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Semiclassical distorted-wave model analysis of the (7 ~, K*)X formation inclusive spectrum
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(r~, K*) hyperon production inclusive spectra with p, = 1.2 GeV/c measured at KEK on '*C and *Si are
analyzed by the semiclassical distorted-wave model. Single-particle (s.p.) wave functions of the target nucleus
are treated using Wigner transformation. This method is able to account for the energy and angular dependences
of the elementary process in nuclear medium without introducing the factorization approximation frequently
employed. Calculations of the (z*, K*)A formation process, for which there is no free parameter because the
A s.p. potential is known, demonstrate that the present model is useful to describe inclusive spectra. It is shown
that to account for the experimental data of the X~ formation spectra a repulsive X-nucleus potential is necessary

whose magnitude is not so strong as around 100 MeV previously suggested.
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I. INTRODUCTION

Various meson production reactions in nuclei are a rich
source of our understanding of hadronic interactions. In
particular, interactions involving hyperons have to be explored
by strangeness exchange reactions, because hyperons are
absent in ordinary nuclear systems. Naturally, the absence
itself is a consequence of the properties of strange hadrons.
The interaction between the A hyperon and the nucleon
is fairly well known, because the experimental data for A
hypernuclei has been accumulating for the past 30 years.
The X-N and E-N interactions, by contrast, have not been
well understood. Even the sign of the ¥ single-particle (s.p.)
potential in nuclear medium, which reflects basic properties
of the X-N interaction, has not been established. Interactions
among hyperons are far less investigated, except for the A A
case.

In recent years, much experimental effort has been directed
to the study of strange baryons and baryonic resonances in
nuclear medium, using incident 7, K, and y beams with
the energy of 1~ 2 GeV. The extraction of meaningful
understanding of these baryon properties from such reaction
processes is not so simple, however. For analyzing experimen-
tal data we need to take into account various effects, such
as the proper treatment of projectiles and outgoing hadrons,
the model description of elementary processes in nuclei and
the decent description of the target nucleus and the residual
(hyper-) nucleus. We also have to keep in mind the possibility
of the change of properties of the relevant hadrons themselves
in nuclear medium.

Because fully microscopic description is far from practical,
various approximations are commonly introduced to analyze
the experimental data. Then, it is important to employ a model
as simple and reliable as possible, bearing in mind that lack of
some proper treatment can easily lead to misunderstanding of
the basic hadron properties.

Y. formation spectra in (;r, K) and (K, ) reactions with
nuclei are not expected to have narrow peaks, because of
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the strong ¥ N — AN coupling. In spite of this, however,
the early (K, ) experimental spectra [1] were interpreted as
indicating an attractive X s.p. potential with the depth of about
10 MeV [2,3]. The experimental discovery of ‘;He [4,5] has
shown that the X-N interaction in the 7 = 1/2 channel is
sufficiently attractive to support the bound state in this specific
nucleus, as discussed by Harada [6]. It has been recognized,
however, that due to the strong repulsion in the isospin
T = 3/2channel, ¥ bound states are unlikely to be observed in
heavier nuclei. This conjecture was supported by experimental
results on targets of °Li and Be measured at the Brookhaven
National Laboratory (BNL) [7]. The analysis of the (K, m)
spectra on ’Be from BNL [8] given by Dabrowski [9] in a
plane-wave impulse approximation method suggested that the
> potential is repulsive of the order of 20 MeV.

The shift and the width of ¥~ atomic states are another
source of the information on the X -nucleus potential. Batty,
Friedman, and Gal [10] reexamined the X~ atomic data and
concluded that the ¥ potential should be attractive at the
surface region but changes its sign to become repulsive at
the higher density region in a nucleus.

Theoretical studies for the two-body X-N force have also
been inconclusive. In the 1970s, the Nijmegen group started to
construct hard-core hyperon-nucleon potentials in a one-boson
exchange model. Parameter sets corresponding to two typical
choices of the SU(3) mixing angles were named as models D
and F[11]. The G-matrix calculation by Yamamoto and Bando
in Ref. [12] showed that the model D yields —29.3 MeV for
the X potential in nuclear matter at the normal density (ky =
1.35 fm~!) and the model F repulsive 5.8 MeV, though the
explicit numbers vary in a different calculational scheme. The
soft-core versions subsequently constructed by the Nijmegen
group [13] tend to predict an attractive X s.p. potential in
nuclear medium; —27.1 MeV in Ref. [12] and —15.3 MeV in
the nuclear matter calculation by Schulze et al. [14].

A different approach using a nonrelativistic SU(6) quark
model has been developed by the Kyoto-Niigata group [15-17]
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to obtain a unified description of octet baryon-baryon inter-
actions. In this model, the description of the short-ranged
part of baryon-baryon interactions basically provided by the
resonating-group method with the spin-flavor SU(6) quark
model wave functions and the one-gluon exchange Fermi-
Breitinteraction is supplemented by effective meson-exchange
potentials acting between quarks. This model has few am-
biguities in the hyperon-nucleon sector after the nucleon-
nucleon interaction is determined. G-matrix calculations in the
lowest-order Brueckner theory [18] with the potential named
FSS[15,16] show thatthe X s.p. potential in symmetric nuclear
matter is repulsive of the order of 20 MeV at normal density.
The repulsion due to a strongly repulsive character in the
isospin T = %3S1 channel originating from quark Pauli effects
overcomes an attractive contribution in the 7 = %3S | channel
that is similar to that in the AN case. The latest version of this
quark model potential, fss2 [17], gives a smaller repulsion of
about 8 MeV in symmetric nuclear matter.

