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Microscopic calculations of double and triple giant resonance excitations in heavy ion collisions
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We perform microscopic calculations of the inelastic cross sections for the double and triple excitation of
giant resonances induced by heavy-ion probes within a semiclassical coupled-channels formalism. The channels
are defined as eigenstates of a bosonic quartic Hamiltonian constructed in terms of collective random-phase
approximation phonons. Therefore, they are superpositions of several multiphonon states, also with different
numbers of phonons, and the spectrum is anharmonic. The inclusion of (n+1) phonon configurations affects
the states whose main component is a n-phonon one and leads to an appreacible lowering of their energies. We
check the effects of such further anharmonicities on the previously published results for the cross section for
the double excitation of giant resonances (GR). We find that the only effect is a shift of the peaks toward lower
energies, the double GR cross section being unmodified by the explicity inclusion of the three-phonon channels
in the dynamical calculations. The latter provide an important contribution to the cross section in the triple GR
energy region, which, however, is still smaller than the experimental available data. The inclusion of four-phonon
configurations in the structure calculations does not modify the results.
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I. INTRODUCTION

Since their discovery (about 70 years ago) the giant
resonances (GR) have been considered the best example of
coherent motion of nuclear systems [1]. From a macroscopic
point of view, this collective behavior can be considered high-
frequency harmonic vibrations of the nuclear density around its
equilibrium shape. If these oscillations were harmonic, then
higher states of equidistant energies should exist. The first
experimental indication of some structures in the excitation
function in heavy-ion collisions that could be interpreted as
due to the population of double giant resonances dates back to
1977 (see reviews in Ref. [2] and references therein). Recently
there has been unambiguous evidence of the existence of a
double giant quadrupole resonance [3]. More recently the triple
giant quadrupole resonance has been observed at GANIL by
using, for the first time, the SPEG spectrometer in conjunction
with the INDRA 4π detector [4,5]. Multiphonon excitations
were clearly observed in double charge-exchange reactions
using (π+, π−) and (π−, π+) reactions [6]. The study of the
excitation of the double giant dipole resonances (DGDR) of
very heavy nuclei by means of relativistic Coulomb excitation
have been investigated in experiments performed at GSI within
the LAND Collaboration [7]. These are exclusive experiments
where projectile fragments, neutron and γ rays from the

excited fragments, are measured. More recently, the same
group has found a hint for a three-phonon dipole state by
measuring the differential cross section for electromagnetic
fission of 238U at relativistic energy [8].

Theoretical studies to better understand multiphonon prob-
lems have taken various directions. An extension of the
quasiparticle random-phase approximation (RPA) was used
in Ref. [9], where, in addition to the mixing of one- and
two-phonon states, some specific three-phonon configurations
were considered as a mechanism to generate the damping
width of the DGDR. Other approaches exploit the so-called
Brink-Axel hypothesis [10]: a GR can be excited on top
of any nuclear excited state. In this approach [11,12], the
states to which the one-phonon states decay are described
in terms of Gaussian orthogonal ensemble (GOE). By means
of the random matrix theory the average cross section for the
excitation of the DGDR is calculated as a function of the
spreading and damping width. The inelastic cross sections of
the double and triple giant dipole resonances in a Coulomb
excitation process [13] also have been calculated.

The excitation of collective vibrational states in heavy-ion
collisions can be viewed as due to the action of the mean
field of each collision partner on the other. A rather good
microscopic description of such states is given by RPA. It
can be introduced as the lowest order in a boson expansion
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leading to a boson image of the Hamiltonian that is a sum
of independent harmonic oscillators corresponding to each
collective mode. Thus the RPA states are pure one-phonon
and multiphonon states and their energy is the sum of the
energies of the single phonons. When further terms in the
boson expansion are taken into account, anharmonicities arise
and the eigenstates of the Hamiltonian are superpositions of
multiphonon states, also with different numbers of phonons.

The mean field U of each nucleus is a one-body operator.
When the ground state of each nucleus is approximated by the
uncorrelated Hartree-Fock (HF) one, only the particle-hole
(ph) part of U enters. Its bosonic image is linear in the phonon
creation and annihilation operators. Nonlinear terms arise in a
natural way when the correlations in the ground state are taken
into account and thus the particle-particle and hole-hole parts
of U are no more negligible. Indeed, the bosonic images of
such terms are nonlinear in the RPA phonons.

In several previous articles [14–16], it has been shown
that the above-mentioned anharmonicities and nonlinearities
lead to a much better agreement between theoretical and
experimental cross sections for the excitation of double giant
resonance states in heavy-ion collisions.

Until now only the cross sections to one- and two-phonon
states have been calculated within the above-mentioned
approach. (For simplicity, we call the “n-phonon state” an
eigenstate of the Hamiltonian whose main component is an
n-phonon configuration). In Ref. [17], however, we computed
the vibrational spectrum of 40Ca and 208Pb by extending the
previous calculations with the inclusion of three-phonon states.
It was found that the two-phonon states are affected by this
extension. In particular, the double GRs are appreciably pushed
down. The lesson we learn from this is that one cannot perform
calculations on the double GR without taking into account
the effect of the three-phonon states. In view of that, in the
present article we recalculate the cross section for the inelastic
scattering 40Ca+40Ca at 50 MeV/nucleon and 208Pb+208Pb at
641 MeV/nucleon in the enlarged space to check how much our
previous results on the cross section in the double GR region
are modified. Then we present calculations of the inelastic
cross sections for the triple excitation of the GR where we
include the three-phonon states. In these latter calculations we
also take into account the effects of the four-phonon states.

