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We have developed a fast Monte Carlo procedure of hadron generation that allows one to study and analyze
various observables for stable hadrons and hadron resonances produced in ultrarelativistic heavy ion collisions.
Particle multiplicities are determined based on the concept of chemical freeze-out. Particles can be generated
on the chemical or thermal freeze-out hypersurface represented by a parametrization or a numerical solution of
relativistic hydrodynamics with given initial conditions and equation of state. Besides standard spacelike sectors
associated with the volume decay, the hypersurface may also include nonspacelike sectors related to the emission
from the surface of expanding system. For comparison with other models and experimental data, we demonstrate
the results based on the standard parametrizations of the hadron freeze-out hypersurface and flow velocity profile
under the assumption of a common chemical and thermal freeze-out. The C++ generator code is written under
the ROOT framework and is available for public use at http://uhkm.jinr.ru/.
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I. INTRODUCTION

Ongoing and planned experimental studies of relativistic
heavy ion collisions in a wide range of beam energies require
the development of new event generators and improvement
of existing ones [1]. Especially for experiments which will
be conducted at the CERN Large Hadron Collider (LHC),
because of very high hadron multiplicities, one needs fairly
fast Monte Carlo (MC) generators for event simulation.

A successful but oversimplified attempt at creating a fast
hadron generator motivated by hydrodynamics was done
in Refs. [2–5]. The present work is an extension of that
approach. We formulate a fast MC procedure to generate
hadron multiplicities, four-momenta, and four-coordinates for
any kind of freeze-out hypersurface. Decays of hadronic
resonances are taken into account. We consider hadrons
consisting of light u, d, and s quarks only, but the extension to
heavier quarks is possible. The generator code is written in the
object-oriented C++ language under the ROOT framework [6].

In this article, we discuss only central collisions of
nuclei using the Bjorken-like and Hubble-like freeze-out
parametrizations used in so-called blast wave [7] and Cracow
models [8], respectively. The same parametrizations have been
used in the hadron generator referred to as THERMINATOR
[9], which appears, however, to be less efficient than our
generator (see Secs. II, VI).
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The paper is now organized as follows. Sections II–V
are devoted to the description of the physical framework of
the model. In Sec. VI, the Monte Carlo simulation procedure
is formulated. The validation of this procedure is presented
in Sec. VII. In Sec. VIII, the example calculations are
compared with the BNL Relativistic Heavy Ion Collider
(RHIC) experimental data. We summarize and conclude in
Sec. IX.

II. HADRON MULTIPLICITIES

We give here the basic formulas for the calculation of
particle multiplicities. We consider the hadronic matter created
in heavy ion collisions as a hydrodynamically expanding
fireball with the equation of state of an ideal hadron gas.

The mean number N̄i of particle species i crossing the
spacelike freeze-out hypersurface σ (x) in Minkowski space
can be computed as [10]

N̄i =
∫

σ (x)
d3σµ(x)jµ

i (x). (1)

Here the four-vector d3σµ(x) = nµ(x)d3σ (x) is the element
of the freeze-out hypersurface directed along the hypersurface
normal unit four-vector nµ(x) with a positively defined
zero component [n0(x) > 0], and d3σ (x) = |d3σµd3σµ|1/2

is the invariant measure of this element. The normal to the
spacelike hypersurface is timelike, i.e., nµnµ = 1; generally,
for hypersurfaces including nonspacelike sectors, the normal
can also be spacelike, so then nµnµ = −1. The four-vector
j

µ

i (x) is the current of particle species i determined as

j
µ

i (x) =
∫

d3 �p
p0

pµfi(x, p), (2)
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where fi(x, p) is the Lorentz invariant distribution function
of particle freeze-out four-coordinate x = {x0, �x} and four-
momentum p = {p0, �p}. In the case of local equilibrium

fi(x, p) = f
eq
i (p · u(x); T (x), µi(x))

= 1

(2π )3

gi

exp ([p · u(x) − µi(x)]/T (x)) ± 1
, (3)

where p · u ≡ pµuµ, gi = 2Ji + 1 is the spin degeneracy
factor, T (x) and µi(x) are the local temperature and chemical
potential, respectively, u(x) = γ {1, �v} is the local collective
four-velocity, γ = (1 − v2)−1/2, and uµuµ = 1. The signs ±
in the denominator account for the proper quantum statistics
of a fermion or a boson, respectively.

The Lorentz scalar local particle density is defined as

ρi(x) = uµ(x)jµ

i (x) =
∫

d3 �p
p0

pµuµ(x)fi(x, p). (4)

For a system in local thermal equilibrium, the particle density
in the fluid element rest frame, where u∗µ = {1, 0, 0, 0}, is
solely determined by the local temperature T (x∗) and chemical
potential µi(x∗) for each particle species i, that is,

ρ
eq
i (T (x∗), µi(x

∗)) = u∗
µj

eqµ

i (x∗)

=
∫

d3 �p∗f eq
i (p∗0; T (x∗), µi(x

∗)); (5)

the four-vectors in fluid element rest frames are denoted by a
star.

In the case of local equilibrium, the particle current is
proportional to the fluid element four-velocity: j

eqµ

i (x) =
ρ

eq
i (T (x), µi(x))uµ(x). So the mean number of particles of

species i is expressed directly through the equilibrated density

N̄i =
∫

σ (x)
d3σµ(x)uµ(x)ρeq

i (T (x), µi(x)). (6)

In the case of constant temperature and chemical potential,
T (x) = T and µi(x) = µi , one has

N̄i = ρ
eq
i (T ,µi)

∫
σ (x)

d3σµ(x)uµ(x) = ρ
eq
i (T ,µi)Veff, (7)

i.e., the total yield of particle species i is determined by
the freeze-out temperature T , chemical potential µi , and
the total co-moving volume Veff , which is the so-called
effective volume of particle production and is a functional
of the field of collective velocities uµ(x) on the hypersurface
σ (x). The effective volume absorbs the collective velocity
profile and the form of hypersurface and cancels out in
all particle number ratios. Therefore, the particle number
ratios do not depend on the freeze-out details as long as the
local thermodynamic parameters are independent of x. The
concept of the effective volume and factorization property
similar to Eq. (7) was first considered in Ref. [11], has been
repeatedly used for the analysis of particle number ratios
(see, e.g., Ref. [12]), and was recently generalized for a
study of the averaged phase space densities [13] and entropy
[14]. One can also apply this concept in a limited rapidity
window [11,13,14].