We briefly mention the relativistic mean-field model de-
scription for the hyperon sector. This model does not seem
to have much predictive power, but once parameters are
determined to fit basic properties it has wide applicability,
for example, to a variety of neutron star matter calculations.
In early models including only o meson, the ¥ hyperon is
predicted to have the similar attractive potential to the A in
nuclear medium. Having recognized that the ¥ s.p. potential
may be repulsive in nuclei, the model was extended to include
o* meson to account for that property. The repulsion of
30 MeV has been tentatively used in literature [19,20],
although this specific number did not have a solid basis.

It is also noted that Kaiser [21] calculated the X mean
field in symmetric nuclear matter in the framework of SU(3)
chiral perturbation theory and found a moderately repulsive
potential, that is, 59 MeV for the real part and —21.5 MeV for
the imaginary one at normal density.

Recently, inclusive (7, K™) spectra corresponding to
Y. formation were measured at KEK [22,23] with better
accuracy than before, using the pion beam with the momentum
of p, =12 GeV/c on medium to heavy nuclear targets.
Distorted-wave impulse approximation (DWIA) analyses in
Ref. [22] for 28Si and similar analyses later on other nuclear
targets [23] gave a notable conclusion that the ¥ potential
is strongly repulsive, as large as 100 MeV. Harada and
Hirabayashi [24] showed in similar calculations with their
optimal Fermi averaging for the elementary ¢ matrix that the
¥ potential is repulsive inside the nuclear surface, though the
actual strength varies with the imaginary part supposed.

The determination of the - N interaction is of fundamental
importance in the study of such problems as those of neutron
star matter and heavy-ion collisions, because the baryonic
component of such hadronic matter, especially the hyperon
admixture, is governed by the basic baryon-baryon interac-
tions. Considering the importance of determining the X-N
interaction on the basis of experimental data, it is desirable to
analyze the KEK experiments in a different and independent
calculational scheme from those in Refs. [22,24]. In this article,
we present a semiclassical method for the DWIA approach and
apply itto (w*, K*) inclusive spectra. The preparatory version
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of this approach was reported in Ref. [25]. The semiclassical
distorted-wave (SCDW) model was originally considered for
describing intermediate energy nucleon inelastic reactions
on nuclei [26]. Applications to various (p, p’) and (p,n)
inclusive spectra [27,28] have demonstrated that the method
is quantitatively reliable and thus the applications to the wide
range of nuclear reactions are promising.

In Sec. II, we show basic expressions of the SCDW model
for describing the (7, K) inclusive spectra. The formulation
using the Wigner transformation for the nuclear density matrix
is explained. Actual optical potential model parameters used
for incident pions and outgoing kaons are given in Sec. III.
Numerical results for the (7, K*) spectra are presented in
Sec. IV: first for the A formation to see the applicability of
the SCDW model and then for the ¥ formation. The latter
case is the main concern of the present article to obtain more
solid information about the strength of the ¥ single-particle
potential than before. In this article, we are concerned with
the spectra on light nuclei with N = Z, namely ?8Si and '*C.
Conclusions are given in Sec. V, with the outlook of the future
extension of our model.

II. SEMICLASSICAL DISTORTED-WAVE MODEL
DESCRIPTION OF THE (r, K) INCLUSIVE SPECTRA

The starting formula for the double differential cross section
in a standard distorted-wave model description of the (7, K)
hyperon (Y') production inclusive reaction is expressed as

d o py e
o _ wiwy ﬁ//drdr’z x )
dwdQ  (2m)? p; o 4wy
g pinxs X EE e ()

X (P, (r ) (r8(W — €, + €,)0(eF — €,),
(1)

where Xi(ﬂ and X;f) represent the incident pion and final kaon
wave functions with energies w; and wy, respectively, and
W = w; — wy is the energy transfer. The formula describes the
process in which the nucleon in the occupied single-particle
state & is converted to the unobserved outgoing hyperon (A
or X) state p. The elementary amplitude of the process 7 +
N — K +Y is denoted by vy, ;,, which depends on the
energy and momentum of the particles in the reaction. To
treat such dependence, it is necessary to introduce momentum
space integration. In that case, the explicit calculations involve
higher-dimensional integrations. It is desirable, in practice, to
develop a tractable and trustful approximation method. One
procedure that has been frequently used is the factorization
approximation, in which the elementary process is taken out of
the integration, assuming some averaging wisdom. As used in
Ref. [22]form™ + p — KT + X, the elementary amplitude
in the integrand may be replaced by the averaged differential
cross section over the nucleon momentum distribution p(k),

do(m—p — K*37) _ [ p(k)43()8(k — P)dk
aQ T [ pk)sk — P)dk

. @

064613-2



SEMICLASSICAL DISTORTED-WAVE MODEL ANALYSIS . ..

with P = kg + ky — k,, and is taken outside of the integra-
tion. The remaining quantity is the Green function, which is
not difficult to evaluate in the case of a local optical potential.
A more sophisticated Fermi-averaging method was used in
Ref. [24]. Though such procedure has been widely applied
to show various successes, the justification is far from trivial.
Important dynamical effects might be hidden in the averaging
treatment.

A. SCDW method

In Ref. [25], we presented our SCDW approximation
method for the DWIA cross section formula, Eq. (1). There,
we introduced a local Fermi gas approximation for the target
nucleus. In this article, we improve the description by explicitly
treating s.p. wave functions of the target nucleus.

The semiclassical treatment was first introduced in the
description of the intermediate energy nucleon reactions on
nuclei [26]. Because the amount of numerical calculations is
reduced, it becomes feasible to include and assess multistep
contributions. The calculations of (p, p) and (p, n) inclusive
spectra have shown that the SCDW method works well.

The semiclassical approximation employs the following
idea for the propagation of the wave function. Denoting the
midpoint and the relative coordinates of r and r’ in Eq. (1) by
R = (r+r')/2 and s = r’ — r, respectively, we assume that
the propagation of the distorted waves, x; and x , from R to
r or r’ is described by a plane wave with the local classical
momentum k(R) at the position R.