II. APPROACHES AND FORMALISM

In this section we briefly present our approach and how
anharmonicities in the spectrum and nonlinearities in the
excitation operator are treated in it. Our model makes use
of standard semiclassical methods techniques. These methods
are based on the assumption that nuclei move on classical
trajectories, whereas the internal degrees of freedom are treated
quantum mechanically.

A. Multiphonon structure and anharmonicities

Let us denote by p(h) the single-particle states that are
unoccupied (occupied) in the HF ground state of the nucleus

and introduce the mappings [18]

a†
pah → B

†
ph + (1 −

√
2)

∑
p′h′

B
†
p′h′B

†
p′hBph′ + . . . , (1)

and

a†
pap′ →

∑
h

B
†
phB

†
p′h; a

†
hah′ →

∑
p

B
†
phB

†
ph′ , (2)

where B
†
ph and Bph are bosonic operators

[Bph, B
†
p′h′] = δpp′δhh′ . (3)

The second term in the right-hand side of Eq. (1) is a correction
taking care of the Pauli principle. The fermionic Hamiltonian
is then mapped onto

HB = (H10B
† + H11B

†B + H20B
†B†) + h.c.

+ (H21B
†B†B + H22B

†B†BB + H31B
†B†B†B)

+h.c., (4)

where we have dropped indices for simplicity. The term H10

vanishes in the HF basis. Collective phonon operators are
introduced by means of the Bogoliubov transformation

Q†
ν =

∑
p,h

(
Xν

phB
†
ph − Y ν

phBph

)
. (5)

The X and Y coefficients can be chosen so that the part of
the Hamiltonian that is quadratic in the B† and B operators is
diagonal when expressed in terms of the Q† and Q ones

HRPA =
∑

ν

EνQ
†
νQν (6)

and the X and Y satisfy the RPA equations. Of course,
the spectrum of HRPA is harmonic. The other terms of the
bosonic Hamiltonian (5) introduce anharmonicities because
they mix multiphonon states among themselves. In our model
we neglect the H31 term because it is smaller than the others,
as it has also been checked in an extended Lipkin model [19].
For the remaining terms we keep only

H21B
†B†B + h.c. → H21Q

†Q†Q + h.c., (7)

and

H22B
†B†BB → H22Q

†Q†QQ, (8)

because the others are smaller by a factor Y/X or powers
of it. Therefore our bosonic Hamiltonian becomes

HQ =
∑

ν

EνQ
†
νQν +

∑
ν1ν2ν

H21Q
†
ν1

Q†
ν2

Qν + h.c.

+
∑

ν1ν2ν
′
1ν

′
2

H22Q
†
ν1

Q†
ν2

Qν ′
1
Qν ′

2
. (9)

The eigenstates and eigenvalues of HQ are then found by
diagonalizing it in the space of the states containing up to
a certain number Npho of phonons. The H22 term mixes
multiphonon states with the same number of phonons, whereas
the H21 mixes states having number of phonons differing by
one. In Ref. [17] we showed the results for 40Ca and 208Pb
obtained in the space with Npho = 3 and we compared them
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with those of Ref. [15], where we had Npho = 2. In the next
section we mention the main results obtained there.

B. Nonlinearities in the excitation operator

Within a semiclassical approach to nucleus-nucleus colli-
sions the excitation of one partner (say A) is due to the mean
field of the other (B) acting on it. Therefore the excitation
operator is

W (t) =
∑
ij

Wij (t)a†
i aj , (10)

where Wij (t) = (i|UB( �R(t))|j ) and UB is the mean field of
B (including Coulomb), which depends on time through the
relative distance between the two nuclei. The indices i and j

denote single-particle states, both occupied and unoccupied,
in nucleus A. When one neglects the correlation present in
the ground state, only the ph terms of W are effective and the
boson image of W is linear in the Q† and Q operators. Taking
into account the correlations the pp and hh parts of W cannot
be neglected and this brings to quadratic terms

W = W 00 +
(∑

ν

W 10
ν Q†

ν +
∑
νν ′

W 11
νν ′Q

†
νQν ′

+
∑
νν ′

W 20
νν ′Q

†
νQ

†
ν ′

)
+ h.c. (11)

The first term in this equation represents the interaction of
the two colliding nuclei in their ground state. The W 10 part
connects states differing by one phonon, the W 11 term couples
excited states with the same number of phonons, whereas
W 20 allows coupling between states differing by two phonons.
These new routes of excitation may increase the excitation
probability of the multiple GR.

C. The cross section

The inelastic scattering cross section is calculated within a
semiclassical coupled-channels approach. Let |�α > denote
the excited state of the nucleus of which we want to
calculate the excitation probability. These states are eigenstates
of the Hamiltonian (9) and therefore are superpositions of
multiphonon states obtained by diagonalizing HQ in the space
containing up to Npho phonon configurations. The excitation
probability amplitudes satisfy, for each impact parameter b,
the set of coupled differential equations

Ȧα(t) = −i
∑
α′

ei(Eα−Eα′ )t 〈�α|W (t)|�α′ 〉Aα′ (t), (12)

which are integrated along classical trajectories with various
impact parameters b [15,16]. The cross section to excite the
state |�α〉 is then calculated as

σα = 2π

∫ +∞

0
Pα(b)T (b)bdb, (13)

where Pα(b) = |Aα(b, t = +∞)|2. The integral is over the
whole impact parameters range that is modulated by the
transmission coefficient T (b).