The concept of the effective volume can be applied to
calculate the hadronic composition at both chemical and
thermal freeze-outs [12]. At the former one, which happens
soon after hadronization, the chemically equilibrated hadronic
composition is assumed to be established and frozen in further
evolution. The chemical potential µi for any particle species i

at the chemical freeze-out is entirely determined by chemical
potentials µ̃q per unit charge, i.e., per unit baryon number
B, strangeness S, electric charge Q, charm C, etc. It can be
expressed as the scalar product

µi = �qi
�̃µ, (8)

where �qi = {Bi, Si,Qi, Ci, . . .} and �̃µ = {µ̃B , µ̃S , µ̃Q,
µ̃C, . . .}. Assuming constant temperature and chemical po-
tentials on the chemical freeze-out hypersurface, the total
quantum numbers �q = {B, S,Q,C, . . .} of the selected ther-
mal part of the produced hadronic system (e.g., in a rapidity
interval near y = 0) with corresponding Veff can be calculated
as �q = Veff

∑
i ρ

eq
i �qi . For example,

B = Veff

n∑
i=1

ρ
eq
i (T ,µi)Bi, (9)

S = Veff

n∑
i=1

ρ
eq
i (T ,µi)Si, (10)

Q = Veff

n∑
i=1

ρ
eq
i (T ,µi)Qi. (11)

The potentials µ̃q are not independent. Thus, taking into
account baryon, strangeness, and electrical charges only and
fixing the total strangeness S and the total electric charge
Q, µ̃S and µ̃Q can be expressed through baryonic potential
µ̃B using Eqs. (10) and (11). Therefore, the mean numbers of
each particle and resonance species at chemical freeze-out are
determined solely by the temperature T and baryonic chemical
potential µ̃B .

In practical calculations, we use the phenomenological
observation [15] that particle yields in central Au+Au or
Pb+Pb collisions in a wide center-of-mass energy range√

sNN = 2.2–200 GeV can be described within the ther-
mal statistical approach using the following parametriza-
tions of the temperature and baryon chemical potential
[15]:

T (µ̃B) = a − bµ̃2
B − cµ̃4

B, (12)

µ̃B(
√

sNN ) = d

1 + e
√

sNN

, (13)

where a = 0.166 ± 0.002 GeV, b = 0.139 ± 0.016 GeV−1,

c = 0.053 ± 0.021 GeV−3, d = 1.308 ± 0.028 GeV, and e =
0.273 ± 0.008 GeV−1.

The particle densities at the chemical freeze-out stage are
too high (see, e.g., Ref. [12]) to consider particles as free
streaming and to associate this stage with the thermal freeze-
out one. The mean particle numbers N̄ th

i at thermal freeze-
out can be determined using the following procedure [12].
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First, the temperature and chemical potentials at chemical
freeze-out have to be fitted from the ratios of the numbers of
(quasi)stable particles. The fitting procedure should account
for the decays of all resonances as well as unstable particles
in given experimental conditions (feed-down). The common
factor, V ch

eff , and, thus, the absolute particle and resonance
numbers can be fixed, e.g., from pion multiplicities. Within
the concept of chemically frozen evolution, these numbers are
assumed to be conserved except for corrections due to decay
of some part of short-lived resonances that can be estimated
from the assumed chemical to thermal freeze-out evolution
time. Then one can calculate the mean numbers of different
particles and resonances reaching a (common) thermal freeze-
out hypersurface. At a given thermal freeze-out temperature
Tth these mean numbers can be expressed through the thermal
effective volume V th

eff and the chemical potentials for each
particle species µth

i . The latter can no longer be expressed in the
form µi = �qi

�̃µ, which is valid only for chemically equilibrated
systems. For a given parametrization of the thermal freeze-out
hypersurface, the thermal effective volume V th

eff (and thus
all µth

i ) can be fixed with the help of pion interferometry
data.

In practical calculations, we determine all macroscopic
characteristics of a particle system with the temperature T and
chemical potentials µi via a set of equilibrium distribution
functions in the fluid element rest frame:

f
eq
i (p∗0; T ,µi) = 1

(2π )3

gi

exp ([p∗0 − µi]/T ) ± 1
. (14)

Equation (5) for the particle number density then reduces to

ρ
eq
i (T ,µi) = 4π

∫ ∞

0
dp∗p∗2f

eq
i (p∗0; T ,µi). (15)

Using the expansion

f
eq
i (p∗0; T ,µi) = gi

(2π )3

∞∑
k=1

(∓)k+1 exp

(
k
µi − p∗0

i

T

)
, (16)

the density can be represented in the form of a fast converging
series:

ρ
eq
i (T ,µi) = gi

2π2
m2

i T

∞∑
k=1

(∓)k+1

k
exp

(
kµi

T

)
K2

(
kmi

T

)
,

(17)

where K2 is the modified Bessel function of the second order.
We assume that the calculated mean particle numbers

N̄i = ρ
eq
i Veff correspond to a grand canonical ensemble. The

probability that the ensemble consists of Ni particles is thus
given by the Poisson distribution

P (Ni) = exp (−N̄i)
(N̄i)Ni

Ni!
. (18)

III. HADRON MOMENTUM DISTRIBUTIONS

We suppose that a hydrodynamic expansion of the fireball
ends by a sudden system breakup at given temperature and

chemical potentials. In this case, the momentum distribution
of the produced hadrons keeps the thermal character of the
equilibrium distribution (3). Similar to Eqs. (1) and (2), this
distribution is then calculated according to the Cooper-Frye
formula [16]

p0 d3N̄i

d3p
=

∫
σ (x)

d3σµ(x)pµf
eq
i (p · u(x); T ,µi). (19)

The integral in Eq. (19) can be calculated with the help of the
invariant weight

Wσ,i(x, p) ≡ p0 d6N̄i

d3σd3 �p = nµ(x)pµf
eq
i (p · u(x); T ,µi).