X (R + L) = eXiak®y D(R), 3)
X}—) (R + %S) ~ e:l:i%s-kf(R)X}—)(R). (4)

The local momentum k(R) is defined as follows. The direction
is specified by the quantum mechanical momentum density
k,(R) calculated by

R EHRY(—DV XD (R))
ko) = IX®(R)2

. (&)

where 9 represents taking the real part and the magnitude is
determined by the energy-momentum relation 712 k*(R)/2 i +
Ugr(R) = E at R. Here, Ug(R) is the real part of an optical
potential for the distorted-wave function x with energy E.
The relativistic energy-momentum relation is used for the
distorted-wave function described by the Klein-Gordon
equation.

The above approximation is expected to work well if the
dominant contributions in the integration over r and r’ in
Eq. (1) is restricted in the region where r and r’ are close to
each other. Actually, the density matrix ), ¢ (r")¢;(r) brings
about this desirable feature, as shown in the following heuristic
argument. It is sufficient for the qualitative discussion to
assume that nuclear s.p. wave functions are harmonic oscillator
ones. The summation over the z component of the angular
momentum of each orbit means that we are treating two
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oscillator functions coupled to the total angular momentum
L=0:

> rrdu(r)

mpy

— 24, + L nply(ry), nply(ra); L = 0). (6)

The transformation to the R and s coordinates are carried out
using the Talmi-Moshinsky brackets.

[npln(ry), nply(ra); L = 0)

=) (nt, N&;0lny Ly, nly; 0)|nl(s), NE(R); L = 0). (7)
N,n,t

The reaction processes we consider take place mostly at the
surface of the target nucleus. When R is located in the surface
region, the dominant components in the right-hand side of
Eq. (7) are those in which 2N -+ ¢ is the largest. This indicates
that the dependence on the relative coordinate s is governed
by the Os (n = 0 and £ = 0) function, which is certainly short
ranged compared with the size of the target nucleus. Thus we
expect that the SCDW treatment of Eqgs. (3) and (4) in Eq. (1)
is meaningful.

Note that because the SCDW approximation should be
exact in homogeneous matter, the SCDW works well inside
of the nucleus. The above reasoning implies that the SCDW
approximation is also applicable to the surface region. This
fact is probably connected to the fact that the local density
approximation based on the density matrix expansion method
[29] works well in nuclear structure calculations, including the
surface region.

B. Wigner transformation

In the preparatory calculations in Ref. [25], we intro-
duced a Thomas-Fermi approximation for the density matrix
Do h Or(r¢n(r) of the target nucleus. Here, we elaborate
the description of the density matrix by using a Wigner
transformation.

The Wigner transformation of the density matrix of the
target nuclear wave function is defined as

1 1
PR A AGED IR (R - 5s) i (R + zs)
h h
= /dK Z(bh(R,K) &K, 8)
h

d, (R, K) is given by the inverse transformation as

®,(R,K) = b / ds e Ky (R — ls) on (R + ls).
@2n)} 2 2

©))

The summation over the z component of the angular mo-

mentum is implicit in these expressions. As is shown in

the Appendix, ®,(R, K) may be expressed in terms of the
Legendre expansion:

®4(R,K)= Y Pi(cosKR) ®y(R,K),  (10)

{=even
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where KR denotes the angle between two vectors K and R.
It is easy to see that the Thomas-Fermi approximation for the
density matrix used in Ref. [25] amounts to the replacement

Z Z Py(cos KR) ®'(R, K)
hoot
2 O(kp(R) — K 11

= ke (R) = K. (11)
where 0(x) is a step function and kr(R) = [372p.(R)]'/? is
a local Fermi momentum determined by the local proton or
neutron density p,(R) at R.

We describe unobserved hyperons by a local optical
potential. Actually, the hyperon optical potential should be
complex, because there are inelastic processes. The standard
way to treat the completeness of the final states described by a
complex Hamiltonian is to use the Green function method [30].
At this stage, however, we adopt a simplified prescription,
employing a real potential of the standard Woods-Saxon form,

Uy(r) = Uy /{1 + exp((r — ro)/a)}, (12)

and we convolute the result of the calculated spectrum with
a Lorentz-type distribution function with the typical width,
simulating the effects of inelastic channels. In that case, the
expression of Eq. (1) is directly used. Then, we introduce
the SCDW approximation as in Egs. (3) and (4) also for the
hyperon wave functions ¢,(r) and ¢,(r").

Using these approximations explained above, the double
differential cross section in the SCDW model becomes

d’c _ wioy pr Loy
= 2L aR [ dk Y —— xR
AwdQ ~ 2n) p; /d /d Xp: 4w,-wf|xf (B

< 1 (RPIgp(RIP2m)* Y > Pi(cos KR)
hoot
X (R, K)lvypin (K. ki)l
X 0(K + ki(R) — ks(R)—k,(R)) (W — €, + €).
(13)
The summation ) , means the sum over the spin and
the momentum of the outgoing unobserved hyperon:
1/Q2n)? > spin [ dp. If we use the energy, instead of the

momentum, to specify scattering states, the momentum in-
tegration [ d p is written as follows:

1 (2my\*?