III. EXCITATION OF 40CA

In this section we briefly recall the results we obtained
for the structure calculation for the 40Ca [17]. As stated also
in the Introduction, calculations were guided by the results
we got from a study of an extended Lipkin-Meshow-Glick
(LMG) model [19]. In that article, the original LMG model
has been extended to include terms that play the same role
than the anharmonic terms of our Hamiltonian (9). The
Hamiltonian of such an extended LMG model is still exactly
solvable. The relevant results can be summarized as follows:
its diagonalization in an enlarged space, including up to
three-phonon states, produces results that are very close to
the exact ones [19]. Therefore we have followed this approach
to calculate the spectrum of 40Ca in the space of one-, two-,
and three-phonon states.

We used a discrete self-consistent HF+RPA with a SGII
interaction, including all one-phonon states with J � 3 that
exhaust at least 5% of the energy-weighted sum rule. For
the nucleus 40Ca, we used the nine one-phonon basis shown
in Table I. We constructed all two- and three-phonon con-
figurations out of them, without energy cutoff, with both
natural and unnatural parity. Then the Hamiltonian (9) has
been diagonalized in the space spanned by such states. The
eigenstates are mixed states whose components are of one-,
two-, and three-phonon kind:

|�α〉 =
∑
ν1

cα
ν1

|ν1〉 +
∑
ν1ν2

cα
ν1ν2

|ν1ν2〉 +
∑

ν1ν2ν3

cα
ν1ν2ν3

|ν1ν2ν3〉.

(14)

The inclusion of the three-phonon states changes the
energies of the phonon basis of a few hundred of keV as
shown in Table I. The main result of the calculation is that the
spectrum of the two-phonon states is strongly modified by their
coupling to the three-phonon ones. The diagonalization in the
three-phonon space produces very large shifts in the energies,

TABLE I. RPA one-phonon basis for the nucleus 40Ca. For each
state, spin, parity, energy, and percentage of the EWSR(isovector for
the GDR and the IVGQR and isoscalar for all the other states) are
reported. In the last two columns we report the energies of the phonons
after the inclusion of two- and three-phonon states, respectively.

State J π Eharm(MeV) EWSR(%) E2ph(MeV) E3ph(MeV)

GMR1 0+ 18.25 30 18.36 18.30
GMR2 0+ 22.47 54 22.00 21.78
GDR1 1− 17.78 56 17.35 17.29
GDR2 1− 22.03 10 21.64 21.59
ISGQR 2+ 16.91 85 16.51 16.44
IVGQR 2+ 29.59 26 29.09 29.00
3− 3− 4.94 14 4.47 4.40
LEOR 3− 9.71 5 9.33 9.28
HEOR 3− 31.33 25 30.80 30.89
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more than 1 MeV (for 40Ca) in almost all the cases and always
downward. In view of these results, the inelastic scattering
cross section to two-phonon states has to be recalculated
and compared with that obtained without the inclusion of
three-phonon configurations [16].

A. Cross section at 50 MeV/nucleon

The semiclassical calculations for the reaction 40Ca+40Ca
at 50 MeV/nucleon have been performed within the framework
described above. In this section we discuss the inelastic cross-
section calculations done by including up to the three-phonon
states.

In the case we are interested in, the nuclear contribution
is important. The form factors have been calculated [20] by
employing a double folding procedure with the transition
densities calculated within the RPA. Furthermore, it has been
introduced an optical potential to avoid the uncertainty on the
integration over the impact parameters. Because the optical
potential takes into account the absorption due to all channels,
we have introduced a procedure to avoid double counting the
effects of the channels explicitly included in our calculations
[16].

The number of two- and three-phonon states constructed
from the one-phonon basis given in Table I is more than
1,000. Considering that the amplitudes are complex quantities
and that we have an equation for each angular momentum
and its projection, the number of time-dependent coupled
equations to solve amounts to about 10,000. We have then
to reduce their number to render the calculation feasible. We
took into account only the natural-parity states and furthermore
we have considered for the calculations only states with an
excitation energy below 60 MeV. This cutoff in the excitation
energies guarantees that we take into account almost all the
two-phonon states and a great number of the three-phonon
ones. Furthermore, we took into account, for each state,
only the components whose value is larger than 0.03. This
choice guaranties still a very good normalization and reduces
appreciably the computation time.

The contribution of the three-phonon states to the inelastic
cross section for 40Ca+40Ca at 50 MeV/nucleon can be
appreciated in Fig. 1, where the results of the calculations
in the larger space (solid line) are compared with the two-
phonon ones (dot-dashed line) [16]. Actually, we calculated the
inelastic cross section for each individual state (14) by solving
the coupled-channels equations (12). The curves presented
here are always the result of a smoothing procedure with a
Lorentzian with a width of � = 5 MeV (7 MeV for excitation
energies greater than 30 MeV) of the theoretical cross sections
to the discrete levels. It appears that both the one-phonon
and the two-phonon strengths are influenced a bit by the
inclusion of the three-phonon states. Although the three-
phonon configurations appreciably affect both the energies
and wave functions of the two-phonon states [17], their role
in the calculation of the cross section seems to be small. On
the contrary, in the three-phonon region the increase of the
cross section is appreciable and one can see that the inclusion
of the three-phonon components improves the agreement with
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1, 2, 3 phonon (Harm & Lin)

