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We show that the proton and pion transverse momentum distributions measured at BNL Relativistic Heavy Ion
Collider (RHIC), for all collision centralities for pions and most of the collision centralities for protons, can be
simultaneously described in terms of a thermal model with common values for the radial flow and temperature,
when accounting for the finite size of the interaction region at the time of decoupling. We show that this description
is obtained in terms of a simple scaling law of the size of the interaction region with the number of participants
in the collision. The behavior of the proton to pion ratio at mid-rapidity can also be understood as a consequence
of the strength of the radial flow and system size reached at RHIC energies.
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I. INTRODUCTION

The unexpected behavior of the proton to pion ratio as a
function of pt has been taken as an indication of the onset of the
thermal recombination of quarks as an important mechanism
for hadron production at BNL Relativistic Heavy Ion Collider
(RHIC) energies in Au+Au collisions [1]. In its simplest form,
thermal recombination invokes a densely populated parton
phase space to allow the statistical formation of hadrons from
constituent quarks assigning degeneracy factors appropriate
for either mesons or baryons [2].

An important shortcoming of the recombination scenario
is that it ignores inelastic and elastic scattering experienced
by hadrons before kinetic freeze-out and thus neither particle
abundance nor their spectra are fixed right after recombination.
A more appropriate description of statistical systems, which
includes the fact that the detailed history is washed out by
means of interactions after a long enough time, can be given
in terms of global features that survive all the way to the end
of the system’s evolution. One of these global features is flow,
in particular, radial flow.

It has been observed that the magnitude of the radial flow
velocity exhibits a 50% increase from BNL Alternating Gradi-
ent Synchrotron (AGS) and CERN Super Proton Synchrotron
(SPS) to RHIC energies [3]. Recall that in p + p collisions,
where no effects of radial flow exist, it is known that the proton
to pion ratio as a function of pt remains basically unchanged,
never exceeding one, for collision energies ranging from
19.4 GeV at the Tevatron and 44.6 and 52.8 GeV at Intersecting
Storage Rings (ISR) up to 200 GeV at RHIC [4]. In contrast, the
proton to pion ratio in Au+Au collisions at RHIC reaches and
even exceeds one for pt ∼ 2 GeV. Therefore, if recombination
of thermal partons has anything to do with this behavior it
is clear that a thermal description of the individual particle
spectra must be possible at least up to such pt values.
Nevertheless, in Ref. [1], a fit to a thermal model that attempts a
description of particle spectra up to pt ∼ 2 GeV in terms of an
intrinsic freeze-out temperature T0, together with radial flow,

yields values on the order of T0 ∼ 180 MeV, which is closer
to the hadronization temperature than to the kinetic freeze-out
temperature.

Yet another intriguing behavior that concerns freeze-out
temperatures and expansion velocities in thermal models is
their relation as a function of the centrality of the collisions,
which, within the usual thermal model calculations, can be
stated as an increase in flow together with a decrease in
temperature as the centrality of the collisions increases. This
behavior is usually attributed to the greater amount of time
spent by the system in the hadronic phase for the most
central collisions, allowing for the development of flow and
consequently decreasing the values for the kinetic freeze-out
temperature [5,6]. However, as results from elliptic flow
analyses seem to indicate [7], flow is generated early, in the
partonic phase of the collision. Moreover, kinetic freeze-out
temperatures can also be thought of as a global feature of
strongly interacting systems that reflect the average kinetic
energy needed for the system to decouple. In fact, a systematic
study of Hanbury-Brown–Twiss (HBT) data and particle yields
for pions at mid-rapidity from AGS to RHIC energies [8]
shows that this average energy is independent of centrality
and beam energy. Therefore, one can ask if an alternative
description, with common values of temperature and flow
velocity, reflecting the above property of strongly interacting
systems can be achieved for all centralities. As we show, the
key ingredient that allows a description of particle spectra in
a thermal model, including radial flow, and that addresses the
above-mentioned phenomena from a unifying point of view, is
the realization that particle production and successive freeze-
out in a relativistic heavy-ion environment takes place during
small time scales, on the order of 10 fm, and consequently
within small volumes.

Although not commonly considered, small size effects
are important in the description of a variety of phenomena
associated with statistical systems such as the late-stage growth
of nucleated bubbles during a first-order phase transition [9]
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and the statistical hadronization model [10]. Finite size effects
are also known to influence the interpretation of the correlation
lengths in HBT analysis in the context of relativistic heavy-ion
collisions [11,12].

