative to the
speed of sound, which they estimate is on the order of 0.33 c.

The single particle density corresponding to this model is
obtained by integrating the joint probability multiplied by J ,
and Ai,r over all nonobserved variables. One gets

ρ1(ϕi) = 〈J 〉
1∑

r=0

〈Ai,r〉. (3.32)

Derivation of the two- and three-particle densities and cu-
mulants proceeds similarly to that of model GJ discussed in
Secs. III B and III D. One must account, however, for the fact
we have included a Gaussian dispersion with width σφ for the
relative angle �φ. One gets the two-cumulant

ρ̂2,DJ (ϕi, ϕj ; σi,r , σj,s ,�φo, σ�φ)

= (2π )−1〈J 〉
1∑

r,s=0

〈Ai,rAj,s〉P2GJ ′ (ϕi, ϕj ; σi,r , σj,s ,

× (r − s)�φo, |r − s|σ�φ) + (2π )−2(〈J (J − 1)〉

− 〈J 〉2)
1∑

r,s=0

〈Ai,r〉〈Aj,s〉. (3.33)

P2,GJ ′ is a generalization of Eq. (3.24) which includes σφ

scattering effects. It is found to be

P2,GJ ′ (ϕi, ϕj ; σi, σj ,�φ, σφ)

= 1√
2πσ ′ exp

(
− (ϕi − ϕj − �φ)2

2σ ′2

)
, (3.34)
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where σ ′2 = σ 2
i + σ 2

j + σ 2
φ . Note that for r 
= s, the associated

multiplicities are likely to be uncorrelated and one should then
have 〈Ai,rAj,s〉 = 〈Ai,r〉〈Aj,s〉 for r 
= s.

The calculation of the three-cumulant thus yields

ρ̂3,J (ϕi, ϕj , ϕk; σi,r , σj,s , σk,t , �φo, σφ)

= (2π )−1〈J 〉
1∑

r,s,t=0

〈Ai,rAj,sAk,t 〉P3,GJ ′ (ϕi, ϕj , ϕk; r, s, t, σi,r , σj,s , σk,t , �φo, σφ)

+ (2π )−2(〈J (J − 1)〉 − 〈J 〉2)




∑1
r,s,t=0 〈Ai,rAj,s〉〈Ak,t 〉P2,GJ ′ (ϕi, ϕj ; σi,r , σj,s , (r − s)�φo, |r − s|σφ)

+∑1
r,s,t=0 〈Ai,rAk,t 〉〈Aj,s〉P2,GJ ′ (ϕi, ϕk; σi,r , σk,t , (r − t)�φo, |r − t |σφ)

+∑1
r,s,t=0 〈Aj,sAk,t 〉〈Ai,r〉P2,GJ ′ (ϕj , ϕk; σj,s, σk,t , (s − t)�φo, |s − t |σφ)




+ (2π )−3(〈J (J − 1)(J − 2)〉 − 3〈J (J − 1)〉〈J 〉 + 2〈J 〉3)
1∑

r,s,t=0

〈Ai,r〉〈Aj,s〉〈Ak,t 〉. (3.35)

The function P3GJ ′ is a generalized version of Eq. (3.13),
which includes jet-scattering effects

P3G′(ϕi, ϕj , ϕk; r, s, t,�φ0, σφ) = 1

2πσ3G′
exp


− 1

2σ 4
3G′

×




σ 2
k ((r − s)�φ0 − �ϕij )2

+ σ 2
j ((r − t)�φ0 − �ϕik)2

+ σ 2
i ((s − t)�φ0 − �ϕjk)2

+ σ 2
φ ((t − s)ϕi + (r − t)ϕj (s − r)ϕk)2





 . (3.36)

Note that, as in Sec. III B, the three-cumulant contains
two-body terms (e.g., proportional to P2,GJ ′ ), which vanish
for Poissonian jet production. The “intrinsic” width of the

jets is effectively increased by the width of the scattering
function. We illustrate this effect in Fig. 3 where we compare
calculations of �ϕ12 vs. �ϕ13 three-particle correlations
calculated with the above equation using equal distribution
widths of 10◦ for the three particles. The correlation shown
on the left includes no away-side parton deflection, whereas
the correlation shown on the right was calculated with 30◦ for
the width of the deflection function, and 180◦ for the mean
deflection angle �ϕ0. The deflection broadens and reduces the
relative amplitude of the away-side peaks. Note that parton
energy loss should contribute an additional reduction of the
away-side amplitude. The examples shown in Fig. 3 were
calculated with equal Gaussian widths for all three particles.
In practice, one finds that high pt particles are characterized by
smaller widths than low pt particles. Also note that formula
(3.36) neglects parton scattering in the forward/backward