FIG. 1. Comparison of the cross section for 40Ca+40Ca at
50 MeV/nucleon computed, including only one and two phonons
(dot-dashed line) with the complete calculation, namely with one,
two, and three phonons (solid line). The dashed line correspond to
the complete calculation in the harmonic and linear case. For the
experimental data see Ref. [16].

the experimental data although there is still some cross section
missing. One might argue that a further enlargement of the
diagonalization space by including up to four-phonon states
could reduce this discrepancy. As shown in the next section
this is not the case. Therefore some processes that are not
taken into account in our approach might be present in this
energy region. Indeed, the experimental spectrum compared
with the calculations is an excitation energy spectrum of 40Ca
in coincidence with only one detected proton at backward
angles. This coincidence measurement makes sure that below
35 MeV no reaction mechanism participates to the inelastic
channel. However, above this excitation energy, a second
particle can be emitted in the forward direction through a
different reaction mechanism (such as the towing mode),
leading to a higher cross section than for a simple excitation.
This can be evidenced by means of velocity plots [21] that
clearly show an asymmetry. Even though one proton is emitted
backward another one can be emitted forward contributing to
an increased cross section around 40 MeV.

In Fig. 1 it is also plotted a curve (dashed) that corresponds
to the complete calculation in the harmonic and linear
case. Here, once again, we underline the importance of the
anharmonic and nonlinear contributions. Indeed, from the
figure one infers that their presence increases the cross section
along the whole energy range of the calculation, expecially in
the double and triple GR energy regions. The increase of the
cross section in the triple GR energy region could be thought
to be due only to the presence of many more states in that
region when three-phonon states are included. The comparison
with the results in the harmonic and linear limit, where we
have the same number of states, puts in evidence the real
origin of the strong increase. Namely, as already stressed in
Refs. [15,16,20], the nonlinearities open new routes to the
excitation of multiphonon states, whereas the anharmonicities
allow to populate them through their one- and/or two-phonon
components.
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FIG. 2. Comparison of the inelastic cross section for 40Ca+40Ca
at 50 MeV/nucleon between a calculation, including only one- and
two-phonon states, but with the energies and wave functions coming
from the diagonalization in the space of up to three-phonon states
(solid line) and the old two-phonon calculations (dashed line).

In Fig. 2 we compare the old two-phonon calculation of
Ref. [16] with the one done including only one- and two-
phonon channels but with the energies and wave functions
coming from the diagonalization of the Hamiltonian (9) in
the space of up to three-phonon states. We note that the
different calculations produce very similar results. The single
resonance peak is exactly the same in energy, intensity, and
shape, whereas a bit of a difference can be noted in the
two-phonon region as well as in the high-energy region. The
main effect, in these regions, is a small shift toward lower
energies of the whole curve, which is due to the relatively
strong anharmonicities we found when the three-phonon states
were included in the diagonalization. In any case, the two
curves are almost indistinguishable also in comparison with
the experimental data.

This study shows that the calculation of the cross section
can be considered to be converged at the n-phonon level when
the (n+1)-phonon states are taken into account in the structure
calculation but are neglected in the dynamical excitation. In
the next section we apply this recipe to the three-phonon
excitation, i.e., we include the four-phonon configurations in
the structure but not in the coupled-channels calculations.

To get a deeper insight in the role of the three-phonon
states, in Fig. 3 we have decomposed the inelastic cross
section into the one-, two-, and three-phonon components. The
one-phonon distribution is dominated by the low-lying states
and the giant quadrupole resonance. The small peak at around
30 MeV corresponds to the excitation of the high-energy
octopole resonances (HEOR) state. All these states are excited
dominantly at low impact parameters through the nuclear
interaction. The incident energy and the projectile charge
are not large enough to induce a strong Coulomb excitation,
so the GDR cross section is four times smaller than the
giant quadrupole resonance (GQR) one. The two-phonon
contribution appears to be rather strong, about one order
of magnitude lower than the single-phonon component. Its
structure is more complex, the various bumps being related to
the double low-lying state excitation, the excitation of a GQR
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/d

E
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m
b/

M
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)

0 10 20 30 40 50 60

E (MeV)

total
1-phonon
2-phonon
3-phonon

FIG. 3. Decomposition of the total inelastic cross section (solid
line, upper one) for 40Ca+40Ca at 50 MeV/nucleon into the one-
(dashed line), two- (solid, lower one), and three-phonon components
(dot-dashed line).

on top of the low-lying mode, the double GQR, and the L =
5 component of the |GQR × HEOR〉 state in the high-energy
tail. The latter contribution is also visible in Fig. 4. The double
GQR clearly dominates the inelastic spectrum around 35 MeV
excitation energy.