Recall that useful microscopical information in this kind
of collision can be obtained from comparing the average
interparticle separation during the collision evolution to the
range of strong interactions. In the case of pions (the most
copiously produced particles in the collision), right after the
collision the system is better described as a liquid rather than
as a gas [13]. One important consequence is the appearance
of a surface tension that acts as a reflecting boundary for the
particles that move toward it. The reflection details depend
on the wavelength of the incident particle but the important
property introduced by the reflecting surface is that it allows
very little wave function leakage and, to a good approximation,
the wave functions vanish outside this boundary. When the
average separation of the particles in the system becomes larger
than the range of the strong interaction, they become a free
gas but, because of the short interaction range, the transition
between the liquid and the gas stages is very rapid and the
momentum distribution is determined by the distribution just
before freeze-out.

To be concrete, we need to compare the pion separation d to
the average range of the pion strong interaction (ds ∼ 1.4 fm).
For typically accepted values for the density and formation
times [14], it is possible to show that d ∼ 0.6 fm < ds and the
condition to regard the pion system as a liquid is met.

Qualitatively, the behavior of thermal particle spectra
including finite size effects deviates from a simple exponential
fall-off at high momentum because, from the Heisenberg
uncertainty principle, the more localized the states are in
coordinate space the wider their spread will be in momentum
space. In terms of the discrete set of energy states describing
the particle system, this behavior can be understood as arising
from a higher density of states at large energy as compared to
a calculation without finite size effects. These ideas have been
applied to the description of charged and neutral pion spectra
measured at RHIC with good agreement for the transverse
momentum interval 0 < pt <∼ 3 [15].

In this article we compute the transverse momentum
distribution for pions and extend the above ideas to also include
protons in the description, assuming thermal equilibrium
together with radial flow and accounting for finite size effects
at decoupling. By comparison with data on pion and proton
spectra on Au+Au collisions at

√
sNN = 200 GeV [1], we

show that, for temperatures and collective transverse flow
within values corresponding to kinetic freeze-out conditions,
the transverse momentum distributions can be described with
common values of temperature and expansion velocities for
all collision centralities for pions and for most of the collision
centralities for protons.

This work is organized as follows: In Sec. II we present the
basics of the model to compute pion and proton distributions.
In Sec. III we compute the transverse momentum distributions
for protons and pions comparing these to data on Au+Au
collisions at

√
sNN = 200 GeV. We show that a good agree-

ment with these data for different collision centralities can be
achieved by assuming a simple scaling of the radii with the

cube root of the number of participants in the collision. In Sec.
IV we compute the pion correlation function and also extract
the size of the system as a function of the cube root of the
number of participants in the collision. We finally conclude in
Sec. V.

II. THE MODEL

We consider a scenario where finite size effects are included
by restricting the system of particles to be confined within a
volume of the size of the fireball at freeze-out. Because we
aim to describe spectra at central rapidities, it suffices to take
the confining volume as a sphere of radius R (fireball) as
viewed from the center of mass of the colliding nuclei at the
time of decoupling [16]. This time needs not be the same over
the entire reaction volume. Nevertheless, in the spirit of the
fireball model we consider that decoupling takes place over a
constant time surface in space-time. This assumption should be
essentially correct if the freeze-out interval is short compared
to the system’s lifetime. Though some of the particles emitted
in the central rapidity region could originate from a finite
range of longitudinal positions due to thermal smearing, we
consider that most of the central rapidity particles come from
the central spatial region and thus neglect possible effects on
these particles from a different longitudinal and transverse
expansion velocities.

In the case of bosons, the wave functions that incorporate
the effects of a finite size system have been found in Ref. [16],
where we refer the reader for further details of the model.
These wave functions are given as the stationary solutions
of the wave equation for bosons, namely, the Klein-Gordon
equation (

∂2

∂t2
− ∇2 + m2

)
φ(r, t) = 0 (1)

subject to the boundary condition φ(|r| = R, t) = 0, and finite
at the origin. The normalized stationary states are

φnlm′ (r, t) = e−iEnl t

RJl+3/2(knlR)

Ylm′(r̂)Jl+1/2(knlr)√
rEnl

. (2)

In the case of fermions, the wave functions are found as the
stationary solutions of the Dirac equation(

iγ µ∂µ − m
)
ψ(r, t) = 0 (3)

subject to the the boundary condition ψ(|r| = R, t) = 0, and
also finite at the origin. It is easy to show that the normalized
stationary states are