(20)

It is convenient to transform the four-vectors into the fluid
element rest frame, e.g.,

n∗0 = nµuµ = γ (n0 − �v�n),
(21)

�n∗ = �n − γ (1 + γ )−1(n∗0 + n0)�v,

and calculate the weight in this frame as

Wσ,i(x, p) = W ∗
σ,i(x

∗, p∗) = n∗
µ(x)p∗µf

eq
i (p∗0; T ,µi). (22)

Particularly in the case when the normal four-vector
nµ(x) coincides with the fluid element flow velocity uµ(x),
i.e., n∗µ = u∗µ = {1, 0, 0, 0}, the weight W ∗

σ,i(x
∗, p∗) =

p∗0f
eq
i (p∗0; T ,µ) is independent of x and isotropic in the

three-momentum �p∗. A simple and 100% efficient generation
of particle four-momenta can then be realized in this frame,
and the four-momenta transformed back to the fireball rest
frame using the velocity field �v(x), that is,

p0 = γ (p0∗ + �v �p∗),
(23)

�p = �p∗ + γ (1 + γ )−1(p0∗ + p0)�v.

There are two well-known examples of the models giving
nµ(x) = uµ(x): the Bjorken model with hypersurface τB =
(t2 − z2)1/2 = const and absent transverse flow, and the model
with hypersurface τH = (t2 − x2 − y2 − z2)1/2 = const and
spherically symmetric Hubble flow. Generally, nµ(x) may
differ from uµ(x), and one should account for the x-p
correlation and the corresponding anisotropy caused by the
factor nµpµ, even in the fluid element rest frame [17].

IV. GENERALIZATION OF THE COOPER-FRYE
PRESCRIPTION

It is well known that the Cooper-Frye freeze-out prescrip-
tion in Eq. (19) is not valid for the part of the freeze-out
hypersurface characterized by a spacelike normal four-vector
nµ. In this case, |n0| < |�n|, and so pµnµ < 0 for some
particle momenta thus leading to negative contributions to
particle numbers. Usually, the negative contributions are
simply rejected [18,19]. This procedure, however, violates the
continuity condition of the flow ρiu

µnµ through the freeze-out
hypersurface. Taking into account the continuity of the particle
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flow, the generalization of Eq. (19) has the form [18]

p0 d3N̄i

d3p
=

∫
σ (x)

d3σµ(x)πµ(x, p)f eq
i (T (x), µi(x)), (24)

where

πµ(x, p) = pµθ (1 − |̃λ(x, p)|)
+uµ(x) p · u(x) θ (|̃λ(x, p)| − 1), (25)

λ̃(x, p) = 1 − p · n(x) [p · u(x) n(x) · u(x)]−1,

and θ (x) = 1 for x � 0, θ (x) = 0 for x < 0.
Passing to the fluid element rest frames at each point x and

using Lorentz transformation properties of the quantities in
Eq. (24), one arrives at the same form of the four-vector of
particle flow as in the case of the freeze-out hypersurface with
the timelike normal nµ(x):

jµ(x) =
∫

d3 �p
p0

πµ(x, p)f eq
i (T (x), µi(x))

= ρ
eq
i (T (x), µi(x))uµ(x). (26)

Therefore, the factorization of the freeze-out details in the
effective volume in the case of constant temperature and
chemical potentials, i.e., Eq. (7), is valid for any type of
hypersurface [13]. It follows from Eqs. (24) and (25) that
the invariant weight in the fluid element rest frame has then
the form

W ∗
σ,i(x

∗, p∗) =
[
p∗µn∗

µ θ

(
1 −

∣∣∣∣ �p∗�n∗

p∗0n∗0

∣∣∣∣
)

+p∗0n∗0 θ

(∣∣∣∣ �p∗�n∗

p∗0n∗0

∣∣∣∣ − 1

)]
f

eq
i (p∗0; T ,µi).

(27)

For the timelike normal nµ(x), Eq. (27) reduces to Eq. (22).
It is worth noting that though the bulk of particles is

likely associated with the volume decay, the particle emission
from the surface of expanding system, or formally, from a
nonspacelike part of the freeze-out hypersurface enclosed in
Minkowski space, is essential for a description of hadronic
spectra and like pion correlations at relatively large pT [20].

V. FREEZE-OUT SURFACE PARAMETRIZATIONS

In principle, one can specify the fireball initial conditions
(e.g., Landau- or Bjorken-like) and equation of state to follow
the fireball dynamic evolution until the freeze-out stage with
the help of relativistic hydrodynamics. The corresponding
freeze-out four-coordinates xµ, the hypersurface normal four-
vectors nµ(x), and the collective flow four-velocities uµ(x)
can then be used to calculate particle spectra according to
the generalized Cooper-Frye prescription. This possibility is
foreseen as an option in our MC generator. In this paper,
however, we do not consider the fireball evolution; rather, we
demonstrate our fast MC procedure utilizing the simple and
frequently used parametrizations of the freeze-out.

At relativistic energies, because of the dominant longi-
tudinal motion, it is convenient to substitute the Cartesian
coordinates t, z by the Bjorken ones

τ = (t2 − z2)1/2, η = 1

2
ln

t + z

t − z
, (28)

and introduce the radial vector �r ≡ {x, y} = {r cos φ, r sin φ},
i.e.,

xµ = {τ cosh η, �r, τ sinh η}
= {τ cosh η, r cos φ, r sin φ, τ sinh η}. (29)

Similarly, it is convenient to parametrize the fluid flow four-
velocity uµ(x) = γ (x){1, �v(x)} ≡ γ (x){1, �vr (x), vz(x)} at a
point x in terms of the longitudinal (z) and transverse (r)
fluid flow rapidities

ηu(x) = 1

2
ln

1 + vz(x)

1 − vz(x)
,

(30)

ρu(x) = 1

2
ln

1 + vr (x) cosh ηu(x)

