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Collisional energy loss in a finite size QCD matter
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Computation of collisional energy loss in a finite size QCD medium has become crucial to obtain reliable
predictions for jet quenching in ultrarelativistic heavy ion collisions. We here compute this energy loss up to the
zeroth order in opacity. Our approach consistently treats both soft and hard contributions to the collisional energy
loss. Consequently, it removes the unphysical energy gain in a region of lower momenta obtained by previous
computations. Most importantly, we show that for characteristic QCD medium scales, finite size effects on the
collisional energy loss are not significant.
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I. INTRODUCTION

The suppression pattern of high transverse momentum
hadrons is a powerful tool to map out the density of a
QCD plasma created in ultrarelativistic heavy ion collisions
(URHIC) [1–3]. This suppression (called jet quenching) is
considered to be mainly a consequence of medium induced
radiative energy loss of high energy partons [4–7]. However,
recent nonphotonic single electron data [8,9] (which present
an indirect probe of heavy quark energy loss) showed large
disagreement with the radiative energy loss predictions, as long
as realistic values of parameters are assumed [10]. This raised
the question of what is the cause for the observed discrepancy.

Recent studies [11,12] suggested that one of the basic
assumptions that pQCD collisional energy loss is negligible
compared to radiative [13] may be incorrect. In [11] it was
shown that, for a range of parameters relevant for RHIC,
radiative and collisional energy losses for heavy quarks were
in fact comparable to each other, and therefore collisional
energy loss can not be neglected in the computation of jet
quenching. This result came as a surprise because from the
earlier estimates [13–18], the typical collisional energy loss
was erroneously considered to be small compared to the
radiative energy loss. In [19] it was consequently suggested
that the inclusion of collisional energy loss may help in solving
the “single electron puzzle.” However, in that study (as well
as [11–18]) finite size effects were not taken into account.

A recent paper by Peigne et al. [20] is the first study that
made an attempt to include finite size effects in the collisional
energy loss. This work suggested that collisional energy loss
is large only in the ideal infinite medium case, while finite
size effects lead to a significant reduction of the collisional
energy loss. However, this paper did not completely separate
collisional and radiative energy loss effects. Consequently, it
remained unclear how important are the finite size effects on
the collisional energy loss.

Therefore, it became necessary to consistently compute
(only) the collisional energy loss in finite size QCD medium.
Additionally, this paper aims to address whether—and to
what extent—there is an over-counting between collisional
and radiative energy loss computations.

The outline of the paper is as follows. In Sec. II, we
will compute the collisional energy loss in a finite size QCD

medium. In Sec. III, we will consider the special case when
a particle is produced at x0 = −∞ (infinite medium case).
We will show that in special limits, our calculations recover
previous results [14,15]. However, contrary to Refs. [14,15],
our computation does not encounter unphysical energy gain
in the low momentum region [14,15]. In Sec. IV we will give
a numerical study of the collisional energy loss in both finite
and infinite QCD medium. Contrary to the results obtained in
Peigne et al. [20] we will show that finite size effects do not
have a significant effect on the collisional energy loss. The
conclusions and outlook are given in Sec. V.

II. COLLISIONAL ENERGY LOSS IN FINITE SIZE QCD
MEDIUM

In this section we will compute the collisional energy loss
(up to the zeroth order in opacity) when the jet is produced
in a finite size dielectric medium. The contribution to this
energy loss comes from one Hard-Thermal Loop (HTL) gluon
propagator (see Appendix A), which is the reason why we
call it the zeroth order in opacity collisional energy loss (note
the analogy with the zeroth order in opacity radiative energy
loss [21–23], which is further discussed in Appendix A).

In this computation we use the most intuitive approach,
i.e., we compute the diagram |Mel| shown in Fig. 1. Note that
the “blob” represents the effective gluon propagator. A proof
of the validity of this approach is given in Appendix A. This
approach has already been used without proof in Refs. [24,25],
under the justification that it reproduces the same results as the
imaginary time formalism.

Similar to Ref. [23] we introduce the finite size medium by
starting from the approach described in Ref. [26]. We consider
a static medium of size L, and assume that collisional energy
loss can occur only inside the medium. The Feynman diagram
|Mel| (see Fig. 1) then represents the source J , which at time x0

produces an off-shell jet with momentum p, and subsequently
(at x1 > x0) exchanges a virtual gluon with parton in the
medium with momentum k. The jet and the medium parton
emerge with momentum p′ and k′ respectively. Since our
focus is on heavy quark jets with mass M , we here neglect
the thermal shifts of the heavy quark mass.
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FIG. 1. Feynman diagram for the amplitude that contributes to
the collisional energy loss in QCD medium. The large dashed circle
(“blob”) represents the effective gluon propagator [21].

We assume, as in Ref. [27], that source J changes slowly
with p′, i.e. that J̃ (p′ + q) ≈ J̃ (p)1. Since we consider both
soft and hard contributions, we take into account spin effects.
The computation that we present in this paper is gauge invariant
[24], but for simplicity we further use Coulomb gauge.