The above final expression (13) shows that the reaction in
which m + N yields K + Y takes place at the position R and
satisfies conservation of local semiclassical momentum:

K + ki(R) = kp(R) + k,(R). (15)

These momenta, k;(R), k s(R), and k,(R), are calculated with
Eq. (5), using 7, K, and Y distorted-wave functions in an
optical model description. It is seen that the dimension of the
integration in Eq. (13) does not change from that in Eq. (1).
However, we can now treat the momentum dependence of the
transition amplitude vy, , ; , explicitly.
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In the present formulation, the correction for the lack of
the translational invariance [31] in the target nuclear wave
function is not included. In describing electron scattering
on a nucleus composed of A nucleons, the center-of-mass
effects [32] in the nuclear shell model have been taken care
of by a multiplicative factor F'/? = exp[g?/(4Aa)], where
q is the momentum transfer and « is the oscillator constant.
For A =12 and o = 0.4 fm2, the factor |F'/?|*> amounts
to 1.5 when the momentum transfer is 2 fm~!. Thus the
calculation without the center-of-mass correction tends to
underestimate the cross section. The appropriate treatment of
the center-of-mass effects in our SCDW method deserves to
be studied in the future.

C. Elementary amplitude

The on-shell amplitude vy, , ; », of the elementary process is
related to the differential cross section by
o = (16)
4r)y> s kg
where s is the invariant mass squared. In Eq. (13), we are
able to account for the angular dependence of the 7 + N —
K +Y elementary process at each position R. To carry
out an actual calculation in Eq. (13), we need some model
description for v. However, at present, there is no reliable
model for the relevant process, including off-shell regions.
We use a simple phenomenological parametrization based
on Eq. (16), by defining the invariant mass squared using
the momenta k;(R) and K. The following functional form
is used to simulate empirical angular distributions of the
m + N — K + Y reactions.

do _o(J5) |:1 + Zaz(\/;)Pz(COSQ):| ’ a7
¢

dQ ~  4x

Values of o(/s) and a,(+/s) used in the present calculations
are given in Sec. IV.

D. Wave functions of the target nucleus and hyperons

In this article, we are concerned with the reactions on the
N = Z targets *8Siand '>C. Single-particle wave functions and
the energies €, for these nuclei are prepared by the density-
dependent Hartree-Fock description of Campi-Sprung [33].

As stated in B of this section, hyperons are described by
an energy-independent local potential of the Woods-Saxon
form. We use the standard geometry parameters, rop = 1.25 x
(A—=1'"3 fm and a =0.65 fm. The Coulomb potential
regularized in a nucleus is incorporated in the case of the
> ~. It is noted that if we use a different parameter set such
as ro = 1.20 x (A — '3 fm and a = 0.6 fm, we do not see
appreciable changes in calculated spectra for '>C and 2Si.

It may be argued that the hyperon s.p. potential is not
expressed by a single Woods-Saxon shape. The ¥ potential
may be repulsive in the higher density region, but change its
sign at the surface as has been suggested by the analysis [10]
of ¥~ atomic data and also by the nuclear matter calculations
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[18] with the SU(6) quark-model interaction. At present,
however, it is premature to discuss the detailed shape of the
> potential from the available inclusive spectra. We assume,
from the beginning, the standard Woods-Saxon form and ask
what strength U2 is favored by the experimental data. More
experimental data is needed to quantitatively discuss more
elaborate shape parameters as well as the possible energy
dependence of the strength.

The nuclear matter calculations [18] with the SU(6) quark-
model interaction suggest that the imaginary strength of the
A s.p. potential hardly depends on the density, but that
of the ¥ s.p. potential decreases when the nuclear matter
density becomes lower. Regarding that the hyperon formation
processes take places at the surface region, we set the energy
dependence of the half width in MeV for smearing the
calculated spectra as follows, simulating the calculated results
at the half of the normal density with the quark-model potential
FSS:

FoE) [ 1+ 12(E/40% — 8(E/40)°, E <40 Me\ElS)
2 |5  E>40Mev,

I's(E) 10 )

= 10+ —— . EinMeV. 19
2 T FQ/E? e (19)

III. OPTICAL POTENTIALS FOR PIONS AND KAONS

The incident pions and detected kaons are described by the
standard Klein-Gordon equation with some optical potential
model. Following the usual procedure to construct a 7 -nucleus
optical potential from 77 N elementary amplitudes, the optical
potential for the pion is given by

k2
Va(r) = ~3F

bop(r), (20)

T

where p(r) is the one-body nuclear density distribution and
the parameter by is related to the sum of isospin averaged = N
partial-wave amplitudes. In practice, a pure imaginary choice
of by =1i %(atot) is found to work well. As an example, we
show, in Fig. 1, the pion elastic scattering differential cross

sections on '2C at 800 MeV/c. We simply expect at the present

10° ; ; ; ;
120(1'C+,TE+)
102 L 800 MeV/c
2 10'F
£
g 0
g 10°F
©
10™
10—2 L 1 1 L
0 10 20 30 40 50

c.m. angle [deg]

FIG. 1. Differential cross section of 7+ elastic scattering on '>C
at p, = 800 MeV/c. Calculated values in the optical potential model
with —iby = 1.0 fm? is compared with the experimental data [34].
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12C(K+,K+)
800 MeV/c

do/dQ [mb/sr]
3,

c.m. angle [deg]

FIG. 2. Differential cross section of K+ elastic scattering on 2C
at px = 800 MeV/c. The optical model with the parameter b, given
in Eq. (21) gives the result shown by a solid curve, compared with
the experimental data [36].

stage that the same prescription is applicable to the incident
momentum of 1.2 GeV/c. Actually, —iby = 0.58 fm?> at
1.2 GeV/c and —iby = 0.70 fm> at 1.05 GeV/c.

It has been known [35] that the kaon scattering data is not
well reproduced by simply folding elementary amplitudes.
In the present calculation, we phenomenologically search
an optimal parameter by in the form of Eq. (20), using
the available experimental data [36,37] on C at 800 and
715 MeV/c. For the K™, we find that the following momentum
dependence is adequate;

90.0
bo=—62x10"px +i——, 1)

Pk

where by in fm? and pk in MeV/c. As shown in Figs. 2 and 3,
the calculated differential cross sections account well for the

3| 1ZC(K+,K+)
10 715 MeV/c
102 E
@
E
= 1L i
S 10
5
|9}
©
10° F E
10'F ;
0

c.m. angle [deq]

FIG. 3. Differential cross section of K elastic scattering on '>?C
at px = 715 MeV/c. The optical model with the parameter b, given
in Eq. (21) gives the result shown by a solid curve, compared with
the experimental data [37].
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experimental data. The outgoing K+ momenta relevant to the
present inclusive spectra are in this energy region.