1 − vr (x) cosh ηu(x)
,

where vr = |�vr | is the magnitude of the transverse component
of the flow three-velocity �v = {vr cos φu, vr sin φu, vz}, i.e.,

uµ(x) = {cosh ρu cosh ηu, sinh ρu cos φu,

× sinh ρu sin φu, cosh ρu sinh ηu} (31)

= {(
1 + u2

r

)1/2
cosh ηu, �ur,

(
1 + u2

r

)1/2
sinh ηu

}
,

�ur = γ �vr = γr cosh ηu�vr , and γr = cosh ρu. For the consid-
ered central collisions of symmetric nuclei, φu = φ. Rep-
resenting the freeze-out hypersurface by the equation τ =
τ (η, r, φ), the hypersurface element in terms of the coordinates
η, r, φ becomes

d3σµ = εµαβγ

dxαdxβdxγ

dηdrdφ
dηdrdφ, (32)

where εµαβγ is the completely antisymmetric Levy-Civita
tensor in four dimensions with ε0123 = −ε0123 = 1. Particu-
larly for the azimuthally symmetric hypersurface τ = τ (η, r),
Eq. (32) yields [12]

d3σµ = τ (η, r)d2�rdη

{
1

τ

dτ

dη
sinh η + cosh η,−dτ

dr
cos φ,

− dτ

dr
sin φ,− 1

τ

dτ

dη
cosh η − sinh η

}
. (33)

Generally, the freeze-out hypersurface is represented by a set
of equations τ = τj (η, r, φ), and Eq. (32) should be substituted
by the sum of the corresponding hypersurface elements.

To simplify the situation, besides the azimuthal symmetry,
we further assume the longitudinal boost invariance [21]. The
local quantities (such as particle density) are then functions of
τ and r only. The hypersurface then takes the form τ = τ (r),
the flow rapidities ηu = η (i.e., vz = z/t), ρu = ρu(r), and
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Eq. (33) yields

d3σµ = τ (r)d2�rdη

{
cosh η,−dτ

dr
cos φ,

− dτ

dr
sin φ,− sinh η

}
,

d3σ =
∣∣∣∣∣1 −

(
dτ

dr

)2
∣∣∣∣∣
1/2

τ (r)d2�rdη, (34)

nµ(x) =
∣∣∣∣∣1 −

(
dτ

dr

)2
∣∣∣∣∣
−1/2

×
{

cosh η,
dτ

dr
cos φ,

dτ

dr
sin φ, sinh η

}
.

Note that the normal four-vector nµ becomes spacelike
(nµnµ = −1) for |dτ/dr| > 1.

For the simplest freeze-out hypersurface τ = const, one
has

d3σ = τd2�rdη,
(35)

nµ(x) = {cosh η, 0, 0, sinh η}.
In this case, the normal nµ(x) is timelike (nµnµ = 1) but gen-
erally different from the flow four-velocity uµ(x) except for the
case of absent transverse flow (i.e., ρu = 0). Assuming φu = φ

and the linear transverse flow rapidity profile [effectively
taking into account a positive flow-radius correlation up to the
radii close to the fireball boundary as indicated by numerical
solutions of (3+1)-dimensional relativistic hydrodynamics,
see, e.g., Ref. [22]]

ρu = r

R
ρmax

u , (36)

where R is the fireball transverse radius, then the total effective
volume for particle production at τ = const is

Veff =
∫

σ (x)
d3σµ(x)uµ(x) = τ

∫ R

0
γrrdr

∫ 2π

0
dφ

∫ ηmax

ηmin

dη

= 2πτ
η

(
R

ρmax
u

)2 (
ρmax

u sinh ρmax
u − cosh ρmax

u + 1
)
,

(37)

where 
η = ηmax − ηmin. For small values of the maximal
transverse flow rapidity ρmax

u , Eq. (37) reduces to Veff =
πτR2
η [12].

We shall refer the above choice of the freeze-out hyper-
surface and the flow four-velocity profile as the Bjorken-like
parametrization or Bjorken model scenario for particle freeze-
out with transverse flows [21].

We also consider the so-called Cracow model scenario
[8] corresponding to the Hubble-like freeze-out hypersurface
τH = (t2 − x2 − y2 − z2)1/2 = const and flow four-velocity

uµ(x) = xµ/τH . (38)

Introducing the longitudinal space-time rapidity η according
to Eq. (28) and the transverse space-time rapidity ρ =

sinh−1(r/τH ), one has [23]

xµ = τH {cosh η cosh ρ, sinh ρ cos φ,

sinh ρ sin φ, sinh η cosh ρ}, (39)

τH = τB/ cosh ρ. Since τH = τH (η, ρ, φ) = const, one finds
from Eq. (32)

d3σ = τ 3
H sinh ρ cosh ρ dηdρdφ = τH dηd2�r,

(40)
nµ(x) = uµ(x).

The effective volume corresponding to r = τH sinh ρ < R and
ηmin � η � ηmax is

Veff =
∫

σ (x)
d3σµ(x)uµ(x)

= τH

∫ R

0
r dr

∫ 2π

0
dφ

∫ ηmax

ηmin

dη = πτHR2
η. (41)

VI. HADRON GENERATION PROCEDURE

Our MC procedure to generate the freeze-out hadron multi-
plicities, four-momenta, and four-coordinates is the following:

(i) First, the parameters of the chosen freeze-out model
are initialized. Particularly for the models with constant
freeze-out temperature T and chemical potentials µi ,
the phenomenological formulas (12) and (13) are imple-
mented as an option allowing us to calculate T and µi at
the chemical freeze-out in central Au+Au or Pb+Pb
collisions specifying only the center-of-mass energy√

sNN . In the scenario with the thermal freeze-out
occurring at a temperature T th < T ch, the chemical
potentials µth

i are no longer given by Eq. (8). At given
thermal freeze-out temperature T th and effective volume
V th

eff , they are set according to the procedure described in
Sec. II. So far, only the stable particles and resonances
consisting of u, d, and s quarks are incorporated in
the model. They are taken from the ROOT particle data
table [6,24].