The effective gluon propagator shown in Fig. 1 has both
transverse and longitudinal contributions [28–32]. In Coulomb
gauge the gluon propagator has the following form:

Dµν(ω, �q) = −P µν�T (ω, �q) − Qµν�L(ω, �q), (1)

where q = (ω, �q) is the four-momentum of the gluon, while
�T and �L are effective transverse and longitudinal gluon
propagators given by [32]

�−1
T = ω2 − �q2 − µ2

2
− (ω2 − �q2)µ2

2�q2

×
(

1 + ω

2|�q| ln

∣∣∣∣ω − |�q|
ω + |�q|

∣∣∣∣
)

, (2)

�−1
L = �q2 + µ2

(
1 + ω

2|�q| ln

∣∣∣∣ω − |�q|
ω + |�q|

∣∣∣∣
)

, (3)

where µ2
D = g2T 2(1 + Nf

6 ) is the Debye mass.
The only nonzero terms in transverse (Pµν) and longitudinal

(Qµν) projectors are the following:

P ij = δij − qiqj

|�q|2 , (4)

Q00 = 1. (5)

The matrix element for this 0th order in opacity collisional
process can then be written in the following form (for
simplicity we here omit color factors, whose contribution we
will add in the end):

iMel =
∫

d4x0 J (x0) d4x1 (−i)
∫

d3�p
(2π )32E

�(t1 − t0)

×�(L/v − (t1 − t0))ū(p′, s ′)eip′x1 igγ µ u(p, s)

× e−ipx1

∫
d4x2 (−i)

∫
d4q

(2π )4
Dµν(q)e−iq(x2−x1)

× ū(k′, λ′)eik′x2 igγ ν u(k, λ)e−ikx2 . (6)

Here p, s, k, and λ are the four-momenta and spins of the
incoming jet and medium parton, while the corresponding
primed variables correspond to outgoing jet and medium

1Note that the current in coordinate space is denoted with J , while
the current in momentum space is denoted with J̃ .

parton (the medium parton can be quark, antiquark or gluon).
The medium partons are considered to be massless, i.e., four-
momentum k (k′) is assumed to be k = (|�k|, �k) (k′ = (| �k′|, �k′)).
The condition that the interaction between jet and medium
parton has to occur inside the QCD medium of finite size L is
implemented through the second θ function giving maximal
interaction time of (t1 − t0)max = L/v. We will further define
x ≡ x1 − x0 = (t, �x).

Equation (6) simplifies to

iMel = g2
∫

d3�p
(2π )32E

∫
d4q

(2π )4

∫
d4x0 J (x0)ei(p′+q)x0

×
∫

d3�x
∫ L/v

0
dt e−i(p−p′−q)x(2π )4δ(k′ − k − q)

×Dµν(q)ū(p′, s ′)γ µu(p, s)ū(k′, λ′)γ νu(k, λ)

= J̃ (p′)
1

2E

1 − e−i(E−E′−ω)L/v

E − E′ − ω
iM, (7)

where E =
√

M2 + �p2,M is the jet mass, �p = �p′ − ( �k′ − �k)
and ω = | �k′| − |�k|.

In the last step we used J̃ (p′ + q) ≈ J̃ (p′) [27] and defined

M = g2Dµν(k′ − k)ū(p′, s ′)γ µu(p, s)ū(k′, λ′)γ νu(k, λ).

(8)

In this paper we consider the case of highly energetic jets,
where |�q| � E. In this limit E′ becomes E′ ≈ E − �v · �q. Here
�v is the velocity of the initial jet, i.e., the jet four-momentum
p is equal to p = ( M√

1−v2 ,
M�v√
1−v2 ).

Further, the matrix element given in Eq. (7) has to be
squared, averaged over initial spin s of the jet and summed
over all other spins.

1

2

∑
spins

|Mel|2 = |J̃ (p′)|2 1

E2

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

× 1

2

∑
spins

|M|2, (9)

where 1
2

∑
spins |M|2 is given in Appendix B.

The differential energy loss is equal to dEel = ω d
el ,
where collisional interaction rate d
el can be extracted from
Eq. (9) as (see Ref. [27])

d3NJ d
el ≈ 1

2

∑
spins

|Mel|2 d3 �p′

(2π )32E′
d3�k

(2π )32k

d3 �k′

(2π )32k′

×
∑

ξ=q,q̄,g

nξ
eq(k)

(
1 ± nξ

eq(k′)
)
. (10)

Here

d3NJ = dR|J̃ (p′)|2 d3 �p′

(2π )32E′ , (11)

and dR = 3 (for three dimensional representation of the
quarks). In Eq. (10), n

ξ
eq(k) is the equilibrium momentum

distribution at temperature T of the incoming parton ξ , where
ξ denotes quark, antiquark or gluon. (1 ± n

ξ
eq(k′)) is a factor
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associated with the outgoing parton, where + corresponds to
the gluon contribution, and − to (anti)quark contribution.

In this paper, we are interested only in the computation of
the collisional energy loss. It is straightforward to show that
in the collisional energy loss calculations, the ±n

ξ
eq (k′) part in

(1 ± n
ξ
eq(k′)) can be dropped because the corresponding term

in the energy loss integrand is odd under the exchange of �k
and �k′, and integrates to zero (see also Ref. [24]). Therefore,
for the purpose of computing the collisional energy loss, we
can replace (1 ± n

ξ
eq(k′)) by 1 in Eq. (10), which leads to

d3NJ d
el ≈ 1

2

∑
spins

|Mel|2 d3 �p′

(2π )32E′
d3�k

(2π )32k

d3 �k′

(2π )32k′ neq(k).

(12)

Here, neq(k) = ∑
ξ=q,q̄,g n

ξ
eq(k) is the equilibrium momentum

distribution [24] at temperature T including quark, antiquark
and gluon contributions [see Eq. (B2)].

The collisional energy loss can now be obtained from
Eqs. (9), (11), and (12), leading to

�Eel ≈ CR

1

E2

∫
d3�k

(2π )32k
neq(k)

∫
d3 �k′

(2π )32k′ ω

× sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

1

2

∑
spins

|M|2. (13)

Note that in Eq. (13) we added a color factor CR and that
�q = �k′ − �k.