IV. RESULTS

A. A formation

We first apply our SCDW model to the (x, K*) A forma-
tion inclusive spectra obtained with 28Si and !>C targets mea-
sured at KEK [23,38]. Because the A s.p. potential has been
established as VX ~ —30 MeV from various A hypernuclear
data [39], the calculation serves as quantitative assessment
of the SCDW model description. The strength and angular
dependence of the elementary process are parametrized as
Eq. (17) according to the available experimental data of
7=+ p — K%+ A [40,41]. The energy dependence of the
total cross section is fitted as

(J5) = 472(/s — 1.60935)!2
TV Z 126(5 — 1.60935)F + 20

Coefficients a,(+/s) for the angular dependence are tabulated
in Table I.

Calculated spectra with three choices of the strength of the
A s.p. potential, V9 = —40, —30, —10 MeV, are compared to
see the potential dependence. Figure 4 shows the results for
28Si with p; = 1.2 GeV/c, whereas Figs. 5 and 6 show the
results for 'C with p, = 1.2 and 1.05 GeV/c, respectively.

The A hyperon can be bound in a nucleus. In ''C, Os
and Op A bound states appear at energies of —12.4 MeV and
—1.8 MeV, respectively, for the case of Vg = —30 MeV with
ro = 1.25 x 11'/3 fm and a = 0.65 fm, neglecting the small
spin-orbit component. The A bound-state wave function is
treated in the same manner as for the target nuclear wave

(mb). (22)

TABLE I. Legendre coefficients a;(+/s) in Eq. (17) of the differ-
ential cross sections of the 7~ 4+ p — K° + A reaction, determined
using experimental data [40,41].

ap Range of /s (GeV)
=1 12.6/5 — 20.362 J5<1.69
0.932 1.69 <
5 < 1.925
—4.8/s +10.172 1.925 <
J5<2015
2.164./5 — 3.86 2015 < \/5<2.3
(=2 0 J5<1.677
11.824/s — 19.821 1.677 < /s < 1.7
0.273 1.7 <s<1.8
4715 — 8.205 1.8 < /5<2.4
=3 0 S<18
—5.684/5 + 10.224 1.8 < /5 <1.85
—0.284 1.85 < /s <1.98

—8.32/s + 16.19
6.13\/s — 13.144

1.98 < /5 <2.03
2.03 < /5 <24

(=4 0 Vs <1.86
755 — 13.95 1.86 < /5 < 1.96
0.75 1.96 < /s <2.08
5.5/5 — 10.69 2.08 < \/s<2.4
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FIG. 4. (w*, K*) A formation inclusive spectra with a 28Si target
at Oy = 6° F 2° for pions with p, = 1.2 GeV/c. These results were
obtained with three choices of U$ in a Woods-Saxon potential form
with the geometry parameters of rp = 1.25 x (A — 1)'/* fmand a =
0.65 fm. The KEK data [38] are also displayed.

30 T T T T T T T T

d26/dQdE [ub/(sr MeV)]

FIG. 5. (= *, K*) A formation inclusive spectra with a '>C target
at Oy = 6° F 2° for pions with p, = 1.2 GeV/c. These results were
obtained with three choices of UY in a Woods-Saxon potential form
with the geometry parameters of ry = 1.25 x (A — 1)'* fmand a =
0.65 tfm. The KEK data [23,38] are also displayed.

20 T T T T T
120(7’C+,K+
S u? p. = 1.05 GeV/c
< —40 MeV........
5 -30 MeV
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FIG. 6. (x*, K*) A formation inclusive spectra with a '>C target
at fx = 6° F 2° for pions with p, = 1.05 GeV/c. These results were
obtained with three choices of U in a Woods-Saxon potential form
with the geometry parameters of ry = 1.25 x (A — 1)!* fmand a =
0.65 fm. The KEK data [38] are also displayed.

064613-6



SEMICLASSICAL DISTORTED-WAVE MODEL ANALYSIS . ..

function, Eq. (9). The scattering wave function ¢, in Eq. (13)
is replaced by the Wigner transformation of the A bound-state
wave function. The transition strength from the 0p;,> nucleon
hole state appears as two peaks below —B, = 0, for which
the experimental resolution of 2 MeV in FWHM is applied.
In this presentation, we use s.p. neutron energies in a simple
0p3/2-closed HF description for the target nucleus 12C. Thus
the peak position does not precisely agree with that of the
experimental spectrum. Becuase the Os/, nucleon hole state
has a large width, we broaden the calculated strength by the
half width of 8 MeV.

These figures indicate that the energy dependence of the
inclusive spectrum is well reproduced by the standard choice
of the A s.p. potential, Vj = —30 MeV. The absolute values
are short by about 35%. As is noted at the end of Sec. II B,
our calculation tends to underestimate the cross section for
lack of the translational invariance in the target wave function.
We also expect various other effects for the underestimation.
In addition to possible ambiguities in the SCDW treatment
and uncertainties in the elementary strengths as well as
the optical potential parameters, there should be room for
contributions from two-step processes and more. Because
the incident pion absorption is rather large, some of the
flux lost may emerge again into the A production channel.
Bearing in mind these points and in addition the possible
modification of the elementary process in nuclear medium,
which is clearly premature to discuss at the present stage of
the analysis, our SCDW model is considered to provide a
meaningful description for the (7, K) inclusive spectra. The
explicit estimation of the center-of-mass correction and the
two-step contributions is needed to establish the quantitative
reliability of the SCDW method.