FIG. 3. (Color online) Three-particle cumulants expected for Gaussian jets modeled with Eq. (3.35). (Left) Particles produced with Gaussian
distributions of 10◦ width but no scattering or deflection of the away-side parton (jet). (Right) Random azimuthal deflection of the away-side
parton estimated with a Gaussian distribution of 30◦ width.
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direction. Including this scattering effectively results in a
1/ cos(�ϕ), which should have a modest impact on the
shape of the distribution except for very broad away-side
jet peaks. Finally, note that jet interaction with the medium
shall contribute additional broadening of the away-side jet
(and perhaps also the near side jet). Away-side jet broadening
should be visible along both the main and secondary diagonal
of the three-particle cumulant shown in Fig. 3.

F. Two-body decay (TBD)

We next consider the decay of resonances such as ρ◦ and �◦
with a simple thermal model to illustrate that such decay may
lead to nontrivial structures in two-particle correlations, while
producing null signal in three-particle cumulants. We show
that the structures produced in two-particle correlations are
typically non-Gaussian and have shapes which depend on the
specific transverse momentum and rapidity ranges considered,
as well as complicated dependence on the parameters of
the model, i.e., temperature and radial boost velocity. This
example also provides a crude model of correlations induced
by dijet flow: production of dijet fragments which experience
large radial boost because of interaction with the medium.

Our calculation is based on a particle production model
inspired from the blast-wave model. The resonances are pro-
duced to have a transverse momentum spectrum determined
by

E
d3N

dp3
= ke−β(E−�v⊥· �p), (3.37)

where �v⊥ is a transverse velocity boost. For simplicity,
both �v⊥and the inverse temperature β are a constant in the
simulations shown.

Like the case of pencil-like jets (see Sec. III A), one writes
the two-particle cumulant associated with two-body decays
(TBD) as

ρ̂2,TBD(ϕi, ϕj ) = (2π )−1〈N〉〈AiAj 〉P2,TBD(ϕi, ϕj )

+ (2π )−2(〈N (N − 1)〉 − 〈N〉2)〈Ai〉〈Aj 〉.
(3.38)

In this expression, the function P2,TBD(ϕi, ϕj ) represents
the probability of measuring the decays’ products at the
given angles. 〈N〉 represents the average number of decaying
resonances while 〈Ai〉 and 〈Aj 〉 are the average single particle
yields resulting from the decays in the kinematic ranges “i”
and “j”. Because the emission of decay products is correlated
and constrained by momentum and energy conservation, the
product 〈AiAj 〉 (which represents the average number of
decays pairs detected simultaneously) shall, in general, be
much smaller than the product 〈Ai〉〈Aj 〉. Although 〈AiAj 〉,
and P2,TBD(ϕi, ϕj ) can be evaluated analytically for some
kinematic ranges, it is more convenient, in this work, to
perform a computation using simple Monte Carlo generators.
We simulated the production of π+, π−, and ρ0 at fixed
temperature and radial velocity using Eq. (3.37). The relative
abundance of the three species was set event-by-event using a
multinomial generator with an average number of π+, π−p1

and p2 and an average number of ρ0equal to 1-p1-p2. The
number of particles (π+, π−, or ρ0) was randomly generated
with a flat distribution between 40 and 50 particles.

We begin with a discussion of rho-decays in the context of
two-particle correlations and show how the kinematic ranges
selected for analysis may influence the shape of the correlation
function. We conclude this section with a discussion of three-
particle correlation and show that, while the three-particle
density exhibits finite structures, the three-particle cumulant is
featureless.