Equation (13) can be further simplified by noting that, in a
static medium, the collisional energy loss does not depend
on the direction of �v. After evaluating the 1

2

∑ |M|2 and
averaging the integrand over the directions of �v, we obtain
(see Appendix B)

�Eel = CRg4

2π4

∫ ∞

0
neq(|�k|)d|�k|

(∫ |�k|

0
|�q|d|�q|

∫ |�q|

−|�q|
ωdω

+
∫ |�q|max

|�k|
|�q|d|�q|

∫ |�q|

|�q|−2|�k|
ωdω

)
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

J1 + |�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4

× [
(v2|�q|2 − ω2)J1 + 2ωJ2 − J3

] )
, (14)

where J1,J2 and J3 are given by Eqs. (B6)–(B8) in
Appendix B, and |�q|max is given by the following formula [14]:

|�q|max = Min

[
E,

2|�k|(1 − |�k|/E)

1 − v + 2|�k|/E

]
. (15)

Further numerical study of the collisional energy loss in a finite
size QCD medium is given in Sec. IV.

III. COLLISIONAL ENERGY LOSS IN INFINITE QCD
MEDIUM

Previous calculations of the collisional energy loss, in
particular in Refs. [11,14,15] were done for an infinite QCD
medium. A problem with these calculations was that they
produce unphysical energy gain in the lower momentum
regions. Additionally, these computations leaded to different
results and consequently provided quite a large uncertainty in
the heavy quark (especially bottom) collisional energy loss.

In this section and Appendix B1 we present an improved
calculation of collisional energy loss in an infinite QCD
medium, with the goal of 1) removing the problems associated
with previous calculations and 2) producing reliable infinite
medium results which we will in Sec. IV compare with the
collisional energy loss in a finite medium.

In the case of an infinite QCD medium, the collisional
energy loss per unit length dEel

dL
is computed by assuming that

the jet is produced at x0 = −∞. The energy loss for a finite
size medium is than (simplistically) calculated by multiplying
this dEel

dL
with the thickness L of the medium.

In Appendix B1 we present an improved calculation of
the collisional energy loss per unit length in an infinite QCD
medium. The following result is obtained:

dEel

dL
= g4

6v2 π3

∫ ∞

0
neq(|�k|)d|�k|

(∫ 2|�k|/(1+v)

0
d|�q|

×
∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

2|�k|/(1+v)
d|�q|

∫ v|�q|

|�q|−2|�k|
ωdω

)

×
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

+ |�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4 (v2|�q|2 − ω2)

)
.

(16)

To compare our result with the computations done in
Refs. [14,15], we here introduce an arbitrary intermediate
momentum scale |�q|∗ [15]. The contribution from |�q| < |�q|∗
is denoted soft, while contribution from |�q| > |�q|∗ is denoted
hard [15].

The soft contribution is given by

dEsoft
el

dL
= g4

6v2 π3

∫ ∞

0
neq(|�k|)d|�k|

∫ |�q|∗

0
d|�q|

∫ v|�q|

−v|�q|
ωdω

(
|�L(q)|2 (2|�k| + ω)2 − |�q|2

2
+ |�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4 (v2|�q|2 − ω2)

)

(17)
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FIG. 2. Fractional collisional energy loss is shown as a function of momentum for light, charm and bottom quark jets (left, center and right
panels respectively). Dash-dotted curves are obtained by using Eq. (16) from this paper. Dashed curves correspond to Eqs. (8) and (12) from
Ref. [15], while dotted curves are obtained by using Eq. (4.1) from Ref. [14]. Assumed thickness of the medium is L = 5 fm.

while the hard contribution is given by

dEhard
el

dL
= g4

6v2 π3

∫ ∞

0
neq(|�k|)d|�k|

(∫ 2|�k|/(1+v)

|�q|∗
d|�q|

×
∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

2|�k|/(1+v)
d|�q|

∫ v|�q|

|�q|−2|�k|
ωdω

)
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

+ |�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4 (v2|�q|2 − ω2)

)

(18)

The soft contribution can be further simplified by keeping
only the even contributions in the ω integral (the odd
contributions vanish under symmetric integration)

dEsoft
el

dL
= g4

3v2 π3

∫ ∞

0
|�k|neq(|�k|)d|�k|

∫ |�q|∗

0
d|�q|

∫ v|�q|

−v|�q|
ω2dω

×
(

|�L(q)|2 + 1

2

(
1 − ω2

|�q|2
)(

v2 − ω2

|�q|2
)

× |�T (q)|2
)

= g2

6 πv2
µ2

D

∫ |�q|∗

0
d|�q|

∫ v|�q|

−v|�q|
ω2dω

×
(

|�L(q)|2 + 1

2

(
1 − ω2

|�q|2
)(

v2 − ω2

|�q|2
)

× |�T (q)|2
)

, (19)

where in the last step we used the fact that∫ ∞

0
|�k|neq(|�k|)d|�k| = π2T 2

2

(
1 + Nf

6

)
. (20)

Equation (19) agrees with the Eq. (55) in Ref. [24].

For the hard contribution we use that, in the limit of
large momentum transfer (|�q| 	 |�q|∗), |�L(q)| → 1

|�q|2 and

|�T (q)| → 1
ω2−|�q|2 . It is than straightforward to show that the

hard contribution reduces to Eq. (17) in Ref. [24], i.e.,

dEhard
el

dL
= g4

6v2 π3

∫ ∞

0
neq(|�k|)d|�k|

(∫ 2|�k|/(1+v)

|�q|∗
d|�q|
|�q|2

×
∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

2|�k|/(1+v)

d|�q|
|�q|2

∫ v|�q|

|�q|−2|�k|
ωdω

)

×
(

3ω2

4|�q|2 − v2

4
− 1 − v2

2

|�q|2
|�q|2 − ω2

+ 3
|�k|(|�k| + ω)

|�q|2 − (1 − v2)
|�k|(|�k| + ω)

|�q|2 − ω2

)
. (21)

Equations (17) and (55) from Ref. [24] were used in Ref. [15]
to obtain their Eqs. (8) and (12). That is, while our Eq. (16)
is more general, in special cases [i.e., Eqs. (19) and (21)] it
reproduces results from Ref. [15].