ψnlm′ (r, t) = e−iEnl t

2mRJl+3/2(knlR)

{
Enl + m + iσ · ∇

−Enl + m − iσ · ∇
}

× Ylm′(r̂)Jl+1/2(knlr)√
r

. (4)

In Eqs. (2) and (4), Jν is a Bessel function of the first
kind, Ylm′ is a spherical harmonic, σ are the Pauli matrices,
and the parameters knl are related to the energy eigenvalues
Enl by E2

nl = k2
nl + m2 and are given as the solutions to

Jl+1/2(knlR) = 0. The contribution to the thermal invariant
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distribution from a state with quantum numbers {n, l,m′} is
given by

E
d3Nnlm′

d3p
=

∫
d�

(2π )3
(knl · u)f (knl · v)Wnlm′ (p, r), (5)

where Wnlm′ (p, r) is the Wigner transform and f (knl · v) the
thermal occupation factor of the state, respectively. The four-
vectors vµ and uµ represent the collective flow four-velocity
and a four-vector of magnitude one, normal to the freeze-out
hypersurface �, respectively.

To consider a situation where freeze-out happens at a fixed
time and within a spherical volume of radius R, the unit
four-vector uµ can be chosen as uµ = (1, 0). To keep matters
simple, we also consider a thermal occupation factor of the
Maxwell-Boltzmann kind f (knl · v) = e−knl ·v/T , where T is
the system’s temperature. The four-vector vµ is parametrized
as vµ = γ (1, v), and we choose a radial profile for the vector
v such as v = βr/R, where the parameter β represents the
surface expansion velocity. Correspondingly, the γ factor is
given by

γ = 1√
1 − (

β r
R

)2
. (6)

Nonetheless, to continue to keep matters as simple as possible
and to be able to analytically perform the integrations in
Eq. (5), we instead consider that the γ factor is a constant
evaluated at the average transverse expansion velocity, namely,

γ → γ̄ = 1√
1 − (3β/4)2

, (7)

where the average is computed by assuming that the matter
distribution is uniform within the fireball.

We take the four-vector k
µ

nl = (Enl, knl), and choose
knl ‖ p. This choice is motivated from the continuum, bound-
less limit, where the relativistically invariant exponent in the
thermal occupation factor becomes γ (E − p · v).

Summing over all the states, the invariant thermal distribu-
tions for bosons and fermions are given by

E
d3Nb

d3p
= Nb

∑
nl

(2l + 1)

(2π )

k2
nlEnle

−γ̄ Enl/T√
p2 +

(
γ̄ βknl

2RT

)2

×

∣∣∣Jl+1/2

(
pR − i

γ̄ βknl

2T

)∣∣∣2

[
p2 − k2

nl −
(

γ̄ βknl

2RT

)2
]2

+
[

γ̄ βpknl

RT

]2
, (8)

E
d3Nf

d3p
= Nf

∑
nl

(2l + 1)

(2π )

×
[(

E2
nl + m2 + p2

) + (βknl/2RT )2

m2

]

× k2
nlEnle

−γ̄ Enl/T√
p2 +

(
γ̄ βknl

2RT

)2

×

∣∣∣Jl+1/2

(
pR − i

γ̄ βknl

2T

)∣∣∣2

[
p2 − k2

nl −
(

γ̄ βknl

2RT

)2
]2

+
[

γ̄ βpknl

RT

]2
, (9)

respectively. The factor (2l + 1) in Eqs. (8) and (9) comes
from the degeneracy of a state with a given angular momentum
eigenvalue l. Nb and Nf are normalization constants.

The contrast between a calculation with and without finite
size effects can be appreciated by looking at Fig. 5 in
Ref. [15] which shows a comparison between the invariant
pion distribution as a function of pt computed for T =
120 MeV, β = 0.6, with finite size effects (R = 8 fm) and
without them. The curves are also compared to data on positive
pions from PHENIX [1]. We notice from the figure that the
curve with finite size effects does a very good job describing the
data for all values of pt in this range. In contrast, a calculation
where no effects of a finite size are included, and thus the
wave function of a given state is simply a plane wave, does
not describe the data over the considered range when use is
made of the same values for T and β as for the case of the
calculation with a confining volume.