Figure 4 displays two-particle correlation functions ob-
tained with the ρ0 decay toy model described above. The
temperature of the pions is set to 0.4 GeV. No radial flow
is used. For illustrative purposes, the ρ0 are produced with
selected rho-meson transverse momentum ranges and analysis
cuts as follows: (a) 0.01 < pt (ρo) < 0.1 GeV/c, pt (1, 2) <

0.2 GeV/c; (b) 0.1 < pt (ρo) < 0.5 GeV/c, pt (1) > 0.3 GeV/c,
pt (2) < 0.2 GeV/c; (c) 0.1 < pt (ρo) < 0.5 GeV/c, pt (1, 2) <

0.2 GeV/c; (d) 0.6 < pt (ρo) < 1.5 GeV/c, pt (1) > 0.2 GeV/c,
pt (2) < 0.2 GeV/c; (e) 1.5 < pt (ρo) < 5.5 GeV/c, pt (1) >

0.2 GeV/c, pt (2) < 0.2 GeV/c; (e) 5.5 < pt (ρo) < 10; GeV/c,
pt (1, 2) < 2.0 GeV/c. In Fig. 4(a), the ρ0 are essentially
produced at rest in the laboratory frame, one then observes that
the correlation is narrowly peaked at 180◦. In Fig. 4(b)–4(f),
one progressively increases the momentum of the decaying
ρ0thereby resulting in a kinematical focusing of the pions
produced by the decays. One thus finds that the correlation
function progressively broadens, and develops a dip at 180◦.
When the ρ0are decayed at “high” momentum, the angle
of separation between the pions becomes small and leads
to a narrow correlation function peaked at 0◦ as shown in
Figs. 4(e)–4(f).

It is obvious from Fig. 4 that even a simple phenomenon
such a rho-meson decay can produce a wide variety of
correlation function shapes which are determined in part by
the kinematics of the decay, and in part by the dynamics of
the decaying particle (in our example the momentum of the
ρ0). While this example may seem trivial, we stress that the
production of particles in dijet events may behave similarly
as in Fig. 4. Indeed, consider that “flowing dijets” could lead
to similar kinematical focusing and consequently, correlation
functions that depend on the dijet velocity in the laboratory
frame.

We conclude this section with an example of three-particle
cumulant applied to two-body decays. We use this example to
illustrate the power of the cumulant technique, and to show
its application in a practical case. Obviously, for two-body
decays, no signal should be found in the three-cumulant. We
explicitly demonstrate this point with a simple simulation.
Our example is based on an arbitrary (and unphysical) mix of
ρ0, π+, and π− in relative abundance of 1:0.5:0.5. Primary
pions are produced with a thermal (T = 0.4 GeV) spectrum.
ρ(770) are produced at 90◦ from the beam direction, with a
transverse momentum in the range 0.1 < pt < 0.5 GeV/c, and
decayed into pairs of π+ and π−. Events are produced with
random multiplicity ranging from 30 to 50 particles per event.
Figure 5(a) displays the normalized three-particle density
obtained with a sample of 4 × 106 events while requiring
particle 1 to have a pt greater than 0.3 GeV/c, and particles 2
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FIG. 4. (Color online) Two-particle correlations obtained with a toy model simulating the decay of ρ0 mesons in selected momentum
ranges (a) 0.01 < pt (ρ0) < 0.1 GeV/c, pt (1, 2) < 0.2 GeV/c; (b) 0.1 < pt (ρ0) < 0.5 GeV/c, pt (1) > 0.3 GeV/c, pt (2) < 0.2 GeV/c;
(c) 0.1 < pt (ρ0) < 0.5 GeV/c, pt (1, 2) < 0.2 GeV/c; (d) 0.6 < pt (ρ0) < 1.5 GeV/c, pt (1) > 0.2 GeV/c, pt (2) < 0.2 GeV/c; (e) 1.5 <

pt (ρ0) < 5.5 GeV/c, pt (1) > 0.2 GeV/c, pt (2) < 0.2 GeV/c; (e) 5.5 < pt (ρ0) < 10, GeV/c, pt (1, 2) < 2.0 GeV/c.