The computation in Ref. [14] considered only the soft gluon
limit, and replaced |�q|∗ by |�q|max, where |�q|max is given by
Eq. (15). Consequently, for the purpose of comparison with
Ref. [14], we replaced |�q|∗ by |�q|max in Eq. (19). Additionally,
the problem with this approach is that, in the high momentum
|�q| region, the method [14] is not able to treat the lower ω

bound properly (compare Eq. (19) with Eq. (16) where ω

bounds are properly treated). To overcome this problem, the
calculation in Ref. [14] was limited to the forward emission
only (i.e., ω > 0). If this is also taken into account, our
Eq. (19) reproduces Eq. (4.1) in Ref. [14].

In summary, in the known limiting cases, our result [i.e.,
Eq. (16)] reduces to the results published in Refs. [14,15].
The advantage of our result over [14] is that it includes the
hard contribution and consistently treats the integration limits.
Compared to Ref. [15], the advantage of our result is that
it does not make a sharp transition from soft to hard limits,
and consequently it does not require the introduction of an
unphysical momentum scale |�q|∗ as in Ref. [15].
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FIG. 3. Fractional collisional energy loss is shown as a function of momentum for light, charm and bottom quark jets (left, center and right
panels, respectively). Full curves correspond to finite medium case [see Eq. (14)], while dash-dotted curves correspond to infinite medium case
[see Eq. (16)]. Assumed thickness of the medium is L = 5 fm.

IV. NUMERICAL RESULTS

In this section we give a numerical study of the collisional
energy loss in a QCD medium as presented in Secs. III and
IV. To do this, we further assume that the QCD plasma is
characterized by T = 0.225 GeV, Nf = 2.5 and α = 0.3 (see
Ref. [33], and references therein). For the light quark mass

we take M = µD/
√

6, where µD = gT

√
(1 + Nf

6 ) ≈ 0.5 GeV
is the Debye mass. The charm mass is taken to be M =
1.2 GeV, and the bottom mass is M = 4.75 GeV.

A. Collisional energy loss in infinite QCD medium

In Fig. 2 we compare our collisional energy loss results in an
infinite QCD medium [Eq. (16)] with previous computations
by Refs. [14,15]. We see that, while both BT [15] and TG [14]
computations lead to unphysical negative energy loss results
in the low momentum region, our computations give positive
collisional energy loss in the whole jet momentum range. This
is particularly important in the bottom quark case where the
unphysical behavior persists up to 5 GeV in BT [15] case and
up to 2 GeV in TG [14] case. The reason for this behavior is that
only the leading logarithmic contribution was considered in the
final steps of both BT and TG computations. Note that the prob-
lem of unphysical energy gain was addressed in Ref. [34], by
including fully dressed gluon propagator in their calculations.
However, that approach leaded to another problem, since the
unphysical momentum scale |�q|∗ appeared in the collisional
energy loss results [34]. Therefore, our results present a first
complete solution to the unphysical energy gain problem.

Our numerical results agree with BT only in the asymptotic
regions, which is likely the consequence of the following: 1)
BT made a sharp (instead of continuous) transition from soft
to hard limit and 2) they introduced a sharp boundary in the
energy loss computations depending on whether the initial jet
energy is much larger/smaller than M2/T .

Despite the fact that the BT computations are more up to
date and treat the collisional energy loss more consistently than
TG, we see that our results show better agreement with TG [14]
computations. Particularly, in case of light and charm quark
jets, there is a quite good agreement between our results and
those of TG [14]. The good agreement is probably because the

forward emission only (see Sec. III) provides a quite plausible
estimate for the collisional energy loss. However, for bottom
quarks we see that neither BT nor TG computations provide a
reasonable estimate for the collisional energy loss. Therefore,
in this case, the more accurate computation of collisional
energy loss [i.e., our Eq. (16) ] is needed.

B. Collisional energy loss in a finite QCD medium

Figures 3 and 4 show the comparison between collisional
energy loss in infinite and finite size QCD medium. Contrary
to Ref. [20], we find that a finite size medium does not have
a large effect on the collisional energy loss. The discrepancy
between our results and those presented in Ref. [20] is due to
the fact that what was called collisional energy loss in Ref. [20],
is in fact combination of collisional and part of the zeroth order
radiative energy loss. Actually, the calculation in Ref. [20] does
not present a complete zeroth order energy loss either, since
transition radiation [23] was not included in their computation.

Contrary to naive expectations, from Figs. 3 and 4 we found
that collisional energy loss in a finite size medium can be

0 2 4 6 8 10
L fm

0

0.1

0.2

0.3

0.4

Eel

E

E 10 GeV
u

c

b

FIG. 4. Fractional collisional energy loss is shown as a function
of thickness of the medium for light, charm and bottom quark jets
(upper, middle and lower set of curves, respectively). Full curves
correspond to finite medium case [see Eq. (14)], while dash-dotted
curves correspond to infinite medium case [see Eq. (16)]. Initial
momentum of the jet is 10 GeV.
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FIG. 5. Fractional collisional energy loss is shown as a function
of thickness of the medium for charm quark jet. Dash-dotted curves
correspond to infinite medium case [see Eq. (16)], while dashed curve
show what would be the collisional energy loss in finite size medium
if term 2ωJ2 − J3 = 0. Dotted curve shows the extra contribution
to the collisional energy loss in finite size medium, due the fact that
2ωJ2 − J3 �= 0. Initial momentum of the jet is 20 GeV.

somewhat larger than in an infinite medium. The reason is that
in Eq. (16) there exists a term 2ωJ2 − J3. If this term were
equal to zero (as in the case of infinite medium), the energy
loss in a finite medium case would always be smaller than in an
infinite medium, as naively expected (compare dashed and dot-
dashed curves in Fig. 5). However, in the finite medium case,
the term 2ωJ2 − J3 �= 0, giving a noticeable positive contri-
bution (see the dotted curve in Fig. 5) which will lead to some-
what larger (overall) energy loss in the finite medium case.