(ii) Next, the effective volume corresponding to a given
freeze-out model is determined, e.g., according to
Eq. (37) or (41), and particle number densities are cal-
culated with the help of Eq. (17). The mean multiplicity
of each particle species is then calculated according
to Eq. (7). A more general option to calculate the
mean multiplicities, e.g., in the case of the freeze-out
hypersurface obtained from relativistic hydrodynamics,
is the direct integration of Eq. (24). The multiplicity
corresponding to the mean one is simulated according
to the Poisson distribution in Eq. (18).

(iii) The particle freeze-out four-coordinates xµ =
{τ cosh η, r cos φ, r sin φ, τ sinh η} in the fireball rest
frame are then simulated on each hypersurface segment
τ = τj (r) according to the element d3σµuµ = d3σ ∗

0 =
n∗

0(r)|1 − (dτ/dr)2|1/2τ (r) d2�r dη, assuming n∗
0 and τ

functions of r (i.e., independent of η, φ), by sampling
uniformly distributed η in the interval [ηmin, ηmax],
φ in the interval [0, 2π ] and generating r in the interval
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[0, R]) using a 100% efficient procedure similar to the
ROOT routine GetRandom(). In the Bjorken- and Hubble-
like models: τ (r) = τB = const, n∗

0 = cosh ρu = γr and
|1 − (dτ/dr)2|1/2τ (r) = τH = const, n∗

0 = 1, respecti-
vely. Note that if n∗

0 and τ were depending on two
or three variables, a generalization of the routine
GetRandom() to more dimensions is possible. A less
efficient possibility is to simulate �r, η according to the
element d2�r dη and include the factor d3σn∗

0/d
2�r dη

in the residual weight in step (vi). Also note that
the particle freeze-out coordinates calculated from
relativistic hydrodynamics are distributed according to
the element d3σµuµ.

(iv) The corresponding collective flow four-velocities uµ(x)
are calculated using, e.g., Eqs. (31), (36), or (38).

(v) The particle three-momenta p∗{sin θ∗
p cos φ∗

p, sin θ∗
p

sin φ∗
p, cos θ∗

p}, in the fluid element rest frames are
then generated according to the probability f

eq
i (p0∗;

T ,µi)p∗2 dp∗d cos θ∗
p dφ∗

p by sampling uniformly dis-
tributed cos θ∗

p in the interval [−1, 1] and φ∗
p in the

interval [0, 2π ] and generating p∗ using a 100% efficient
procedure similar to ROOT routine GetRandom().

(vi) Next, the standard von Neumann rejection/acceptance
procedure is used to account for the difference
between the true probability W ∗

σ,i d3σd3 �p∗/p0∗

[see Eqs. (20), (22), (27)] and the probability f
eq
i (p0∗; T ,

µi)d3σµuµ d3 �p∗ = f
eq
i (p0∗; T , µi)n0∗ d3σd3 �p∗ corre-

sponding to the simulation steps (iii)–(v). Thus the
residual weight

W res
i = W ∗

σ,id
3σd3 �p∗

n0∗p0∗f eq
i d3σd3 �p∗ (42)

is calculated, and the simulated particle four-coordinate
and four-momentum are accepted provided that this
weight is larger than a test variable randomly simulated
in the interval [0, max(W res

i )]. Otherwise, the simula-
tion returns to step (iii). Note that for the freeze-out
parametrizations considered in this paper,

W res
i =

(
1 − �n∗ �p∗

n0∗p0∗

)
(43)

and the maximal weight max(W res
i ) can be calculated

analytically. Particularly in the Bjorken-like model
and when ηmax � 1, then W res

i is distributed in the
interval [1 − tanh ρmax

u , 1 + tanh ρmax
u ]. Step (vi) can be

omitted for the Hubble-like model or for the Bjorken
model without transverse flow (ρu = 0) when W res

i = 1.
Generally, in the residual weight one should take into
account the contribution of nonspacelike sectors of the
freeze-out hypersurface:

W res
i =

[(
1 − �n∗ �p∗

n0∗p0∗

)
θ

(
1 −

∣∣∣∣ �p∗�n∗

p∗0n∗0

∣∣∣∣
)

+ θ

(∣∣∣∣ �p∗�n∗

p∗0n∗0

∣∣∣∣ − 1

)]
. (44)

(vii) Next, the hadron four-momentum p∗µ is boosted to the
fireball rest frame according to Eqs. (23).

(viii) The two-body, three-body, and many-body decays are
simulated with the branching ratios calculated via ROOT

utilities [6]. A more correct kinetic evolution, taking
into account not only resonance decays but also hadron
elastic scattering, may be included with the help of
the Boltzmann equation solver C++ code which was
developed earlier [25].

It should be stressed that a high generation speed is achieved
because of the 100% generation efficiency of the freeze-out
four-coordinates and four-momenta in steps (iii)–(v) as well
as the weak non-uniformity of the residual weight W res

i in the
cases of practical interest. For example, in the Bjorken-like
model, the increase of the maximal transverse flow rapidity
from zero (W res

i = const) to ρmax
u = 0.65 leads only to a few

percent decrease of the generation speed. Compared, e.g., to
THERMINATOR [9], our generator appears to be more than
one order of magnitude faster.

VII. VALIDATION OF THE MC PROCEDURE

In the Boltzmann approximation for the equilibrium distri-
bution function (14), i.e., retaining only the first term in the
expansion (16), the transverse momentum (pt ) spectrum in the
Bjorken-like model takes the form [2,26]

dN̄i

ptdpt

= 1

π
gi τ mt e

µi/T 
η

∫ R

0
rdrK1

×
(

mt cosh ρu

T

)
I0

(
pt sinh ρu

T

)
, (45)

where I0(z) and K1(z) are the modified Bessel functions and
mt = (m2

i + p2
t )1/2 is the particle transverse mass.

To test our MC procedure, we compare in Fig. 1 the trans-
verse momentum spectrum calculated according to Eq. (45)
with the corresponding MC result for T = 0.165 GeV, R =
8 fm, mi = 0.14 GeV, 
η = 10, µi = 0.0 GeV, τ = 12 fm/c,
and ρmax

u = 0.65 and 2.0. One may see that the analytical and
the MC calculations practically coincide.