and 3 to have a pt smaller than 0.3 GeV/c. Although the
physical phenomenon involved is relatively simple (two pions
emitted back-to-back in the lab frame) the three-particle
density is rather complicated. The apparent complexity stems
from the fact the three-particle density is a superposition
of many terms. With the chosen ρo momentum range, and
the pt cuts used in the production of the plot, one gets
correlated particles from combining particles 1 and 2, 1 and 3,
or 2 and 3. This is explicitly shown in Figs. 5(b)–5(d)
which display the normalized combinatorial terms
ρ2ρ1(12, 3)/ρ1ρ1ρ1, ρ2ρ1(13, 2)/ρ1ρ1ρ1, ρ2ρ1(23, 1)/ρ1ρ1ρ1.
The terms ρ2ρ1(12, 3)/ρ1ρ1ρ1 and ρ2ρ1(13, 2)/ρ1ρ1ρ1 exhibit
a strong back-to-back correlation, i.e., a peak at 180◦, between
particles 1 and 2, and 1 and 3 respectively. ρ2ρ1(23, 1)/ρ1ρ1ρ1

shows a weaker, yet finite back-to-back correlation. Note these
three plots account for all correlations shown in Fig. 5(a).
Indeed, one finds the three-particle cumulant, shown in
Fig. 5(e) is flat and featureless, thereby indicating there
are no three-particle correlation signals in the analyzed
data. Interestingly, while the three-particle density has an
apparently complicated structure, the actual correlation is, in
fact, a null signal (as it should be).

G. Jet differential attenuation (JDA)

We explore the possibility jet production in A+A non-
central collisions may be modulated in azimuth relative to the
reaction plane. This modulation may arise, for instance, from
finite jet parton attenuation length in the produced medium,
as schematically illustrated in Fig. 6. The penetration of the
parton through the medium is subject to differential attenuation
(which depends on the medium density) and the parton
interaction cross section. This implies the jet produced by
the fragmentation of these partons may exhibit finite azimuthal
dependency relative to the reaction plane. This simple scenario
neglects the possible disturbance imparted to the medium by
the propagation of the jet (or parton).

We model the possible jet dependency on azimuthal angle
relative to the reaction plane with a Fourier series. Specifically,
we write the probability of the jet being emitted at angle φ

while the reaction plane is at ψ as

P (φ,ψ) = 1 + 2
∑
m

am cos(m(φ − ψ)), (3.39)
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FIG. 5. (Color online) (a) Normalized three-particle density, ρ3(ϕ12, ϕ13))/ρ1ρ1ρ1 obtained for events containing a mixture of ρ0, π+, and
π−; (b)–(d) combinatorial terms ρ2ρ1(12, 3)/ρ1ρ1ρ1, ρ2ρ1(13, 2)/ρ1ρ1ρ1, ρ2ρ1(23, 1)/ρ1ρ1ρ1,; (e) cumulant C3(ϕ12, ϕ13) as a function of the
relative angles �ϕ12 and �ϕ13 in degrees.

where the coefficients represent the effect of the differential
azimuthal attenuation.

The dependence on emission angle relative to reaction plane
is known as event anisotropy or flow. Flow arises in this context
from differential attenuation of the initial parton, but it may
also arise from pressure gradients. Whether these two sources
can be disentangled is an open issue and perhaps a matter of

definition. In order to keep this model relatively simple, we
assume the jet hadronization occurs outside the medium or is
not affected by its presence. We, therefore, can parameterize
the jet multiplicity and azimuthal width as in Sec. III B using
associated yields, and Gaussian widths that do not depend
on the azimuthal direction. Thus, only the number of jets is
considered to vary with azimuthal angle relative to the reaction
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FIG. 6. Schematic of jet differential azimuthal attenuation
through the dense medium produced in A+A collisions.

plane. The form of the single particle density is unchanged
relative to that found in Sec. III B:

ρ1,MJ(ϕi) = (2π )−1〈J 〉〈Ai〉. (3.40)

The two-particle density is modified by the differential
attenuation. One finds

ρ2,MJ(ϕi, ϕj ) = (2π )−1〈J 〉〈AiAj 〉P2,G(ϕi, ϕj ; σi, σi)

+ (2π )−1〈J (J − 1)〉〈Ai〉〈Aj 〉
×P2,MIX(ϕi, ϕj ; σi, σi), (3.41)

where P2G is given by Eq. (3.13). The term P2MIX accounts
for correlations between particles belonging to different jets
caused by differential azimuthal attenuation.