III. TRANSVERSE SPECTRA

We now compare the model to data on mid-rapidity positive
pions together with protons from central Au+Au collisions at√

sNN = 200 GeV measured in RHIC [1]. We perform a χ2

fit to each spectra. The fit parameters are the pion and proton
fireball radii Rπ and Rp, temperatures Tπ and Tp, surface radial
flow velocities βπ and βp, and normalizations Nπ and Np.
Based on the success of the description of the central rapidity
pion data obtained in Ref. [15] up to pt ∼ 3 GeV, we first fix
the parameters describing the pion data with the minimization
procedure. The parameters thus obtained are Rπ = 8 fm, Tπ =
117 MeV, and βπ = 0.6, which are basically the same as the
ones obtained in Ref. [15] where only the normalization was
left as a free parameter and the rest were set to reasonable
values that describe freeze-out conditions at RHIC.

Next, to find the parameters that describe the proton
spectrum, we fix the values of any two of the parameters
Rp, Tp, and βp to be the same as the corresponding parameters
describing the pions, leaving the third parameter, along with
the normalization constant Np, free. The optimum set of
parameters obtained with this procedure corresponds to Rp =
8 fm, Tp = 117 MeV, and βp = 0.53. Figure 1 shows the
distributions for pions and protons for central collisions (0–
10%) [1] compared to the theoretical calculation with the best
parameters obtained. We notice that the proton data are well
described by the model up to pt ∼ 3 GeV for a temperature
and system size equal to the corresponding parameters for the
pions but that the magnitude of βp is about 10% smaller than
that of βπ . We recall that to find an analytical expression for
the momentum distributions, we resorted to approximating the
γ factor in Eq. (6) by the average γ factor in Eq. (7). Because
the effect of the same radial flow is stronger for particles with
larger mass, it is therefore natural to expect that with this
approximation we introduce a discrepancy in the description
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FIG. 1. (Color online) Invariant π+ and p distributions as a
function of pt for T = 117 MeV, R = 8 fm, βπ = 0.6, and βp = 0.53.
Also shown in the insert is the ratio p/π+ of these distributions. Data
are from Ref. [1] for collisions with 0–10% of centrality.

of the flow for particles with different masses. Nevertheless, we
feel that an error on the order of 10% is acceptable considering
the advantage of working with analytical expressions.

We also notice that the description of the proton data
for pt > 3 GeV is not as good. This can be understood by
recalling that for large pt the leading particle production
mechanism is the fragmentation of fast moving partons, some
of which fragment outside the fireball region and thus are
not influenced by the confining boundary that the rest of the
particles experience within the fireball, and, thus, that our
description is not valid for these large pt particles.

Figure 2 shows the distributions for pions and protons for
different collision centralities. For the description of these
data, we have fixed the values of Tp,π and βp,π to the ones
obtained from the most central collisions’ analysis, leaving
the normalizations to be determined by the minimization
procedure. The size of the overlap region for peripheral
collisions was determined from the number of participants
Npart in the reaction [1] by a simple scaling law for the size
of the equivalent spherical region according to the relation
R = R0 + C(Npart/2)1/3, with R0 = 1 fm and C = 1.28, which
gives R = 8 fm for the most central region (0–10%) data. This
relation is motivated by a similar one that gives the radius of
a nucleus in terms of the mass number. The value of R0 tries
to account for the finite size of the interaction region as the
number of participants takes its smallest value for the most
peripheral collision, namely, Npart = 2.

The values for R and Npart are listed in Table I. We
notice that the pion data are well described for all centralities
except for those at the lower end of the spectra where a
thermal calculation is expected to fail because of resonance
contamination. The proton data are well described up to pt ∼
3 GeV only up to centralities on the order of 40–50%; from
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FIG. 2. (Color online) Invariant π+ (left panel) and p (right panel)
distributions as a function of pt for different collision centralities. The
uppermost curves correspond to the most central collisions, 0–10%
with the centrality decreasing in intervals of 10% [1] multiplied
by successive factors of 10−2. The size of the equivalent spherical
region is calculated according to the relation R = R0 + C(Npart/2)1/3,
with R0 = 1 fm and C = 1.28. The curves represent the theoretical
calculation with Tp, π = 117 MeV, βπ = 0.6, and βp = 0.53, which
describe the most central collisions’ data.

there the quality of the description decreases as the centrality
of the collisions decreases. We interpret the poor description
of the proton data for pt > 3 GeV for all centralities as an
indication that the leading particle production is not a kind of
thermal parton recombination but instead the fragmentation of
fast moving partons. However, the failure to describe proton
data for centralities smaller than 40–50% could be attributed to
a different scaling of the effective size of the interaction region
with Npart as compared to the one obeyed by the pions or to the
fact that, for large impact parameters, the proton size becomes
comparable to the size of the interaction region. An analysis
exploring these possibilities will be presented elsewhere.