To demonstrate the increasing influence of the residual
weight with the increasing ρmax

u , we also present in Fig. 1
the MC results obtained without this weight.

VIII. INPUT PARAMETERS AND EXAMPLE
CALCULATIONS

We present here the results of example MC calculations
performed on the assumption of a common chemical and
thermal freeze-out and compare them with the experimental
data on central Au+Au collisions at RHIC.

A. Model input parameters

First, we summarize the input parameters which control the
execution of our MC hadron generator in the case of Bjorken-
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FIG. 1. Validation of the MC procedure for ρmax
u = 0.65 (left panel) and 2.0 (right panel): transverse momentum spectra (solid lines)

calculated according to Eq. (45) and corresponding MC results (black triangles). Also shown are MC results obtained with a constant residual
weight (black points).

like and Hubble-like parametrizations with a common thermal
and chemical freeze-out:

(i) Number of events to generate.
(ii) Thermodynamic parameters at chemical freeze-out: tem-

perature T and chemical potentials per a unit charge
µ̃B, µ̃S, µ̃Q. As an option, an additional parameter γs � 1
takes into account the strangeness suppression according
to the partially equilibrated distribution [27,28]

fi(p
∗0; T ,µi, γs) = gi

γ
−ns

i
s exp ([p∗0 − µi]/T ) ± 1

,

(46)

where ns
i is the number of strange quarks and antiquarks

in a hadron i. Optionally, the parameter γs can be
fixed using its phenomenological dependence on the
temperature and baryon chemical potential [29].

(iii) Volume parameters: the freeze-out proper time τ and
fireball transverse radius R.

(iv) Maximal transverse flow rapidity ρmax
u for Bjorken-like

parametrization [2,3].
(v) Maximal space-time longitudinal rapidity ηmax which

determines the rapidity interval [−ηmax, ηmax] in the
collision center-of-mass system. To account for the
violation of the boost invariance, we have included in
the code an option corresponding to the substitution of
the uniform distribution of the space-time longitudinal
rapidity η in the interval [−ηmax, ηmax] by a Gaussian
distribution exp(−η2/2
η2) with a width parameter 
η

(see, e.g., Ref. [30]).

The parameters used to model central Au+Au collisions at√
sNN = 200 GeV are given in Table I.

B. Space-time distributions of the hadron emission points

In Figs. 2 and 3, we show the distributions of the π+
emission transverse x coordinate and time generated in the
Bjorken-like and Hubble-like models with the parameters
given in Table I, ηmax = 2. Also shown are the contributions

from the primary π+’s emitted directly from the freeze-out
hypersurface and the contributions from π+’s from the decays
of the most abundant resonances ρ, ω,K∗(892), and 
. For
primary pions, x < R and τ < t < τ cosh ηmax. The tails at
|x| > R and t > τ cosh ηmax reflect the exponential law of the
resonance decays. The longest tails in Figs. 2 and 3 are due to
pions from ω decays.

C. Ratios of hadron abundances

It is well known that the particle abundances in heavy
ion collisions in a large energy range can be reasonably well
described within statistical models (see, e.g., Refs. [27,31,32])
based on the assumption that the produced hadronic matter
reaches thermal and chemical equilibrium. This is demon-
strated in Tables II and III for the particle number ratios
near midrapidity in central Au+Au collisions at

√
sNN = 130

and 200 GeV calculated in our MC model and the statistical
model of Ref. [33] and compared with the RHIC experimental
data. Being independent of volume and flow parameters, the
particle number ratios allow one to fix the thermodynamic
parameters. We have not tuned the latter here and simply
used the same thermodynamic parameters as in Ref. [33]
despite the noticeable differences in some particle number

TABLE I. Model parameters for central
Au+Au collisions at

√
sNN = 200 GeV.

Parameter Bjorken-like Hubble-like

T , GeV 0.165 0.165
µ̃B , GeV 0.028 0.028
µ̃S , GeV 0.007 0.007
µ̃Q, GeV −0.001 −0.001
γs 1 (0.8) 1 (0.8)
τ , fm/c 6.1 9.65
R, fm 10.0 8.2
ηmax 2 (3,5) 2 (3,5)
ρmax

u 0.65 –
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TABLE II. Particle number ratios near midrapidity in central
Au+Au collisions at

√
sNN = 130 GeV calculated with the ther-

modynamic parameters T = 0.168 GeV, µ̃B = 0.041 GeV, µ̃S =
0.010 GeV and µ̃Q = −0.001 GeV.

Ratios Our MC Statistical model [33] Experiment

π−/π+ 0.98 1.02 1.00 ± 0.02 [35],
0.99 ± 0.02 [36]

p̄/π− 0.06 0.09 0.08 ± 0.01 [37]
K−/K+ 0.90 0.92 0.91 ± 0.09 [35],

0.93 ± 0.07 [38]
K−/π− 0.22 0.16 0.15 ± 0.02 [39]
p̄/p 0.61 0.65 0.60 ± 0.07 [35],

0.64 ± 0.08 [38]
�̄/� 0.69 0.69 0.71 ± 0.04 [40]
�̄/� 0.79 0.77 0.83 ± 0.06 [40]
φ/K− 0.17 0.15 0.13 ± 0.03 [41]
�/p 0.48 0.47 0.49 ± 0.03 [42,43]
�−/π− 0.0086 0.0072 0.0088 ± 0.0020 [44]

ratios calculated in the two models. These differences may be
related to the different numbers of resonance states taken into
account and uncertainties in the decay modes of high excited
resonances.

D. Pseudorapidity distributions

In Fig. 4, we compare the PHOBOS data [34] on the
pseudorapidity spectrum of charged hadrons in central Au+Au
collisions at

√
sNN = 200 GeV with our MC results obtained

within the Bjorken-like and Hubble-like models for different
values of ηmax. One may see that the data are compatible
with the longitudinal boost invariance only in the midrapidity
region in which the model is practically insensitive to ηmax.
In the single freeze-out scenario, the data on particle numbers
at midrapidity thus allows one to fix the effective volume
Veff ∝ τR2.