P2,MIX(ϕi, ϕj ; σi, σj , am) = 1 + 2
∑
m

am(i)am(j )

× exp

(
−m2

2

(
σ 2

i + σ 2
j

))
cos(m(ϕi − ϕj )). (3.42)

The cos(m(ϕi − ϕj )) dependency arises from two-jet con-
volution and constitutes a flow-like signal. It is important to
realize that while this flow signal results from differential
attenuation, it is in practice indistinguishable from flow
produced by other mechanisms (e.g., pressure gradient), unless
one also models its transverse momentum dependence. Note
the strength of the modulation depends on both the anisotropy
coefficients am and the widths of the jets σi . Thus, one finds
the harmonic coefficients vm of expression (3.42) are given by

vm(i) = am(i) exp

(
−m2

2
σ 2

i

)
. (3.43)

The calculation of the three-particle density yields

ρ3,MJ(ϕi, ϕj ) = (2π )−1〈J 〉〈AiAjAk〉
×P3,G(ϕi, ϕj , ϕk; σi, σj , σk) + (2π )−1〈J (J − 1)〉

×




〈AiAj 〉〈Ak〉P2,1,MIX(ϕi, ϕj ; σi, σj )

+〈AiAk〉〈Aj 〉P2,1,MIX(ϕi, ϕk; σi, σk)

+〈AjAk〉〈Aj 〉P2,1,MIX(ϕj , ϕk; σj , σk)




+ (2π )−1〈J (J − 1)〉〈Ai〉〈Aj 〉〈Ak〉
×P3,MIX(ϕi, ϕj , ϕk; σi, σj , σk), (3.44)

where P3GJ , given by Eq. (3.13), accounts for the jet
components, while the P2,1,MIX and P3,MIX functions account
for correlation caused by the differential attenuation. One finds

P2,1,MIX(ϕi, ϕj ; σi, σj , am) = P2,G(ϕi, ϕj ; σi, σj )

×
{

1 + 2
√

2π
∑
m

am(i)am(j ) exp

(
−m2σ 4

ijk

2σ 2
ij

)

× cos

(
m

(
σ 2

j ϕi + σ 2
i ϕj

σ 2
i + σ 2

j

− ϕj

))}
(3.45)

σ 2
ij = σ 2

i + σ 2
j

σ 4
ijk = σ 2

i σ 2
j + σ 2

i σ 2
k + σ 2

j σ 2
k .

The P3 MIX function reduces to

P3,MIX(ϕi, ϕj , ϕk; σi, σj , σk, am) = 1

+ 2
∑
m

vm(i)vm(j ) cos(m(ϕi − ϕj ))

+ 2
∑
m

vm(i)vm(k) cos(m(ϕi − ϕj ))

+ 2
∑
m

vm(j )vm(k) cos(m(ϕi − ϕj ))

+ 2
∑
m,n,p

vm(i)vm(j )vm(k)

×




δm,n+p cos(mϕi + nϕj + pϕk)

+ δn,m+p cos(mϕi + nϕj + pϕk)

+ δp,n+m cos(mϕi + nϕj + pϕk)


 , (3.46)

where vm coefficients are given by expression (3.43).
The last term of P3,mix is identical in form to the nondiagonal

irreducible flow terms found in expression (3.25). Thus, one
concludes the differential attenuation produces a flow-like
signal even in the three-particle density. The jet attenua-
tion, however, also produces cross-harmonic components.
Indeed, one finds the P2,1,MIX term contains a dependence

on cos(m(
σ 2

j ϕi+σ 2
i ϕj

σ 2
i +σ 2

j

− ϕk)) which for σ 2
i = σ 2

j can be writ-

ten cos(m
2 (�ϕik + �ϕjk)). However, this cosine dependence

enters as a coefficient of P2G and, as such only causes a
modification of the jet shape (here arbitrarily assumed to be
Gaussian) that could be difficult to observe in practice.

The three-particle cumulant is obtained from the above
equations:

ρ̂3,MJ(ϕi, ϕj ) = (2π )−1〈J 〉〈AiAjAk〉
×P3,G(ϕi, ϕj , ϕk; σi, σj , σk)

+ (2π )−1〈AiAj 〉〈Ak〉

×PGJ

(
〈J (J − 1)〉 − 〈J 〉2 + 2〈J (J − 1)〉

×
∑
m

vm(i)vm(j ) cos(m(ϕi − ϕj ))

)

+ (i, j, k) permutations of above

+ (2π )−1〈Ai〉〈Aj 〉〈Ak〉{〈J (J − 1)(J − 2)〉
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− 3〈J (J − 1)〉〈J 〉 + 2〈J 〉3}
+ 2(2π )−1〈Ai〉〈Aj 〉〈Ak〉{〈J (J − 1)(J − 2)〉
− 3〈J (J − 1)〉〈J 〉}

∑
m

vm(i)vm(j )

× cos(m(ϕi − ϕj ))

+ (i, j, k) permutations of above

+ 2(2π )−1〈Ai〉〈Aj 〉〈Ak〉〈J (J − 1)(J − 2)〉
×

∑
m,n,p

vm(i)vm(j )vm(k)

×

 δm,n+p cos(mϕi + nϕj + pϕk)

+ δn,m+p cos(mϕi + nϕj + pϕk)
+ δp,n+m cos(mϕi + nϕj + pϕk)


 .