To further discuss this, let us look at the Eqs. (B6)–
(B8) (Appendix A) in the finite medium case, and compare
them to the corresponding Eqs. (B24)–(B26) in the infinite
medium. The δ function in Eqs. (B24)–(B26) ensures energy
conservation, which is satisfied when the jet is produced
at −∞. Consequently, in this case 2ωJ2 − J3 ≡ 0 [see
Eqs. (B25) and (B26)]. However, when the jet is produced
at finite time x0, time translation invariance is broken, and
therefore the energy of the collisional process is not conserved,
leading to 2ωJ2 − J3 �= 0.

C. Comparison between collisional and radiative energy loss in
a finite size QCD medium

In Appendix A we showed how to separate the contributions
to the collisional and radiative energy loss. In this section we
directly compare these two contributions in the case of finite
size QCD medium.

To compute the net radiative energy loss, we note that there
are three important effects that control this energy loss in a
QCD medium. These effects are the Ter-Mikayelian effect
[21], transition radiation [23] and medium induced radiation
[35]. In Ref. [23], we combined these effects to compute the net
radiative energy loss. We here use these results for the purpose
of further comparison with the collisional energy loss. Note
that in these computations, in order to simulate confinement
in the vacuum, we introduced an effective gluon mass in
the vacuum mg,v ≈ QCD = 0.2 GeV (for more details see
Ref. [23]).

In Figs. 6 and 7 we show the collisional and radiative energy
loss as a function of jet energy and thickness of the medium,
respectively. We see that collisional energy loss is comparable
with the net radiative energy loss in the medium. Therefore,
the collisional energy loss contribution is significant and must
be included in the computation of jet quenching in a QCD
medium.

In particular, we note that in the lower momentum (i.e.,
p < 10 GeV) range, the collisional energy loss dominates the
radiative one. At RHIC, jet suppression is mostly measured in
this (lower) momentum range. Therefore, contrary to previous
studies [4–7], our results indicate that it is collisional, instead
of radiative energy loss, which gives the dominant contribution
to the observed suppression values.

Finally, note that the numerical computations/comparisons,
for both collisional and radiative energy loss, were here
obtained by using the fixed coupling constant αS = 0.3.
However, the collisional and radiative energy losses depend on
the coupling, �Eel ∼ α2

S , and �Erad ∼ α3
S [35]. For example,

in a subsequent paper [36], it was obtained that the running of
the coupling increase the magnitude of the collisional energy
loss. Therefore, using more accurate expressions for coupling
constant may change the numerical results presented in this
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FIG. 6. The comparison between collisional and radiative fractional energy loss is shown as a function of momentum for light, charm and
bottom quark jets (left, center, and right panels, respectively). Full curves show the collisional energy loss, while dot-dashed curves show the
net radiative energy loss. Assumed thickness of the medium is L = 5 fm and λ = 1.2 fm [19].
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FIG. 7. The comparison between collisional and radiative fractional energy loss is shown as a function of the thickness of the medium.
Light, charm, and bottom quark cases are shown on the left, center and right panels, respectively. Full curves show the collisional energy loss,
while dot-dashed curves show the net radiative energy loss. Mean free path is λ = 1.2 fm [19]. Initial momentum of the jet is E = 10 GeV.

paper (note that the derived Eq. (14) is valid for wide range
of coupling constants). However, according to Ref. [36], the
main result of this paper, i.e., the importance of the collisional
energy loss, is expected to be even more emphasized when
more accurate expressions of coupling constants are used.

V. CONCLUSION

This paper addressed the zeroth order contribution to the
collisional energy loss in a finite size QCD medium. The
interest in the collisional energy loss has been renewed by
recent studies [11,12], particularly in the context of the single
electron puzzle [8–10]. In Refs. [11,12] it was claimed that,
contrary to the previous beliefs, for the parameter ranges
relevant in URHIC, radiative and collisional energy loss
become comparable. However, a recent study by Peigne et al.
[20] suggested that collisional energy loss is large in the ideal
infinite medium case, while the finite size medium effects
lead to significant reduction of the collisional energy loss. The
paper [20], however, did not completely separate collisional
from radiative energy loss.

Additionally, even in the infinite medium case, the problem
of collisional energy loss was not completely solved. Previous
computations obtained unphysical results in the low momen-
tum regions [14,15], and an approach to solve this problem [34]
leaded to the results dependent on the unphysical momentum
scales. In addition, these computations introduced quite a large
uncertainty in the heavy quark (especially bottom) collisional
energy loss, since they leaded to noticeably different numerical
results.

The above reasons and the previously discussed single
electron puzzle, motivated us to provide a detailed study
of the zeroth order collisional energy loss in a finite size
QCD medium created in URHIC. First, in Appendix A we
showed that, though zeroth order collisional and radiative
energy loss contributions come from the same one-loop HTL
diagram, there is no overlap between collisional and radiative
energy loss computations. More specifically, while zeroth
order collisional energy loss comes from the processes which
have the same number of incoming and outgoing particles,

the radiative energy loss has one gluon more as an outcome
of the process. Additionally, we showed that in the zeroth
order calculations, there are no interference effects between
collisional and radiative energy loss, which is different from
a result in the recent paper [37]. The absence of interference
effects comes from the fact that, contrary to Ref. [37], in our
study we consistently treat the gluon dispersion relation in
the medium. This leads to the following conditions: 1) for
the 0th order collisional energy loss contributions, the energy
of the exchanged (virtual) gluon has to be smaller, or equal,
to the gluon momentum, and 2) for the radiative energy loss
contributions the energy of the radiated gluon has to be larger
than its momentum. Therefore, these two contributions take
nonzero values in non-overlapping regions, and consequently
cannot interfere with each other. A subsequent paper by Adil
et al. [38] reached similar conclusions to those presented here,
by using a different approach (linear response theory).