The three-phonon component appears to be important. It is
smaller than the two-phonon strength by a factor of about 3. In
the high-energy part it becomes the dominant contribution with
a structure due to the excitation of a low-lying mode on top of
the double GQR state and above 50 MeV to the triple GQR
phonon. By inspection one can infer the difference from the
old calculation where only one- and two-phonon states were
taken into account. In Table II we show the summed cross
sections in the three indicated regions, around the energies
corresponding to the excitation of one, two, and three GQR
phonons, respectively. One can see that the cross sections
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FIG. 4. Decomposition of the total inelastic cross section (solid
line, in both parts) for 40Ca+40Ca at 50 MeV/nucleon into different
angular momenta contributions. The figure is divided for reader
convenience. In the upper part we show the even natural-parity ones:
L = 0 (dotted), L = 2 (long-dashed), L = 4 (dot-dashed), and L =
6 (short-dashed). In the lower part we plot the odd natural-parity
angular momenta contribution: L = 1 (dotted), L = 3 (long-dashed),
L = 5 (dot-dashed), and L = 7 (short-dashed).

064614-5



E. G. LANZA et al. PHYSICAL REVIEW C 74, 064614 (2006)

TABLE II. Integrated cross section (in mb) for 40Ca+40Ca at
50 MeV/nucleon in different energy bins corresponding to one-, two-,
and three-phonon regions, respectively. Shown in the first row are the
results for the three-phonon complete calculations. Shown in the
second row are the results corresponding to the calculations done
including only one- and two-phonon states. In parenthesis the values
corresponding to the single, double, and triple GQR states.

(14–20 MeV) (28–38 MeV) (38–60 MeV)

Three phonons 20.83 (14.71) 5.44 (1.34) 2.02 (0.20)
Two phonons 22.80 (15.62) 5.48 (1.97) 0.66 (–)

corresponding to the pure GQR states (within parentheses)
decrease by a factor of about 10 each time a new phonon is
excited. For comparison, we show also, in the second row, the
results corresponding to the calculations done with only one-
and two-phonon states.

Because of the complex structure of both the two- and three-
phonon strength the total cross section appears rather smooth
above the double GQR bump. However, the large cross section
makes possible hunting for multiphonon states using selective
signals such as specific decays or multipolar decomposition.

The decomposition of the inelastic cross section into various
multipoles is presented in Fig. 4, where we show the most
significant contributions. To avoid an unreadable figure, full
of lines, we have separated it in two parts. In the upper one, we
show the even natural-parity multipoles contributions, whereas
in the lower part we plot the odd natural-parity ones. The
total cross section is plotted in both graphs. The contribution
corresponding to the angular momenta L = 0 and L = 1
present appreciable peaks only in correspondence of the single
GMR and GDR, with a contribution of the double 3− (L =
0 component) for the monopole case. The single 3− collective
state dominates the low-energy region. Comparing this figure
with the multiphonon decomposition one can deduce that the
bump in the 3− strength at high energy, around 30 MeV, i.e.,
in the DGR region, is due to the HEOR state. The shoulder at
higher energy is a mixing of two- and three-phonon states. The
quadrupole strength presents a strong peak due to the GQR.
The higher energy structures are mainly due to the DGQR state
except at very high energy, above 50 MeV, which is dominated
by the three-GQR multiplet as can be inferred by the presence
of the same structure in the 2+, 4+, and 6+ components. The
strong peak in the L = 5 contribution is due to the double
phonon state |GQR × 3−〉, whereas the one at higher energy
correspond to the excitation of the |GQR × HEOR〉 state. The
7− strength is due to the double GQR build on top of the
low-lying 3− state.

Because the presented strength is built from the monopole,
dipole, quadrupole and octupole collective states, the three-
phonon component goes up to L = 9. However, it appears
that the angular momenta above L = 7, which require three-
phonon excitations, are a minor contribution to the total
strength.

B. Role of four-phonons

The results from the previous calculation of anharmonici-
ties evaluated in a basis including up to three-phonon states

give us a clear indication: it is not possible to compute the
energies of three-phonon states without including four-phonon
states in the basis. This extension of the basis should be
sufficient if we consider the weak influence of the three-phonon
states on the one-phonon ones. Moreover, the results are
well reproduced by second -order perturbation theory. The
introduction of four-phonon states in the calculation could
allow testing of the convergence of the series, and to study
their effects on one- and two-phonon states. Indeed, the three-
phonon states would undergo a strong energy shift toward low
energies, and their influence on two-phonon states could be
substantially modified. We extend our basis to four-phonon
states to compute anharmonicities and we will look at the
effects on the three-phonon states.

To do that, we follow the same approach described before:
The quartic Hamiltonian matrix (9) is diagonalized in the space
of up to four-phonon states, thus obtaining the new mixed
eigenvectors:

|�α〉 =
∑
ν1

cα
ν1

|ν1〉 +
∑
ν1ν2

cα
ν1ν2

|ν1ν2〉 +
∑

ν1ν2ν3

cα
ν1ν2ν3

|ν1ν2ν3〉

+
∑

ν1ν2ν3ν4

cα
ν1ν2ν3ν4

|ν1ν2ν3ν4〉. (15)

In Table III we report the results of this calculation for some
relevant two-phonon states. Looking at the new energies, in the
sixth column, we remark that the additional shift imparted to

TABLE III. Results of the diagonalization for some two-phonon
states of 40Ca. In the first column, the states are labeled by their main
component in the eigenvector and the corresponding unperturbed
energy, indicated in parentheses. The second column indicates the
amplitude of the main component c0. Then for each total angular
momentum, we show the results of the calculation in the basis up to
two phonon states, the results for the basis extended to three phonon
states, and the results for the basis up to four phonon states. The last
column contains the results in second-order perturbation theory. All
energies are given in MeV.