(3.47)

The structure of this cumulant is rather complicated owing
to the correlations induced by the presence of multiple jets
within each event. We note that the differential attenuation
produces non-reducible terms of order v2(i)v2(j ) as well as
nondiagonal terms such as v2v2v4. While the amplitude of
these coefficients depend on the number of jets and associated
fragments, we find their multiplicity dependence is essentially
indiscernible from that obtained in Eq. (3.25) where we
assumed the jet production is completely decoupled from the
flowing bulk. Note that the above contains a modulation of
the jet shape (second line) not found in Eq. (3.22) but this
effect is likely to be difficult to observe in practice because the
Gaussian jet approximation used in this simple model is not
necessarily justified.

H. Mach cone emission

Mach cone emission of particles by partons propagating
through dense QGP matter was proposed by Antinori and
Shuryak [23] to explain the peculiar dip structure found at 180◦
in two-particle correlations recently reported by the PHENIX
Collaboration. Mach cone emission was first discussed by
Stoecker [28], and more recently by a number of other authors
[14,21]. Cerenkov gluon emission has been proposed as an
alternative explanation of the PHENIX data [26]. The concept
of Mach cone emission is based on the notion that high
momentum partons propagating through a dense QGP interact
with the medium and lose energy (and momentum) at a finite
rate. The release of energy engenders a wake that propagates
at a characteristic angle (the Mach angle) determined by the
sound velocity in the medium. Antinori and Shuryak [23]
estimate the speed of sound in the QGP to be on the order
of vs ∼ c̄RHIC

s ≈ 0.33. The Mach angle is thus expected to be
on the order of 70◦ relative to the away-side parton direction.

While the concept of Mach cone is simple, its realization
in two- or three-particle correlations is perhaps not as intuitive
as one might think. We illustrate this point with three simple
geometric models of increasing realism. In all three models, the
near-side jet is reduced, for simplicity, to one particle (hereafter
called trigger) emitted with a fixed transverse momentum of
3 GeV/c, with a Gaussian profile of 10◦ width; While the
away-side particles, produced with fixed pt of 1 GeV/c, are
assumed to consist of Mach cone particles only. We first
present, in Figs. 7(a) and 7(d), two-particle cumulants obtained
with trigger and Mach cone particles emitted at 90◦ from
the beam direction. Three-particle cumulants are shown in
Fig. 8. For the construction of these correlations, we use a

FIG. 7. (Color online) Two-particle cumulants obtained with the Mach cone models described in the text. Plots (a)–(c) show correlations
between the trigger particle and an associate (low pt) particle emitted in the Mach cone. Plots (d)–(f ) show correlations between associate
(Mach cone) particles emitted with a low pt . Plots (a) and (d) correspond to Mach cone particle emission strictly perpendicular to the beam
direction. Plots (b) and (e) are for full Mach cone emission (all azimuths relative to the away-side direction) for an away-side parton emitted at
90◦ from the beam direction. Plots (c) and (f ) are for uniform away-side emission.
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FIG. 8. (Color online) (a) Normalized three-particle density obtained with the Mach cone model described in the text; (b) normalized
three-particle cumulant for Mach cone emission in the transverse plane only; (c) normalized three-particle cumulant for Mach cone emission
in all azimuths relative to the away-side direction.