TABLE I. Parameters Npart and R for the description
of the pion and proton spectra corresponding to different
centralities. The radii of the equivalent spherical region
has been calculated according to the relation R = R0 +
C(Npart/2)1/3, with R0 = 1 fm and C = 1.28.

Centrality (%) Npart R (fm)

0–10 234.6 7.3
20–30 166.6 6.6
30–40 114.2 5.9
40–50 74.4 5.3
50–60 45.5 4.6
60–70 25.7 4.0
70–80 13.4 3.4
80–92 6.3 2.9
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IV. PARTICLE CORRELATIONS

To explore the space-time dimensions of the system created
in high-energy heavy-ion collisions, one typically looks at
two-particle correlation functions. In the present case, it is
thus instructive to look at this function to see whether the
size scale that can be extracted from a two-particle correlation
is comparable to the intrinsic scale dimension used in the
model formulation. We carry out the analysis for the two-
pion correlation function. For the purposes of this section, we
closely follow Ref. [11] to which we refer the reader for details.

Let ψnlm′ (p) represent the Fourier transform of the wave
function for the state with quantum numbers n, l,m′, namely,

ψnlm′ (p) =
∫

d3r

(2π )3
e−ip·rψnlm′ (r). (10)

With the normalization adopted in Eq. (2), the one-pion
momentum distribution can be represented as

P1(p) ≡ d3N

d3p

=
∑
n,l,m′

2Enle
−γ̄ Enl/T ψ∗

nlm′ (p)ψnlm′ (p). (11)

Similarly, and under the assumption of a complete factorization
of the two-particle density matrix, the two pion momentum
distribution can be written as

P2(p1, p2) ≡ d6N

d3p1d3p2

= P1(p1)P1(p2)

+
∣∣∣∣∣
∑
nlm′

2Enle
−γ̄ Enl/T ψ∗

nlm′ (p1)ψnlm′ (p2)

∣∣∣∣∣
2

,

(12)

where the two-pion correlation function C2 can be written, in
terms of P1 and P2, as

C2(p1, p2)= P2(p1, p2)

P1(p1)P1(p2)
. (13)

Notice that as a consequence of the factorization assumption,
the correlation function is such that C2(p, p) = 2.

For the spherically symmetric problem described here, the
correlation function depends on the magnitude, as well as on
the angle between the momenta of the two particles p1 and
p2. We make the change of variables to relative q = p1 − p2

and average K = (p1 + p2)/2 momenta and also to the angle
between these last two vectors, θ . The correlation function thus
becomes a function of K = |K|, q = |q|, and θ . To consider
the contribution from pions with different angles between their
momenta, we average over θ . Figure 3 shows C2(q) averaged
over θ and for a fixed value K = 260 MeV as a function of q

for R = 8 fm, T = 117 MeV, and β = 0.55. The solid curve
shows the corresponding Gaussian fit.

To extract the system’s size Reff from this function, we fit
this curve to a Gaussian distribution of the form

g(q) = 1 + ρ2(q),
(14)

ρ(q) = exp
( − q2R2

eff/2
)
.
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FIG. 3. (Color online) C2(q) averaged over the angle between K
and q as a function of q for K = 260 MeV, R = 8 fm, T = 117 MeV,
and β = 0.55. The histogram corresponds to the model calculation,
whereas the solid curve shows the corresponding Gaussian fit.

Figure 4 shows the behavior of Reff as a function of (Npart)1/3

using K = 260 MeV, compared to measured values for Rside

[17] from Au+Au collisions at
√

sNN = 200 GeV. The lower
solid curve corresponds to our model effective radii, whereas
the upper solid curve is the model curve displaced by a
constant R̃ = 0.8 fm. The dashed curve corresponds to the
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FIG. 4. (Color online) Reff as a function of (Npart)1/3 for K =
260 MeV compared to measured values for Rside from Au+Au
collisions at

√
sNN = 200 GeV. The lower solid curve corresponds to

the model effective radii, whereas the upper solid curve is the model
curve displaced by the constant R0 = 0.8 fm. The dashed curve is the
best linear fit to the data.
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best linear fit to the data. We notice that the slope of our model
curve is in good agreement with the data. The fact that the
intercept is different from zero may indicate the existence of
correlation scales in the data that are not considered in our
simple approach.