B. X formation

In Ref. [25], we assumed an isotropic angular dependence
for the 7~ + p — K™ + £~ elementary process in calcu-
lating (7=, KT)X~ formation inclusive spectra. The energy
dependence of o(/s) was taken from the parametrization by
Tsushima et al. [42], which was renormalized by a factor of
0.82. In this article, we take into account the angular distribu-
tion using the Legendre polynomial coefficients reported by
Good and Kofler [43] on the basis of available data [43—46]. Up
to /s ~ 2.1 GeV, p, ~ 1900 MeV/c, we can set a, = 0 with
£ > 3. We try to simulate the energy dependence of a;(,/s) and
a>(+/s) by several lines as given in Table II, which are depicted
in Fig. 7 with the experimental data. The energy dependence
of the total cross section o(4/s) is parametrized as follows:

_0.02055(1/s — 1.691)%9%3
T (s — 1.682)2 4+ 0.003131
0.003023(y/5 — 1.691)0-13%
(/s — 1.894)2 4 0.01548

o(V/s)

(mb), (23)

which is displayed by the solid curve in Fig. 8. At /s =
1.79 GeV, corresponding to p, = 1.2 GeV/c, the absolute
magnitude of the differential cross section at forward angles in
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TABLE II. Legendre coefficients a;(y/s) in
Eq. (17) of the differential cross sections of the
7~ + p — K* + X~ reaction, determined using
experimental data [43—46].

a Range of /s (GeV)

0.0 Js<172
—7.134(/5 — 1.72) 172 < /5 < 1.93
~1.5 1.93 < /5 < 1.97

6.25/5 — 13.81 1.97 < /5 <2.05

~1.0 2.05 < \/s<2.15

—4.06,/5 +7.729 2.15 < /s <231

~1.65 231 < /s
(=2

0.55 Js<1.81

8.0(/s — 13.93 1.81 < /5 < 1.89

—7.44./s +15.25 1.89 < /5 <2.05
0.0 2.05 < \/s<2.15
10.0/s — 21.5 2.15 < /s <231
1.6 231 < /s

the laboratory frame is about 130 ub, which corresponds well
to that measured at KEK [22].

Figures 9 and 10 compare calculated (7, K*) inclusive
spectra with the KEK experimental data [22,23]. Several
curves in these figures correspond to the assumed X potential
with Ug = —10, 10, 30, and 50 MeV. In DWIA analyses in
Refs. [22,23] and also in Ref. [24], an overall reduction
factor is introduced to discuss the correspondence with
the experimental data. However, we do not multiply any
renormalization factor. It is seen that absolute values are satis-
factorily reproduced by a repulsive strength of 10 ~ 30 MeV.
Because we may expect additional contributions from mul-
tistep processes, the actual repulsive strength may be larger
than 30 MeV. This result agrees with that in Ref. [25], where
the ¥ potential was concluded to be repulsive of the order of
30 ~ 50 MeV, using the SCDW model with the Thomas-Fermi
approximation for the target nucleus, 28Si. The assumption of

2 T T T T
E 1 - a2 /’l~\
= "“"I"I/P I\\I\ J
8 1 L1
o 0k 1..1 _I._ 4
© L AN i
5 M 1
3 S l a1 ..... I PR R 1 _____ I J
- “I....-P‘ o
247 ' 19 ' 2.1
/s [GeV]

FIG. 7. /s dependence of Legendre coefficients of angular
distributions of the 7~ + p — K+ + X~ reaction. Empirical data
points are taken from Refs. [43—46]. The dotted and dashed lines
show the fit for the calculation of (x~, K) inclusive spectra.
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04— T T T T T

0.2

6 [mb]

/s [GeV]

FIG. 8. Total 7~ + p — KT + X~ cross sections as a function
of the center-of-mass energy. Data points are taken from Refs. [43—
46]. The solid curve displays the parametrization of Eq. (23) in the
present calculation. For comparison, the energy dependence used in
Ref. [25] with an isotropic angular dependence is shown by the dotted
curve.

the isotropic angular distribution of the elementary process
used in Ref. [25] tends to overestimate the elementary cross
section at forward angles. Thus, the repulsive strength needed
to reproduce the experimental data becomes smaller.

At present, the agreement of the calculated shape of the
spectrum with the experimental data is not excellent. This
may be related to the uncertainties of the input cross section,
in addition to multistep contributions. As is seen in Figs. 7
and 8, error bars of the elementary cross section are rather
large. It is also to be borne in mind that the X-nucleus potential
may be energy dependent. On the experimental side, the data
is uncertain at the higher excitation energy region due to the
spectrometer acceptance [23].

To learn the role of the nucleon Fermi motion, it is
instructive to show which energy region of the elementary
process dominantly contributes to the formation strength at
each X separation energy, — By,. Table III tabulates percentage
contributions from six different regions of /s at —By =

dP6/dQdE [ub/(sr MeV)]

FIG. 9. (~, KT)X formation inclusive spectra with a 28Si target
at Ox = 6° F 2° for pions with p, = 1.2 GeV/c. These results were
obtained with four choices of the strength U2 = —10, 10, 30, 50 in
a Woods-Saxon potential form with the geometry parameters of rp =
1.25 x (A — 1)!/3 fm and a = 0.65 fm. Experimental data points are
taken from Refs. [22,23].
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TABLE III. Percentage contribution from each center-of-mass
energy (4/s) region of the 7~ + p — K+ + X~ elementary process
at — By = 50, 110, and 170 MeV in (7, K ™)X formation inclusive
spectra on 28Si with U2 = 10 and 30 MeV, respectively.