TABLE III. Particle number ratios near
midrapidity in central Au+Au collisions at√

sNN = 200 GeV calculated with the ther-
modynamic parameters T = 0.165 GeV,
µ̃B = 0.028 GeV, µ̃S = 0.07 GeV, and
µ̃Q = −0.001 GeV.

Ratios Our MC Experiment [45]

π−/π+ 0.98 0.984 ± 0.004
K−/K+ 0.94 0.933 ± 0.008
K−/π− 0.21 0.162 ± 0.001
p̄/p 0.71 0.731 ± 0.011

E. Transverse momentum spectra

In Fig. 5, we compare the mid-rapidity PHENIX data [45]
on π+,K+ and proton pt spectra in Au+Au collisions at√

sNN = 200 GeV with our MC results obtained within the
Bjorken-like and Hubble-like models. A good agreement
between the models and the data may be seen for pions, while
for kaons and protons the models overestimate the spectra at
pt < 1 GeV/c. For kaons, this discrepancy can be diminished
with the help of the strangeness suppression parameter γs

of 0.8 (see the right panel in Fig. 5). The overestimated
slope of the kaon and proton pt spectra can also be related
to the oversimplified assumption of a common thermal and
chemical freeze-out or insufficient number of the accounted
heavy resonance states.

The contribution of different resonances to the pion pt

spectrum calculated in the Bjorken-like model is shown in
Fig. 6. Note that in the Hubble-like model, the transverse
flow is determined by the volume parameters R, τ ; so, at
fixed thermodynamic parameters and the effective volume
Veff ∝ τR2, the transverse momentum spectra allow one to
fix both R and τ . In the Bjorken-like model, there is more
freedom since the transverse flow is also regulated by the
parameter ρmax

u . The choice of these parameters in Table I has
been done to minimize the discrepancy of the simulated and
measured correlation radii of identical pions (see below).
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FIG. 2. π+ emission transverse x coordinate (left) and time (right) generated in the Bjorken-like model with the parameters given in Table I,
ηmax = 2: all π+’s (solid circles), direct π+’s (solid line), decay π+’s from ρ (squares), ω (open circles), K∗(892) (up-triangles), and 


(down-triangles).
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F. Correlation functions

It is well known that because of the effects of quantum
statistics (QS) and final state interaction (FSI), the momentum
correlations of two or more particles at small relative momenta
in their center-of-mass system are sensitive to the space-time
characteristics of the production process on a level of fm =
10−15 m, thereby serving as a correlation femtoscopy tool (see,
for example, [46]– [50]).

The momentum correlations are usually studied with
the help of correlation functions of two or more particles.
Particularly, the two-particle correlation function CF(p1, p2)
is defined as a ratio of the measured two-particle distribution
to the reference one which is usually constructed by mixing
the particles from different events of a given class, normalizing
the correlation function to unity at sufficiently large relative
momenta.

Since our MC generator provides the information on
particle four-momenta pi and four-coordinates xi of the
emission points, it can be used to calculate the correlation
function with the help of the weight procedure, assigning
a weight to a given particle combination accounting for the
effects of QS and FSI. Here we will consider the correlation

function of two identical pions neglecting their FSI, so the
weight

w = 1 + cos(q · 
x), (47)

where q = p1 − p2 and 
x = x1 − x2. The CF is defined
as the ratio of the weighted histogram of the pair kinematic
variables to the unweighted one.

Generally, the pair is characterized by six kinematic
variables. In the case of azimuthal symmetry, five variables
are usually chosen as the three components (out, side, and
long) of the relative three-momentum vector [47,48] q =
(qout, qside, qlong), half the pair transverse momentum kt , and
the pair rapidity or pseudorapidity. The out and side denote
the transverse, with respect to the reaction axis, components
of the vector q; the out direction is parallel to the transverse
component of the pair three-momentum.

The corresponding correlation widths are usually
parametrized in terms of the Gaussian correlation radii Ri ,

CF(p1, p2) = 1 + λ exp
( − R2

outq
2
out − R2

sideq
2
side

−R2
longq

2
long − 2R2

out,longqoutqlong
)
, (48)
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FIG. 4. Pseudorapidity [− ln tan(θ/2), θ is the particle production angle] distributions of charged particles in central Au+Au collisions at√
sNN = 200 GeV from the PHOBOS experiment [34] (solid circles) and MC calculations within the Bjorken-like (left panel) and Hubble-like

(right panel) models. Model results corresponding to the space-time rapidity range parameter ηmax = 5, 3, and 2 are shown by solid, dashed,
and dotted lines, respectively.
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Right panel shows the model results obtained with the strangeness suppression parameter γs = 0.8.

and their dependence on pair rapidity and transverse mo-
mentum is studied. The form of Eq. (48) assumes azimuthal
symmetry of the production process [47]. Generally, e.g., in
the case of the correlation analysis with respect to the reaction
plane, all three cross terms qiqj contribute [30]. We choose
as the reference frame the longitudinal co-moving system
(LCMS) [49]. In LCMS, each pair is emitted transverse to the
reaction axis so that the pair rapidity vanishes. The parameter λ

measures the correlation strength. For fully chaotic Gaussian
source λ = 1. Experimentally observed values of λ < 1 are
mainly due to the contribution of very long-lived sources
(η, η′,K0

s , �, . . .), the non-Gaussian shape of the correlation
functions, and particle misidentification.

The correlation functions of two identical charged pions
have been calculated within the Bjorken-like and Hubble-like
models with the parameters given in Table I, ηmax = 2, reason-
ably well describing single-particle spectra in the midrapidity
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FIG. 6. Contributions to the π+ transverse momentum spectrum
at midrapidity in central Au+Au collisions at

√
sNN = 200 GeV

calculated within the Bjorken-like model: all π+’s (solid circles),
direct π+’s (stars), decay π+’s from ρ (squares), ω (open circles),
K∗(892) (up-triangles), and 
 (down-triangles).

region. The three-dimensional correlation functions were fitted
according to Eq. (48) in two kt intervals 0.1 < kt < 0.3 and
0.3 < kt < 0.6 GeV/c. In Fig. 7, the fitted correlation radii and
strength parameter are compared with those measured by the
STAR Collaboration [50]. One can see that the Bjorken-like
model, adjusted to describe single-particle spectra, describes
also the decrease of the correlation radii with increasing kt but
overestimates their values. The situation is even worse with
the Hubble-like model, which is more constrained than the
Bjorken-like one and yields a larger longitudinal radius by a
factor of 2.