In the case of infinite medium, our computation interpolates
smoothly between soft to hard contributions and, contrary to
Ref. [15], does not require the introduction of an arbitrary
intermediate momentum scale. Additionally, our computation
treats the lower momentum region consistently, removing
the unphysical energy gain results obtained in previous
computations [14,15].

In the case of finite size QCD medium, contrary to the
study by Peigne et al. [20] we showed that finite size effects
have small effect on the collisional energy loss. Therefore,
consistently with the claims in Refs. [11,12] and our recent
single electron suppression estimates [19], we here showed
that collisional energy loss is important, and has to be included
in the computation of jet quenching.
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APPENDIX A: HTL CONTRIBUTION TO THE
COLLISIONAL ENERGY LOSS

In this section we will derive the formula for the lowest
order collisional interaction rate. The zeroth order contribution
to both radiative and collisional rates comes from the diagram
M given in Fig. 8. We will below use this diagram as a starting
point to separate contributions of collisional and radiative
energy loss.

Diagram M corresponds to
∑

Mn, where Mn is the
amplitude of the diagram shown in Fig. 9.

The definition of “black circles” in Fig. 9 is shown in
Fig. 10.

The diagram M contains both collisional and radiative
zeroth order contribution to the jet energy loss. It is useful to
look at the simple n = 1 case (see Fig. 11) to better understand
this.

The contribution to the collisional energy loss is obtained
by “cutting” (i.e., putting on shell) the propagators of parton
k′ and p′. On the other hand, the radiative contribution is
obtained by putting the parton propagator p′ and the gluon
propagator q on shell. From this, it follows that collisional
and radiative contributions come from different diagrams.
Furthermore, from the conservation of energy and momentum
it can be shown that cutting the gluon propagator q, leads
to the condition |ω| > |�q|, while cutting the propagator of
parton k′ leads to the condition |ω| < |�q|. Consequently, there
is no interference (and overcounting) between collisional and
radiative contributions.2 The computation of the radiative
zeroth order energy loss has already been a subject of our
previous work [21,23]. So, the contributions from the diagrams
which give raise to the radiative energy loss, will not be further
addressed here.

As we can see from the right side of Fig. 11, there are two
contributions from diagram M1 to the collisional rate. These
two contributions can be combined into one by allowing that
the energy of the gluon can take both positive and negative
values. Therefore, the contribution to the collisional rate from
diagram M1 (d
M1 ) is equal to

d3NJ d
M1 = d3 �p′

(2π )32E′
d3�k

(2π )32k

× d3 �k′

(2π )32k′ neq(k) |ME0 |2, (A1)

2Note that in this paper, we treat only the zeroth order contribution
to collisional energy loss. It is, however, possible that interference
effects and/or overcounting between collisional and radiative energy
loss contributions would occur in the higher order computations.
Higher order contributions are a separate non-trivial problem, which
is not considered in this paper.

J p J pp’

q

FIG. 8. One Hard Thermal Loop (HTL) diagram.

q

q

q

q

p p’ p

k1 k1

k2 k2

kn kn

FIG. 9. Diagram Mn.

where ME0 is the Feynman diagram shown in Fig. 12, and
ω ∈ (−|�q|, |�q|). Note that in the above equation each of the
terms in neq(k) = ∑

ξ=q,q̄,g n
ξ
eq(k) should be multiplied by an

extra factor [1 ± n
ξ
eq(k′)] for the outgoing medium parton (see

Sec. II). Here ξ corresponds to anti(quark) or gluon. The +
sign is associated with gluon and the − sign with anti(quark)
contributions. However, the ±n

ξ
eq(k′) term in (1 ± n

ξ
eq(k′))

does not contribute to the collisional energy loss (for more
details see Sec. II and Ref. [24]). Therefore, in Eq. (A1) we
keep only the contributions that give raise to the collisional
energy loss.

In the same way, it can be shown that the contribution to
the collisional energy loss from diagram Mn is equal to

d3NJ d
Mn
= d3 �p′

(2π )32E′
d3�k

(2π )32k

d3 �k′

(2π )32k′ neq(k)

×
n−1∑
i=0

MEi
M

†
En−1−i

, (A2)

where the diagram MEn
is shown in Fig. 13.

Since M = ∑∞
n=0 Mn, the contribution to the collisional

energy loss from the diagram M is equal to

d3NJ d
 = d3 �p′

(2π )32E′
d3�k

(2π )32k

d3 �k′

(2π )32k′ neq(k)

×
∞∑

n=0

n−1∑
i=0

MEi
M

†
En−1−i

= d3 �p′

(2π )32E′
d3�k

(2π )32k

d3 �k′

(2π )32k′ neq(k)

×
∞∑

n=0

n∑
i=0

MEi
M

†
En−i

. (A3)

We next want to prove that d3NJ d
 = d3 �p′
(2π)32E′

d3�k
(2π)32k

d3 �k′
(2π)32k′ neq(k) |Mel|2, where (see Fig. 14)

Mel =
∞∑

n=0

MEn. (A4)
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FIG. 10. Definition of the “black circles” in diagram Mn.

To prove the above, we will first compute |Mel|2

|Mel|2 =
∞∑
i=0

∞∑
j=0

MEi
M

†
Ej

=
∞∑
i=0

∞∑
n=i

MEi
M

†
En−i ,

(A5)

where in the last step we defined n = i + j → j = n − i.
Since

∞∑
i=0

∞∑
n=i

=
∞∑

n=0

n∑
i=0

, (A6)

we can conclude that

d3NJ d
 = d3 �p′

(2π )32E′
d3�k

(2π )32k

d3 �k′

(2π )32k′ neq(k)
∞∑

n=0

|Mel|2,

(A7)

which is what we wanted to prove. Therefore, the collisional
interaction rate can be obtained by an intuitive approach of
computing |Mel|2 (see Fig. 14), where blob represents the
effective gluon propagator.