requirement of pt > 2 for particle 1, and pt < 2 for particles
2 and 3 (i.e., particles 2 and 3 are exclusively from the Mach
cone). Given that Mach cone particles are produced at ±60◦
from the away-side direction and strictly normal to the beam
direction, two and four narrow peaks are, respectively, seen
in the two- and three-particle correlations. One finds that, as
suggested by many authors, a strong dip is present at 180◦ in the
two-particle correlations, while in the three-particle correlation
a clear spacing is found between the peaks. Note that the finite
width of the peaks is due, in this simple model, to the finite
width of the trigger jet. In practice, one might expect additional
broadening of the cone because the speed of sound changes
through the life of the QGP medium, and given the finite size of
the medium. It is also highly unlikely cone emission should be

restricted to directions perpendicular to the beam-axis. We thus
relax this requirement and present correlations obtained when
Mach cone particles are emitted at 60◦ from the away-side
direction including all azimuths in Figs. 7(b) and 7(e) and in
Fig. 8(b). Here one finds the depth of the dip is dramatically
reduced in the two-particle correlation, while the space
between the four peaks of the three-particle correlation is
now partially filled. This second model ,however, is rather
unrealistic. Jet emission is not restricted to normal angles
relative to the beam direction and proceeds in a large range
of rapidities. We include emission over an extended range of
rapidities, with uniform probability trigger distribution in the
range of | cos θ | < 0.7, in our next simulation results, shown in
Figs. 7(c)–7(f) and Fig. 8(b). One observes the projection of
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the cone on the transverse plane leads to a slight broadening
of the peaks structures found in the previous model. One
concludes the details of the correlation shapes clearly depend
on assumptions made about the kinematics of the away-side
parton. Also note that we have assumed in these three simple
models that the Mach cone emission occurs at a very specific
angle (i.e., 60◦). In practice, one should expect both the sound
velocity is a function of the local density of the medium,
as well as of the parton velocity. The cone particles may
also themselves be deflected by the bulk, thereby leading to
additional smearing of the peak structures.

IV. DISCUSSION AND SUMMARY

We presented a new technique based on cumulants for the
analysis of three-particle distributions designed to distinguish
between different particle production mechanisms. We argued
that while two-particle correlations have enabled the identi-
fication of interaction of jets with the medium in Au+Au
collisions at RHIC, ambiguities are left in the interpretation
of some of the correlation functions reported by PHENIX and
STAR. Indeed, it is possible to explain the broadening and
dip observed in away-side jet structures on the basis of away-
side deflection, dijet flow, as well as Mach cone emission.
Using specific toy models, we showed these processes lead
to distinguishable features in the analysis of three-particle
azimuthal correlations based on the cumulant technique. Our
discussion is based on three-particle correlations plotted as a
function of two azimuthal angle differences �ϕ12 = ϕ1 − ϕ2

and �ϕ13 = gϕ1 − ϕ3 where ϕ1, ϕ2, and ϕ3 are the azimuthal
angle of emission of particles considered in the analysis.
We showed that if one chooses particle 1 to be a high
pt particle, and particles 2 and 3 lower pt particles, one
effectively becomes sensitive to a leading jet particle and
particles associated with the same or away-side jet. We
showed that scattering of the away-side parton results in a
broadening of the away-side jet correlation peak along the
main diagonal of the �ϕ12 and �ϕ13 correlation plane while

away-side jet broadening due to interactions with the medium
produces a broadening of the away-side jet correlation peak
along the second diagonal of the �ϕ12 and �ϕ13 correlation
plane (proportional to �ϕ23) as well as the main diagonal.
By contrast, Mach cone or Cerenkov emission should lead
to four peak structures in the �ϕ12 and �ϕ13 correlation
plane: two along the main diagonal, and two along the second
diagonal (provided the transverse momentum ranges used to
select particles 1, 2 and 3 are suitably selected to identify
hard particles from a jet, and “soft” particles from Mach
cone emission). We remark, however, that if the pt range of
particle 1 is lowered to include Mach cone emission, additional
structures shall appear in the correlation function.

We discussed in detail how the presence of anisotropic
flow influences the three-particle density. We derived ex-
pressions for harmonic flow terms in the two- and three-
particle cumulants and showed second order terms in v2v2 are
naturally removed from the three-particle cumulants, while
nondiagonal, higher order “irreducible” terms persist. We
argued that nondiagonal terms should be dominated by v2v2v4

terms. Such nondiagonal terms can, however, be modeled and
explicitly subtracted based on measured values of v2 and v4.
The three-particle cumulant technique presented in this paper
enables straightforward and unambiguous elimination of flow
effects and thereby a robust measurement of jet-like features.
Thus, in spite of the fact that low pt jets cannot be identified on
an event-by-event basis in heavy ion collisions, it is possible
to gain detailed insight of jet interactions with the medium
produced in these collisions.
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