Range of /s (GeV) — By (MeV)
50 110 170
Case of U2 = 10 MeV
<15 0.0% 0.0% 3.7%
1.75 < /s < 1.80 0.0% 25.7% 68.2%
1.80 < /s < 1.85 21.8% 62.7% 27.3%
1.85 < /5 <1.90 68.4% 11.2% 0.8%
1.90 < /s <2.00 9.7% 0.4% 0.0%
2.00 < /s 0.1% 0.0% 0.0%
Case of U2 = 30 MeV
Js<1.75 0.0% 0.0% 1.8%
1.75 < /s < 1.80 0.0% 18.1% 48.3%
1.80 < /s < 1.85 12.2% 55.2% 46.2%
1.85 < /s <1.90 66.6% 25.0% 3.6%
1.90 < /5 <2.00 20.9% 1.7% 0.1%
2.00 < /s 0.3% 0.0% 0.0%

50, 110, and 170 MeV for the cases of Ug = 10 and 30 MeV,
respectively. At lower X excitation energies, the reaction
mainly occurs with a nucleon moving toward the incident
pion. However, at higher X energies, the dominant contribution
comes from the elementary process at lower center-of-mass
energies.

It was remarked in Ref. [22] that the peak position of the
(m~, K™) ¥~ formation inclusive spectrum at an energy as
high as 120 MeV is difficult to reproduce if the repulsion of
the ¥-nucleus potential is not so strong as about 100 MeV.
Our analysis suggests, however, that it is not necessary for
the ¥ s.p. potential to be such repulsive. The reason that
the result obtained in our SCDW model differs from that of
Ref. [22] might be related to the fact that we did not use the

3 T T T
12C(n—’K+)
. pr-=1.2GeV/c
S
(4]
= 2 i
e
3 0
= U ﬂll F==x
3 -10 MeV. —=3
S 1L +10 MeV. o 4
3 +30 Mev\;’///
Yo +50 MeV oole
J‘/M/
_ &=
O 1

200
-By [MeV]

FIG. 10. (w~, K™) X formation inclusive spectra with a '>C target
at Oy = 6° F 2° for pions with p, = 1.2 GeV/c. These results were
obtained with four choices of the strength U2 = —10, 10, 30, 50 in
a Woods-Saxon potential form with the geometry parameters of ry =
1.25 x (A — 1)!/3 fm and a = 0.65 fm. Experimental data points are
taken from Refs. [23].
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factorization approximation represented by the average cross
section, Eq. (2). The descriptions of incident pion and outgoing
kaon distorted waves are also different. It will be worthwhile
to detect the source of the different results.

It is necessary to discuss the correspondence of the ¥ po-
tential strength obtained on the basis of the present (77—, K™)
inclusive spectra with the predictions of varying theoretical
models for the X-N interaction. Most models [11,13] of the
Nijmegen group give an attractive X s.p. potential, as is seen in
various G-matrix calculations [12,14,47,48] in nuclear matter.
Only the model F is acceptable, which was concluded also
by Dabrowski [9] in his plane wave impulse approximation
analysis of the BNL data [8] of the (K ~, 1) spectrum on ‘Be
at px = 600 MeV/c. The recent SU(6) quark model [15-17]
by the Kyoto-Niigata group definitely predicts a repulsive X
s.p. potential. The G-matrix calculations [18] in symmetric
nuclear matter showed that the early version, FSS [15,16],
gives US ~ +20 MeV and the latest version, fss2 [17], U2 ~
+8 MeV. This repulsive X s.p. potential originates from a
strongly repulsive character in the isospin 7" = % channel due
to the quark antisymmetrization effect. If the strength of more
than 30 MeV is confirmed in future, these theoretical models
will need fine tuning.

It is also important to pay attention to the density depen-
dence of the X s.p. potential. As the X~ atomic data tells [10],
the ¥ potential is attractive at the very surface region of a
nucleus. This feature is also seen in the G-matrix calculation
with the quark model potential [18]. The calculation in this
article assumes a single Woods-Saxon form for the ¥ potential.
A question whether the sign change of the ¥~ potential can
be detected at the outside region in the description of the
(w~, K™) reaction is to be studied in future. The energy
dependence of the X potential is another issue to be addressed.
The G-matrix calculation in Ref. [18] indicates that the
repulsive strength is not energy-independent.

Because of the strong repulsive contribution from the
isospin T = % channel, it is hypothesized that the X ~-nucleus
potential becomes more repulsive in the case of a neutron
excess. In this respect, analyses of the (m~, K*) data with
heavier nucleus targets will be interesting for the purpose of
investigating whether such quantitative isospin dependence
actually exists.

In the present calculations, there are various treatments
to be improved. The smearing caused by the Lorentz-type
convolution should be treated by the precise way of the Green
function method, though much calculational efforts have to
be devoted. A quantitative estimation of the contribution from
multistep processes is needed, which could fill the difference of
the experimental data and the calculational results as is seen in
the A formation spectra. A model description of the elementary
process is to be upgraded, though new experimental data
are required to do it. After improving these points and the
proper account of the CM motion of the target wave function,
the SCDW framework serves as a quantitatively reliable
model to study the possible modification of the elementary
amplitudes in nuclear medium. The direction of the change
of cross sections, increase or decrease, depends on how
the amplitudes are altered through the underlying dynamical
processes.
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V. CONCLUSIONS

We have developed a SCDW model for (7, K) inclusive
spectra corresponding to A and ¥ formation processes, using
the Wigner transformation of the nuclear density matrix. The
expression of the double differential cross section consists
of the incoming pion distorted-wave function, the outgoing
kaon distorted-wave function and the undetected hyperon
distorted-wave function at each collision point, where the
conservation of the classical local momenta is respected.
The momentum distribution of the bound nucleon in the
target nucleus is obtained from the Wigner transformation of
Hartree-Fock wave functions.