Main
component

c0 J π �2ph �3ph �4ph 2nd
order

3− ⊗ 3− −0.91 0+ 10.96 9.27 8.77 9.20
(9.88) −0.96 2+ 10.63 8.89 8.43 8.75

−0.96 4+ 9.85 8.10 7.64 7.96
−0.96 6+ 10.88 9.12 8.67 8.99

D1 ⊗ D1 −0.92 0+ 35.27 33.71 33.35 33.59
(35.56) −0.96 2+ 35.10 33.66 33.33 33.59
D1 ⊗ Q1 0.95 1− 34.83 33.35 33.05 33.24
(34.69) 0.96 2− 34.56 33.22 32.92 33.16

−0.96 3− 34.67 33.13 32.82 33.02
Q1 ⊗ Q1 −0.87 0+ 33.88 32.47 32.03 32.27
(33.82) 0.84 2+ 33.82 32.47 32.01 32.26

0.90 4+ 34.02 32.61 32.18 32.44
M2 ⊗ D1 −0.89 1− 40.26 38.14 37.72 37.65
(40.25)
M2 ⊗ Q1 −0.73 2+ 39.62 37.34 36.50 36.80
(39.38)
M2 ⊗ M2 0.67 0+ 45.60 42.76 41.15 41.18
(44.94)
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TABLE IV. Results of the diagonalization in the space including up to four-phonon states. The first column
contains the name of the main component of the eigenvector. The harmonic energy of this state is written below the
name. We show also the value of the c coefficient of the main component (second column) of the state as well as
its parity and total angular momentum (third column). In the fourth and fifth columns we show the eigenenergies
obtained when the diagonalization is done in a space up to three and four phonons, respectively. These results have
to be compared with the result of a second-order perturbation theory calculation (sixth column). Finally, in the last
two columns, other important components and the corresponding c coefficient are shown.

Main component c0 J π �3ph �4ph 2nd order Important components ci

M1 ⊗ M1 ⊗ M1 −0.499 0+ 54.48 53.12 50.47 M1 ⊗ 3− ⊗ 3− −0.42
54.74 M1 ⊗ 3− ⊗ O1 0.41

M1 ⊗ M1 ⊗ M2 0.26
M1 ⊗ M1 ⊗ M1 ⊗ M1 0.22

(D1 ⊗ D2)2 ⊗ Q1 −0.37 2+ 56.17 53.37 53.09 (D1 ⊗ D2)1 ⊗ Q1 0.32
56.72 (D1 ⊗ Q2)2 ⊗ O1 −0.19

(D1 ⊗ D2)2 ⊗ (3− ⊗ O1)2 −0.21
(3− ⊗ 3−)2 ⊗ (M2 ⊗ Q1)2 0.13
(Q1 ⊗ Q1)0 ⊗ (O1 ⊗ O1)2 0.36
(Q1 ⊗ Q1)2 ⊗ (O1 ⊗ O1)0 0.34
(Q1 ⊗ Q1)4 ⊗ (O1 ⊗ O1)2 0.36
(Q1 ⊗ Q1)2 ⊗ (O1 ⊗ O1)4 0.31
(Q1 ⊗ Q1)2 ⊗ (O1 ⊗ O1)2 −0.20

Q1 ⊗ Q1 ⊗ Q1 −0.91 0+ 50.74 47.8 47.3 (Q1 ⊗ Q1)2 ⊗ (3− ⊗ 3−)2 0.24
50.73 Q1 ⊗ Q1 ⊗ Q1 ⊗ M2 −0.27

Q1 ⊗ Q1 ⊗ Q1 −0.91 2+ 50.96 48.0 47.5 (Q1 ⊗ Q1)0 ⊗ (3− ⊗ 3−)2 −0.14
50.73 Q1 ⊗ Q1 ⊗ Q1 ⊗ M2 −0.27

Q1 ⊗ Q1 ⊗ Q1 ⊗ M1 −0.17

Q1 ⊗ Q1 ⊗ Q1 −0.65 4+ 51.02 48.0 47.56 3− ⊗ 3− ⊗ 3− ⊗ O2 −0.18
50.73 Q1 ⊗ Q1 ⊗ Q1 ⊗ M2 −0.19

Q1 ⊗ Q1 ⊗ Q1 ⊗ M1 −0.13
(Q1 ⊗ Q1)4 ⊗ (3− ⊗ 3−)2 −0.12
M2 ⊗ D1 ⊗ (Q2 ⊗ 3−)3 0.18
M1 ⊗ D1 ⊗ (Q2 ⊗ 3−)3 0.14

Q1 ⊗ Q1 ⊗ Q1 −0.92 6+ 51.34 48.3 47.85 Q1 ⊗ Q1 ⊗ Q1 ⊗ M2 −0.27
50.73 (Q1 ⊗ Q1)4 ⊗ (3− ⊗ 3−)2 −0.20

Q1 ⊗ Q1 ⊗ Q1 ⊗ M1 −0.18

the two-phonon states by the inclusion of the four-phonon
states is smaller than that in the previous case. Moreover, the
new shift is always toward lower energies.