As for the overestimation of the correlation strength
parameter λ, it is likely related to the neglected contribution of
misidentified particles and pions from weak decays. Indeed,
the new preliminary analysis of the STAR data with the
improved particle identification [51] yields the λ parameter
closer to the model results.

We would like to emphasize that the high freeze-out
temperature of 165 MeV and a fixed effective volume Veff ∝
τR2 make it quite difficult to describe the correlation radii
within the single freeze-out model. Thus a tuning of the
longitudinal radius Rlong ≈ τ (T/mt )1/2 requires a small proper
time τ , leading to too large values of R and Rside ∝ R. The
concept of a later thermal freeze-out occurring at a smaller
temperature T th < T ch and with no multiplicity constraint on
the thermal effective volume (see Sec. II) can help resolve this
problem (see, e.g., Ref. [7]).

To obtain valuable information from the correlation data,
one should consider using more realistic models than the sim-
ple Bjorken-like and Hubble-like ones (particularly, consider
a more complex form of the freeze-out hypersurface taking
into account particle emission from the surface of expanding
system [20]) and studying the problem of particle rescattering
and resonance excitation after the chemical and/or thermal
freeze-out (only minor effect of elastic rescatterings on particle
spectra and correlations is expected [25]). For the latter, our
earlier developed C++ kinetic code [25] can be coupled to the
MC freeze-out generator.
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IX. CONCLUSIONS AND PERSPECTIVES

We have developed a MC procedure, and the corresponding
C++ code, that allows a fast but realistic simulation of
multiple hadron production in central relativistic heavy ion
collisions. A high generation speed and easy control through
input parameters make our MC generator code particularly
useful for detector studies. As options, we have implemented
two freeze-out scenarios with coinciding and with different
chemical and thermal freeze-outs. Also implemented are var-
ious options of the freeze-out hypersurface parametrizations
including those with nonspacelike hypersurface sectors related
to the emission from the surface of the expanding system.
The generator code is quite flexible and allows the user
to add other scenarios and freeze-out surface parametriza-
tions as well as additional hadron species in a simple
manner.

We have compared the RHIC experimental data with our
MC generation results obtained within the single freeze-out
scenario and with Bjorken-like and Hubble-like freeze-out
surface parametrizations. Although simplified, such a scenario
nevertheless allows for a reasonable description of particle
spectra. However, it fails to describe the correlation functions
of identical pions, overestimating the correlation radii.

The RHIC data thus point to the need for a more
complicated scenario likely including different chemical and
thermal freeze-outs, a more complex form of the freeze-out

hypersurface (the use of numerical solution of the relativistic
hydrodynamics is foreseen), and the account for kinetic
evolution following the chemical and/or thermal freeze-out
(for this, the MC generator can be coupled to our C++ kinetic
code [25]).

We plan to implement in the MC generator the impact
parameter dependence of the freeze-out hypersurface and
account for the anisotropic flow similar to Refs. [4,5]. In view
of the importance of high-pt physics related to the partonic
states created in ultrarelativistic heavy ion collisions, we also
foresee the inclusion of minijet production [5].
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[23] T. Csörgö and B. Lörstad, Phys. Rev. C 54, 1390 (1996).
[24] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001

(2002).
[25] N. S. Amelin, R. Lednicky, L. V. Malinina, T. A. Pocheptsov,

and Y. M. Sinyukov, Phys. Rev. C 73, 044909 (2006).
[26] E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev. C 48,

2462 (1993).

[27] G. D. Yen, M. I. Gorenstein, W. Greiner, and S. N. Yang, Phys.
Rev. C 56, 2210 (1997).

[28] J. Rafelski, Phys. Lett. B262, 333 (1981).
[29] F. Becattini, J. Mannien, and M. Gazdzicki, Phys. Rev. C 73,

044905 (2006).
[30] U. A. Wiedemann and U. Heinz, Phys. Rep. 319, 145 (1999).
[31] S. Wheaton and J. Clemans, THERMUS—A Thermal Model

Package for ROOT, hep-ph/0407174.
[32] P. Braun-Munzinger et al., Phys. Lett. B344, 43 (1995); B365,

1 (1996); B465, 15 (1999).
[33] W. Florkowski and W. Broniowski, in Proceedings of the Second

International Workshop on Hadron Physics, Coimbra, Portugal,
September 2002, AIP Conf. Proc. No. 660 (AIP, New York,
2003), p. 177.

[34] B. B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A757,
28 (2005).

[35] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 87,
102301 (2001).

[36] I. G. Bearden et al. (BRAHMS Collaboration), Nucl. Phys.
A698, 667c (2002).

[37] J. Harris et al. (STAR Collaboration), Nucl. Phys. A698, 64c
(2002).

[38] H. Ohnishi et al. (PHENIX Collaboration), Nucl. Phys. A698,
659c (2002).

[39] H. Caines et al. (STAR Collaboration), Nucl. Phys. A698, 112c
(2002).

[40] J. Adams et al. (STAR Collaboration), Phys. Lett. B567, 167
(2003).

[41] C. Adler et al. (STAR Collaboration), Phys. Rev. C 65, 041901
(2002).

[42] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89,
092301 (2002).

[43] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87,
262302 (2001).

[44] J. Castillo et al. (STAR Collaboration), Nucl. Phys. A715, 518
(2003).

[45] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 69,
034909 (2004).

[46] R. Lednicky, Nucl. Phys. A774, 189 (2006).
[47] M. I. Podgoretsky, Sov. J. Nucl. Phys. 37, 272 (1983).
[48] S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).
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