We have first applied the model to inclusive (x 7, KT) A
formation spectra on the 28Si and '>C targets measured at
KEK [23,38]. In this case, because the A s.p. potential is
well known, there is no adjustable parameter. The standard
A potential strength is found to reproduce well the overall
energy dependence of the data. The strength is underestimated.
However, this is a rather preferable result, because the proper
treatment of the CM motion has to be implemented in our
SCDW formulation and there should be some contributions
from two-step processes that are not taken into account. The
quantitative estimation of these effects is one of the important
subjects to be investigated.

Observing from the (7, KT)A formation spectra that the
SCDW model provides a useful description of the inclusive
spectrum without any adjustable parameters and renormaliza-
tion factors, we have proceeded to the (7 ~, K*)X formation
spectra. The comparison of the calculated curves using several
choices of the X s.p. potential strength in a standard Woods-
Saxon geometry with experimental data from KEK [22,23]
has shown that an attractive X-nucleus potential overestimates
the spectrum at lower excitation energies. Although there are
rather large uncertainties in the information of the elementary
process, we see that the repulsive potential is necessary to
account for the absolute strength of the spectrum. Although we
have to await quantitative estimation of various effects above
mentioned to specify the strength of the X-nucleus potential,
it is reasonable to conclude that the ¥ hyperon experiences
repulsion in nuclear medium and its magnitude is not so strong
as around 100 MeV, which was suggested by DWIA analyses
in Ref. [22].

The information about the repulsive feature of the -
nucleus potential constrains the two-body X-N potential
model and thereby improves our understanding of the in-
teractions between octet baryons. In the literature there has
been a few X-N potential models that predict repulsive
Y mean field. In Nijmegen models [11,13], only the model F
is satisfactory in this respect. Another model is a SU(6) quark
model by the Kyoto-Niigata group [15-17]. The model FSS
gives 20 MeV [18]; however, the more sophisticated version
fss2 predicts somewhat smaller repulsion of 8 MeV. More
studies are certainly needed to determine the strength of the
3 s.p. potential by employing various choice of the potential
shapes. The energy dependence of the X-nucleus potential
may also have to be taken into consideration.

The analyses of the data of heavier target nuclei are
important in the next step. Because the neutron excess means

064613-9



KOHNO, FUJIIWARA, WATANABE, OGATA, AND KAWAI

that the T = % contribution becomes larger, we could check
the isospin dependence of the X-N interaction on the basis of
experimental data. The SCDW analyses of the data on ®Ni,
151n, and 2" Bi taken at KEK [23] are in progress.

Finally we note that the present framework can be straight-
forwardly extended to describe other inclusive spectra, such
as (K, m),(K—,K™"), (,n), (y, K), (v, n), and so on.
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APPENDIX: WIGNER TRANSFORMATION OF
THE DENSITY MATRIX

We present an explicit expression for the Wigner transfor-
mation of the density matrix:

®,(R,K) = . /d —iskK
h ) = (27_[)3 se
1 1
x §h : b (R — zs> on <R + 5s) . (AD

We write the s.p. wave function of each partial wave in r space
as
1 - Jn
ou(r) = ;¢nh,«h,j,, ()| Ye, (#) x X1/2]mh» (A2)
where ¢y, ¢, ;,(r)is aradial wave function and y,» a spin part.
Let us denote the Fourier transform of the single-particle wave
function ¢, (r) as ¢, (k).

Pn(k) = f dre "7 ¢ (r)

1
(2n)?
A . 1 -
E——— Jn 1 ‘
= (27{)%’ oYy, (k) x X1/2]mh X k¢'1/u€h,1h(k),
(A3)

where k represents angular parts of the vector k and the Fourier
transformation of the radial wave function is defined as

%énh,eh, (k) = (—i)z'”‘\/g / dr rje,(kr)gn, e, (r). (A4)
@, (R, K) in Eq. (A1) is rewritten as
®(R, K) = /dp i (K - %p) P (K + %p) e,
(AS5)
Using the expression of Eq. (A3), we first obtain

> o (K - %P) P (K + %p>

my

1 1
~ L[ (K =30) e

Jn*

mp
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P (rran) <], e
P TRE) A Tkl TR o)

e 1 - 1
qunh,fh,jh <‘K - Ep‘> ¢”hqlhq]'h (‘K + Ep‘> . (A6)

Becuase the spin part gives Xl*/z m, X1/2m, —> Smym: > the recou-
pling of angular momenta leads to the following expression.

] 1Y - 1
> én (K - E”) i (K + 51))

1 2j,+1 I 1
= TP (cost
@ny dx SR e T 1)

- 1 ~ 1
Xd):l(h,thjh (‘K - EP‘> ¢nh~,£lujh ('K + EP'> . (A1

Here, the angle between K — % pand K + % p is denoted by
Ok, p; that is,

(A8)

Then, Eq. (A5) becomes

1 2j,+1
2n)  4m

1 1
K —3p||K+35p]

~ 1 - 1
XG4 i (‘K - EPD Bty <‘K + 51").

(A9)

@, (R, K) = /dp eRr

X Py, (cos Ok p)

Noting that the following relation holds
2w )
/ do, ¢®P =27 Zif(ze +1)je(Rp)
0

x Py(cos KR)Py(cos K p), (A10)

we obtain the Legendre expansion of @, (R, K). Each compo-
nent ®! (R, K) of the expansion

®4(R. K)= ) Py(cos KR) ®!(R, K)

{=even

(Al1)

is given as follows
®L(R, K) =21 (— )20 + 1)/p2dpd cos K p jo(Rp)

. 11
x Py(cos K p)(2j, + UWEPZ” (cos Ok, p)

2/d o (1K +
X — rr —
- Je, 21’

) 1
x [ drrj, K—Ep

V) Dy, (1)

r) B4, (). (A12)
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