The characteristics of a few three-phonon states computed
in the new basis are presented in Table IV. Anharmonicities of
three-phonon states are still well reproduced by second -order
perturbation theory and the correction to the harmonic energy
is still negative. The energy shift is due to the presence of
the four-phonon states that push downward the three-phonon
ones. This can be understood looking at the second-order
correction to the energy in perturbative theory, where the
ratio between the matrix elements of the residual interaction
appearing at the numerator and the difference in energy at the
denominator determine the properties of the state. The largest
matrix elements are those coupling three-phonon states to
four-phonon ones. This is especially true in the cases involving
triple and quadruple GMR states and arises from symmetry
properties of the phonons, obeying the Bose statistics. In
general, similarly to the findings of Ref. [17], the matrix

elements connecting a n-phonon state to that formed by adding
to it a GMR are large. The sign of the correction to the energy
comes from the denominator, i.e., the difference between the
energy of the considered state and the four-phonon states, the
latter being nearly all located at higher energies.

The presence of the four-phonon states in the diagonaliza-
tion basis generates eigenfunctions that are more mixed than
the ones of the previuos calculations. So we get states having a
main component of the order of 0.5 and several others almost
as large as it. Some examples are given in Table IV. The
extreme case is the 2+ state at 53.37 MeV excitation energy,
whose main component is (D1 ⊗ D2)2 ⊗ Q1 and appears with
an amplitude of −0.37 in the wave function. This state has
several other components as large as that, which are made of
three and four phonons.

The same is true for the L = 4 state whose main component
is Q1 ⊗ Q1 ⊗ Q1 with an amplitude of −0.65. The same
state is much less mixed when the diagonalization is done
in the space up to three-phonon states. In the latter case its
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main coefficient is 0.986 with only one big component
corresponding to the state (D1 ⊗ D2)2 ⊗ Q1 whose amplitude
is c = 0.15. Another interesting result, found in Ref. [17] and
related to the strong coupling regime, is the existence of some
states having as second large component a configuration that is
not directly coupled to the main one by the residual interaction.
This is a second-order effect due to the fact that both these
configurations have large matrix element with another one.

To check the stability of the results on the inelastic
scattering cross sections to two- and three-phonon states, we
have repeated the calculations by using the energies and wave
functions obtained by diagonalizing the Hamiltonian in the
large space but not including the four-phonon channels. We do
not show the results of this calculations because they are almost
indistinguishable from the previous ones. Once again, the
inclusion of the n+1 phonons is very important in the structure
of the n-phonons but it seems it does not affect strongly
the dynamics. Therefore we can conclude that convergence
has been reached (at least numerically) and the discrepancy
between theory and experiment in the three-phonon region is
due to the presence in the experimental data of some processes
that are not taken into account in our approach.

IV. EXCITATION OF 208Pb

We have also performed calculations for multiple exci-
tation of 208Pb. The inelastic cross section for the system
208Pb+208Pb has been computed for an incident energy of
641 MeV/nucleon. At this energy the nuclear contribution is
believed to be small, so only the relativistic Coulomb excitation
has been taken into account in the same way as it is described
in Ref. [15]. The collective RPA basis states considered in the
present calculation are listed in Table V. As in the previous case
we construct all the possible two- and three-phonon states and
we diagonalize the Hamiltonian in this space. For this case we
do not take into account the effects of the four-phonon states.

In Fig. 5 we compare the complete calculation going up to
three- phonons (solid line) with the previously published [15]
inelastic cross section for 208Pb+208Pb at 641 MeV/nucleon
where only one- and two-phonon states were included. One
can see that below 35 MeV the results are not affected by the
inclusion of three-phonon states. Only a small reduction of
the peak around 25 MeV, corresponding to the double GDR,

TABLE V. Same as in Table I for 208Pb.

State J π Eharm(MeV) EWSR(%) E2ph(MeV) E3ph(MeV)

GMR1 0+ 13.61 61 13.42 13.48
GMR2 0+ 15.02 28 14.78 14.76
GDR1 1− 12.43 63 12.30 12.30
GDR2 1− 16.66 17 16.61 16.60
2+ 2+ 5.54 15 5.18 5.14
ISGQR 2+ 11.60 76 11.59 11.55
IVGQR 2+ 21.81 45 21.69 21.68
3− 3− 3.46 21 3.21 3.19
HEOR 3− 21.30 37 21.19 21.20
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1- & 2-phonons

FIG. 5. Comparison of the inelastic cross section for 208Pb+208Pb
at 641 MeV/nucleon computed in Ref. [15], including only one- and
two-phonon states (dashed line), and the complete calculation going
up to three phonons (solid).

is visible. This reduction can be related to the feeding of the
three phonon region, possible in the new calculations.

In the high-energy region the contribution of the three-
phonon states appears to be important. This is confirmed by
the decomposition of the inelastic cross section into the one-,
two- and three-phonon components as shown in Fig. 6. At
this relativistic energies and with such heavy charged ions the
one-phonon cross section is clearly dominated by the GDR.
In the figure, the small shoulder at 17 MeV is due to the
high-lying component of the GDR carrying a small fraction
of the dipole strength. The one-phonon component around
22 MeV is the isovector quadrupole vibration. The double
phonon component is clearly dominated by the double GDR
excitation. In fact from 23 to 34 MeV the inelastic cross section
appears to be mainly due to two-phonon states. Indeed, the first
peak in this energy region corresponds to the L = 2 compo-
nent of |GDR1 × GDR1〉, the second peak is the L = 2
component of |GDR1 × GDR2〉 and the third one is the L = 3
component of |GDR1 × IVGQR〉 (IVGQR = isovector giant

100

101

102

103

dσ
/d

E
 (

m
b/

M
eV

)

0 5 10 15 20 25 30 35 40 45

E (MeV)

total
1-phonon
2-phonon
3-phonon

FIG. 6. Decomposition of the inelastic cross section for
208Pb+208Pb at 641 MeV/nucleon (solid line) into the one- (dashed),
two- (dot-dashed), and three-phonon components (dotted).
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TABLE VI. Integrated cross section (in mb) for 208Pb+208Pb at
641 MeV/nucleon in different energy bins corresponding respectively
to the GDR, the two-phonon and the three-phonon regions. In the
second row the calculations done with only one- and two-phonon
states. In parenthesis the values corresponding to the single, double,
and triple GDR states.