APPENDIX B: COLLISIONAL ENERGY LOSS
COMPUTATIONS

In this appendix we will derive the collisional energy
formula given by Eq. (14). To do that we start from the
Eq. (13), i.e.,

�Eel = CR

1

E2

∫
d3�k

(2π )32k
neq(k)

∫
d3 �k′

(2π )32k′ ω

× sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

1

2

∑
spins

|M|2, (B1)

where neq(k) is the equilibrium momentum distribution [24]
at temperature T including quarks and gluons

neq(k) = N

e|�k|/T − 1
+ Nf

e|�k|/T + 1
. (B2)

Here N is the number of colors and Nf is the number of flavors.
The matrix element M [see Eq. (8)], has been already

computed in Ref. [24] (see Eqs. (45–46) in Ref. [24]).

However, for completeness and due to a typographical error
in [24], we here repeat the main steps in the computation of
1
2

∑
spins |M|2,

M = g2Dµν(q)ū(p′, s ′)γ µu(p, s)ū(k′, λ′)γ νu(k, λ). (B3)

In Coulomb gauge, the only nonzero terms in the effective
gluon propagator are given in Eqs. (4) and (5), which together
with Eqs. (1)–(3) reduce the Eq. (B3) to

M = g2�L(q)ū(p′, s ′)γ 0u(p, s)ū(k′, λ′)γ 0u(k, λ)

+ g2�T (q)(δij − q̂i q̂j )ū(p′, s ′)γ iu(p, s)

× ū(k′, λ′)γ ju(k, λ). (B4)

Here q̂i ≡ qi/|�q|.
The matrix element given in Eq. (B4) has to be squared,

averaged over initial spin s of the jet and summed over all
other spins. After evaluating the Dirac traces, and applying
the assumption that |�q| � E (highly energetic jet) we obtain
similarly to [24]

1

2

∑
spins

|M|2 = 16g4E2(|�L(q)|2(|�k|| �k′| + �k · �k′)

+ 2Re(�L(q)�T (q)∗)

[
|�k|

(
�v · �k′

− �v · �q �q · �k′

|�q|2
)

+ | �k′|
(

�v · �k − �v · �q �q · �k
|�q|2

)]

+ |�T (q)|2
[

2

(
�v · �k − �v · �q �q · �k

|�q|2
)

×
(

�v · �k′ − �v · �q �q · �k′

|�q|2
)

+ (|�k|| �k′| − �k · �k′)

×
(

v2 − �v · �q �q · �v
|�q|2

) ]
. (B5)

In a static medium, the collisional energy loss does not
depend on the direction of �v. Therefore, the Eq. (B1) can
be further simplified by averaging the integrand over the

q q q q q q q q

k k k k k k k kk’ k’

p p p p p p p pp’ p’ p’ p’

FIG. 11. n = 1 contribution to the HTL diagram.
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p p’

k k’

FIG. 12. Feynman diagram for the lowest order collisional energy
loss.

directions of �v. The integrals that are required are

J1 =
∫

d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

= L

4|�q|v2

[
Si

(
(v|�q| + ω)

L

v

)
+ Si

(
(v|�q| − ω)

L

v

)]

− 1

4v|�q|

[
1 − cos

(
(v|�q| − ω)L

v

)
v|�q| − ω

+ 1 − cos
(
(v|�q| + ω)L

v

)
v|�q| + ω

]
, (B6)

J2 =
∫

d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
(ω − �v · �q)

= 1

4v|�q|
[
Ci

(
(v|�q| − ω)

L

v

)
− Ci

(
(v|�q| + ω)

L

v

)

+ ln

(
v|�q| + ω

v|�q| − ω

)]
(B7)

and

J3 =
∫

d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
(ω − �v · �q)2

= 1

2

(
1 − cos

(
Lω
v

)
sin(L|�q|)

L|�q|

)
. (B8)

q

q

q

q

p p’

k k’

k1 k1

k2 k2

kn kn

FIG. 13. Feynman diagram for the collisional energy loss with n

interactions with medium partons.

p p’

k k’

FIG. 14. Feynman diagram Mel for the collisional energy loss
in QCD medium. The large dashed circle (“blob”) represents the
effective gluon propagator [21].

By using Eqs. (B6)–(B8), it can be shown that

∫
d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
vi = J1q̂

i ω

|�q| − J2
q̂i

|�q| (B9)

and

∫
d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
vivj

= J1

(
v2|�q|2 − ω2

|�q|2 δij + 3ω2 − v2|�q|2
2|�q|2 q̂i q̂j

)

+ 2ωJ2 − J3

2|�q|2
(
δij − 3q̂i q̂j

)
. (B10)

By using Eqs. (B5)–(B10) it is straightforward to show that

∫
d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
16g4E2|�L(q)|2(|�k|| �k′| + �k · �k′)

= 16g4E2|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

J1, (B11)

∫
d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
32g4E2Re(�L(q)�T (q)∗)

×
[
|�k|

(
�v · �k′ − �v · �q �q · �k′

|�q|2
)

+ | �k′|
(

�v · �k − �v · �q �q · �k
|�q|2

)]
= 0 (B12)

and

∫
d�

4π

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2
16g4E2|�T (q)|2

×
[

2

(
�v · �k − �v · �q �q · �k

|�q|2
) (

�v · �k′ − �v · �q �q · �k′

|�q|2
)

+ (|�k|| �k′| − �k · �k′)
(

v2 − �v · �q �q · �v
|�q|2

)]