However, as a function of K , it is expected that Reff

approaches a limiting value for large K , in accordance with the
analysis in Ref. [11]. This expectation is based on the findings
in Ref. [15], where it is shown that the model overshoots the
large pt part of the neutral pion spectrum. A detailed analysis
in this direction is being performed and will be reported
elsewhere.

Finally, recall that

ρ(r) = exp
( − r2/2R2

eff

)
(15)

is the spherically symmetric three-dimensional distribution in
space that gives rise to ρ(q) upon Fourier transformation and
that the Rrms radius from ρ(r) is given by

Rrms =
√

3Reff. (16)

However, for a rigid sphere, such as the distribution giving rise
to our model distribution, the Rrms radius is given by

Rrms =
√

3/5R. (17)

By equating these two rms radii, we see that to compare the
effective radius with the model one the relation between them
is given by

R =
√

5Reff. (18)

V. CONCLUSIONS

In conclusion, we show that, by considering the finite size
of the interaction region and a simple scaling law of this with
the number of participants in the collision, it is possible to
achieve a good description of mid-rapidity pion and proton
data in Au+Au collisions at RHIC with common values of
temperature and transverse expansion velocity. For central
collisions, the proton to pion ratio is also well described
and its behavior can be attributed to the strength of the
radial flow achieved in RHIC. By performing a two-particle
correlation analysis and comparing to data for Rside as a
function of (Npart)1/3 from Au+Au collisions at

√
sNN =

200 GeV, we see that the scaling law found from the single
particle spectra analysis is in good agreement provided that
we displace our model curve by a constant R̃ = 0.8 fm and we
speculate that this signals the existence of an extra correlation
length in data that is not accounted for in our simple model.

We should stress that the spherical symmetry assumed
throughout can be thought of as a theoretical tool rather than
as a realistic approximation to the actual collision geometry
for the highest RHIC energies. Our intention is to provide a
working model with a high degree of symmetry that can be
better controlled in an actual calculation. The same is true
for the treatment of the shape of the region for noncentral
collisions, which one knows from elliptic flow analyses
partially retains the original almond shape of the overlap
region in the collision. The sizes referred to in this way reflect
characteristic sizes rather than actual spherical radii. Although
modifying the geometry used for the calculation will certainly
give rise to a different set of quantum states, the bulk of
the effect will remain because the physics that it captures
is the Heisenberg uncertainty principle, whereby restricting
the size of the region to become finite the momentum states
become broader. As for the use of stationary states, we point
out that, although the freeze-out volume is reached with a large
expansion velocity, the transition from a strongly interacting
system to a free gas is rapid and what matters is the distribution
right before this transition and therefore the length scale
associated with it.

It is important to emphasize that a description of the
transverse distributions for different impact parameters can
be done by considering a varying freeze-out temperature and
radial velocity, but the lesson to be learned from the present
analysis is that this variation can be tempered and/or even
avoided by considering the finite size of the interaction region.

We point out that some hydrodynamical models without
finite size effects have been able to give similarly good
descriptions of data up to pt on the order of 2–2.5 GeV [18]
at the expense of introducing a large amount of parameters.
What we have shown here is that it is also possible to achieve
the same quality of description including a basic property of
quantum systems often neglected, that is, the fact that in high
energy reactions particles are produced in small space-time
regions. While doing this and in this first step approach,
we made use of approximations to render the calculations
tractable; one such example is the treatment of the γ Lorentz
factor in terms of an average one. The relaxation of these
approximations is a natural step forward and we will report on
the progress of this work elsewhere.

ACKNOWLEDGMENTS

The authors thank G. Paic for his valuable comments and
suggestions. Support for this work has been received from
PAPIIT-UNAM under Grant IN107105 and CONACyT under
Grant 40025-F and from the bilateral agreement CONACyT-
CNPq J200.556/2004 and 491227/2004-3.

[1] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 69,
034909 (2004).

[2] R. C. Hwa and C. B. Yang, Phys. Rev. C 67, 034902 (2003);
R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Phys. Rev.
Lett. 90, 202303 (2003); V. Greco, C. M. Ko, and P. Lévai, ibid.
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