(8–19 MeV) (22–35 MeV) (35–45 MeV)

Three phonons 3451.2 (3078.4) 325.6 (227.1) 39.2 (18.7)
Two phonons 3510.3 (3103.3) 348.6 (245.0) 4.0 (–)

quadrupole resonance). The double GDR2 state has a small
cross section and it cannot be appreciated in the figure. Above
35 MeV the three-phonon modes provide the most important
contribution to the spectrum. Indeed, the main peak is due to
the triple DGR1, whereas the second one corresponds to the
|GDR1 × GDR1 × GDR2〉 state.

From Table VI one can see that the integrated cross section
for the excitation of the GDR is large at such a relativistic
energy, reaching 3.5 b. Then a factor 10 has to be paid each
time a new phonon is excited still leaving some sizable cross
section for two and three phonon excitations. In the second
row we show the results for the calculations done with only
one- and two-phonon states. In the three-phonon region we
gain a factor 10 when we introduce in the calculation the
three-phonon states.

To get a deeper insight in the excitation process, it is
interesting to decompose the computed inelastic spectrum
in various multipolarities. Let us first start with the dipole
strength that strongly dominates at relativistic energies (see
Fig. 7). The GDR, which is splitted into a main component at
12.5 MeV and a smaller peak around 17 MeV, is of course
the main contributor but one can observe above 35 MeV
a small contribution of the three-GDR state coupled to spin
and parity 1−. The quadrupole strength is more complex.
Starting at low energy one observes the low-lying collective
2+ state followed by the isoscalar GQR just above 10 MeV.

100

101

102

103

dσ
/d

E
 (

m
b/

M
eV

)

0 5 10 15 20 25 30 35 40 45

E (MeV)

1-

2+

3-
0+

total
0+

1-

2+

3-

FIG. 7. Decomposition of the inelastic cross section for
208Pb+208Pb at 641 MeV/nucleon (solid line) into different angular
momenta, L = 0 (long-dashed), L = 1 (short-dashed), L = 2 (dot-
dashed), and L = 3 (dotted).

Except for the small shoulder at 22 MeV coming from
the isovector GQR, the strong bump at 25 MeV can be
essentially attributed to the double GDR coupled to 2+. This
peak can be directly compared with the monopole strength
that corresponds entirely to the double GDR coupled to 0+.
Coming back to the quadrupole response one notices that the
two-phonon contribution appears as strong as the one-phonon
excitation. A multipole analysis can thus be an interesting
way to experimentally isolate the multiphonon contribution.
Finally, the octupole response presents both a 3− and HEOR
components around 3 and 24 MeV, followed by the triple
GDR state coupled to 3− around 35 MeV. This three-phonon
component corresponds to the structures observed in the 1−
response that is nothing but the low spin member of the
three-phonon multiplet.

V. CONCLUSION

In this article we present, for the first time, microscopic
calculations of inelastic cross sections for the triple excitation
of giant resonances induced by heavy-ion probes.

We use a microscopic approach based on RPA: the mixing
of three-phonon states among themselves and with two- and
one-phonon states is considered within a boson expansion
approach with Pauli corrections. This is equivalent to intro-
duce anharmonicities corrections to the standard harmonic
approximations. At the same time we have also introduced
nonlinearities in the external field.

The calculations were done by solving semiclassical
coupled-channels equations, the channels being superpositions
of multiphonon states. In previous calculations we have
considered only one- and two-phonon states obtaining a good
agreement with the experimental cross section.

In this article we extend these microscopic calculations
by including the three-phonon states. By diagonalizing a
quartic microscopic Hamiltonian in the space of up to three-
phonon states one realizes that a correct description of two-
phonon states requires the inclusion of one- and three-phonon
components. The anharmonicity in most of the cases is of the
order of 1 MeV. Calculations of the inelastic cross section for
the excitation of one-, two-, and three-phonons states have
been performed in the framework of this model. The cross
section in the DGR energy region is only slightly modified.
Thus the previously published results are confirmed. On the
contrary, as one could expect, the contribution in the TGR
energy region is quite large giving a better agreement with the
experimental data. We have also performed calculations in the
space of up to four-phonon states. Although the inclusion of
the four-phonon states is very important in the wave functions
and energies of the three-phonon states, giving rise to a much
stronger anharmonicity, their influence on the dynamics is very
small.

The decomposition of the inelastic cross section into one-,
two-, and three-phonon components shows the importance of
the three contributions in different region of the excitation
energy. In the case of 208Pb+208Pb at E/A = 641 MeV the
separation in energy is very clear and one can distinguish the
three region of interest; in the 40Ca+40Ca at 50 MeV/nucleon
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case the overlap is stronger. In both cases we get an increase
in the triple phonon energy region showing once again the

importance of the anharmonicity in the internal Hamiltonian
and the nonlinearity in the external field.
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