= 16g4E2 |�T (q)|2 (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4
× [

(v2|�q|2 − ω2)J1 + 2ωJ2 − J3
]
. (B13)
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Therefore, averaging the
sin[(ω−�v·�q) L

2v
]2

(ω−�v·�q)2
1
2

∑ |M|2 over the
directions of �v lead to〈

sin[(ω − �v · �q) L
2v

]2

(ω − �v · �q)2

1

2

∑
spins

|M|2
〉

= 16g4E2

(
|�L(q)|2 (2|�k| + ω)2 − |�q|2

2
J1

+ |�T (q)|2 (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4

× [
(v2|�q|2 − ω2)J1 + 2ωJ2 − J3

] )
. (B14)

Since the collisional energy loss does not depend on the
direction of �v, Eq. (B1) can be written as

�Eel = CR

1

E2

∫
d3�k

(2π )32k
neq(k)

∫
d3 �k′

(2π )32k′ ω

×
〈

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

1

2

∑
spins

|M|2
〉

= CR

32π4

1

E2

∫
|�k||�k′|d|�k|d|�k′|d cos θneq(|�k|)ω

×
〈

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

1

2

∑
spins

|M|2
〉

, (B15)

where θ is the angle between vectors �k and �k′. Using the fact
that q = k′ − k, we obtain that the cos θ satisfies the following
relation:

cos θ = 1 − �q2 − ω2

2|�k||�k′| , (B16)

where |�k′| = |�k| + ω. We can now introduce the change of
variables from |�k|, |�k′| and cos θ , to |�k|, ω and |�q|, which
reduces the Eq. (B1) to the following form:

�Eel = CR

32π4

1

E2

∫
neq(|�k|)d|�k| |�q|d|�q| ωdω

×
〈

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

1

2

∑
spins

|M|2
〉

= CRg4

2π4

∫
neq(|�k|)d|�k| |�q|d|�q| ωdω

×
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

J1

+ |�T (q)|2
(|�q|2 − ω2

)
((2|�k| + ω)2 + |�q|2)

4|�q|4

× [(
v2|�q|2 − ω2

)
J1 + 2ωJ2 − J3

] )
. (B17)

Limits of the integration can be obtained from Eq. (44),
from which it follows that

0 <
�q2 − ω2

2|�k|(|�k| + ω)
< 2, (B18)

leading to the limits in energy transfer ω

Max[−|�q|, |�q| − 2|�k|] < ω < |�q|. (B19)

The limits on the momentum transfer |�q| from collisional
scattering off a thermal parton with energy |�k| is (see Ref. [14])

0 < |�q| < Min

[
E,

2|�k|(1 − |�k|/E)

1 − v + 2|�k|/E

]
. (B20)

Here E and v are the energy and velocity of the jet.
By using relations (B19) and (B20), Eq. (B17) finally

reduces to

�Eel = CRg4

2π4

∫ ∞

0
neq(|�k|)d|�k|

(∫ |�k|

0
|�q|d|�q|

∫ |�q|

−|�q|
ωdω

+
∫ |�q|max

|�k|
|�q|d|�q|

∫ |�q|

|�q|−2|�k|
ωdω

)

×
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

J1

+ |�T (q)|2 (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4

× [
(v2|�q|2 − ω2)J1 + 2ωJ2 − J3

] )
, (B21)

where |�q|max is given in Eq. (B20).

Large L limit

In this subsection we will consider the large L limit case,
and compute the collisional energy loss per unit length. To do
that we multiply both sides of the Eq. (B17) by 2v

πL
, i.e.,

2v

πL
�Eel = CRg4

2π4

∫
neq(|�k|)d|�k| |�q|d|�q| ωdω

×
(
|�L(q)|2 (2|�k|+ω)2 −|�q|2

2

2v

πL
J1 +|�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4

×
[

(v2|�q|2 − ω2)
2v

πL
J1

+ 2ω
2v

πL
J2 − 2v

πL
J3

] )
. (B22)

To compute 2v
πL

J1,2,3 in the limit when L → ∞ we will use
the following expression:

2v

πL

sin
[
(ω − �v · �q) L

2v

]2

(ω − �v · �q)2

L→∞−−−→ δ(ω − �v · �q). (B23)
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Then,

2v

πL
J1

L→∞−−−→
∫

d�

4π
δ(ω − �v · �q) = 1

2v|�q|�
(
v2|�q|2 − ω2

)
,

(B24)

2v

πL
J2

L→∞−−−→
∫

d�

4π
δ(ω − �v · �q)(ω − �v · �q) = 0 (B25)

and

2v

πL
J3

L→∞−−−→
∫

d�

4π
δ(ω − �v · �q)(ω − �v · �q)2 = 0, (B26)

leading to

2v

πL
�Eel = CRg4

2π4

∫
neq(|�k|)d|�k| |�q|d|�q| ωdω

× 1

2v|�q|�(v2|�q|2 − ω2)

×
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

+ |�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4

× (v2|�q|2 − ω2)

)
. (B27)

Therefore, by using relations (B19), (B20) and v2|�q|2 > ω2,
the collisional energy loss per unit length in an infinite size
QCD medium reduces to the following expression (CR = 4/3)

dEel

dL
= g4

6v2 π3

∫ ∞

0
neq(|�k|)d|�k|

(∫ 2|�k|/(1+v)

0
d|�q|

×
∫ v|�q|

−v|�q|
ωdω +

∫ |�q|max

2|�k|/(1+v)
d|�q|

∫ v|�q|

|�q|−2|�k|
ωdω

)

×
(

|�L(q)|2 (2|�k| + ω)2 − |�q|2
2

+ |�T (q)|2

× (|�q|2 − ω2)((2|�k| + ω)2 + |�q|2)

4|�q|4 (v2|�q|2 − ω2)

)
.

(B28)
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