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Analyzing powers of polarized deuterons in low-energy 6Li(d, α)4He
and 6Li(d, p0)7Li reactions in a resonance region
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Low-energy 6Li(d, α)4He and 6Li(d, p0)7Li reactions are affected by the 2+ resonance level of 8Be at Ex �
22.2 MeV. In this work, we present a new method to extract fractions of the 2+ components of the reactions,
which include the resonance, by using the tensor-analyzing powers, T2q , of polarized deuterons. We measured
T2q for q = 0, 1, 2 at the very low incident energy Ed = 90 keV and analyzed the data by the invariant amplitude
method giving the 2+ fractions as 0.90±0.05 for 6Li(d, p) and 0.998±0.003 for 6Li(d, α). For 6Li(d, p), it was
comparable to the resonance fraction extracted from cross-section data, whereas for 6Li(d, α), the 2+ fraction was
much larger than the resonance fraction extracted from cross-section data. A part of the analyses was extended
to higher energies up to 960 keV.
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I. INTRODUCTION

Nuclear reactions at extremely low energies are an impor-
tant subject in astrophysics as the mechanism of producing
elements in the universe. Generally, cross sections of the
reactions between charged particles decrease exponentially
when the incident energy decreases because of the Coulomb
barrier. Then, in the astrophysics, the S(E) factor,

S(E) = σ (E)E exp(2πη),

is used to express the strength of the reaction, where σ is the
cross section, E is the reaction energy in the center-of-mass
(c.m.) system, and η is the Sommerfeld parameter. When
cross-section data are not available at a given energy, for
example, due to the smallness of the cross section, one
should extrapolate the astrophysical S(E) factor from data
in a higher-energy region. However, because the extrapolation
process requires an appropriate reaction model, the choice of
the model is an important factor in the extraction, because
the obtained S(E) factor may depend on the reaction model
[1,2].

Such model-dependent analyses are applied when the cross
section has resonance components as well as nonresonance
ones. In this case, the resonant-component fraction is par-
ticularly important for the extrapolation process of S(E).
However, the extraction of the resonance component from
the cross-section data suffers from inevitable difficulties at
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low energies. As discussed above, the absolute magnitude of
the cross section decreases with a decrease of the incident
energy, resulting in difficulties concerning the measurement.
Furthermore, the angular distribution of the cross section
has a tendency to become isotropic at low energies because
of the dominance of the s-wave in the incident channel.
However, separation of the cross section into the resonance and
nonresonance components essentially utilizes the anisotropy
of the angular distribution. Therefore, in the low-energy region,
the cross section will not be the favorite observable for
extracting of the resonance component and one will need
supplements by different approaches with other observables.
As one of such approaches, we present a method that uses
polarization observables to extract the fraction of a particular
spin-parity state, at very low energies. When the resonance
configuration is exclusively dominant in the state, it will
provide the resonance fraction.

We measured the vector- and tensor-analyzing powers of
polarized deuterons at the incident energy of 90 keV in
the 6Li(d, p0)7Li (g.s.) and 6Li(d, α)4He (g.s.) reactions and
analyzed the data by using the invariant amplitude method [3],
which allowed model-independent analyses of reactions. Low
incident energies, such as the present one, have advantages
for applying the method. At low energies, the penetrability of
the centrifugal barrier restricts the orbital angular momentum
of the incident beam to a few values near to the s-wave, and
thus the reaction can be described by the invariant amplitudes
of small number, which are treated as angle-independent
constants. Further, because the resonance level is located in
the energy close to the threshold of the d +6 Li channel, such
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a low incident energy will be advantageous for investigating
details of the resonance effects.

The present calculation well reproduced the measured
analyzing powers. Through the analysis of the data, we
confirmed the spin-parity of the resonance to be 2+ and
obtained the fraction of the 2+ configuration, which includes
the resonance, for the (d, p0) reaction as 0.9±0.05, which
is comparable to the compound-nucleus fraction, about 0.85
[4], extracted from the cross-section data. For the (d, α)
reaction, we obtained 0.998±0.003 for the 2+ fraction, which
is much larger than the compound-nucleus fraction, about
0.5, estimated from the S factor in Ref. [2], where the
cross sections were employed in the analysis. Moreover, the
present analyses gave a deeper understanding of the reactions
than earlier ones. For example, at higher energies, 600 and
960 keV, the analyzing powers for the (d, p) reaction on the 6Li
target had been measured by M. Glor et al. [5] and analyzed by
the R-matrix theory. They found that the dominant component
of the reaction is due to the 2+ state but had not derived the
fraction of the component. Further the nature of the differences
between the measured analyzing powers and the contributions
of the 2+ state had not been clarified. At Ed = 90 keV, we
explained the differences as dominantly being contributions
of the nonresonant s wave via the 1+ state of the d + 6Li
system and those of p waves. A part of such analyses were
extended to higher energies up to 960 keV in both of the (d, p)
and (d, α) reactions.

II. EXPERIMENTAL SETUP AND RESULT

The experiment was performed using a Lamb shift-type
polarization ion source [6] at the University of Tsukuba
Tandem Accelerator Center (UTTAC). The polarization of the
deuteron beam was measured by the quench-ratio method [7]
about every 2 h. The typical value of the beam intensity was
about 100 nA, and that of the beam polarization was about
0.70. The uncertainty of the polarization was about 0.02.

Figure 1 shows the placement of the detectors and the target.
The target was a layer of lithium carbonate, Li2CO3, having a
thickness of about 10 µg/cm2 on an aluminum backing having
a thickness of about 15 µm. The enrichment of 6Li was 95%.
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FIG. 1. Layout in the scattering chamber.
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FIG. 2. Coordinate system in which the polarization state of the
incident beam is described. The z axis is along the momentum of
the incident particle, kin. The y axis is along kin × kout, where kout

represents the outgoing momentum direction. The spin orientation S
makes the angle β with respect to kin. The projection of S onto the
xy plane makes the angle φ with respect to the y axis.

The beam was introduced to the lithium carbonate layer and
was intercepted by the aluminum backing, which played the
role of a Faraday cup. A slit with a diameter of 5 mm was
placed at a distance of 150 mm upstream from the target. The
energy loss in the layer of lithium carbonate was about 8 keV.
A meshed sheet of SUS supplied with a voltage of −300 V
was placed in front of the target to suppress the secondary
emission electrons from the target. We placed 12 Si-SSDs
around the target at every 15◦ scattering angles from 0◦ to
165◦. Each detector was placed at a distance of 140 mm from
the target and had a solid angle of 10 msr. On each Si-SSD
placed in the range of scattering angles from 90◦ to 165◦, a
mylar sheet having a thickness of 9 µm was placed to block
elastic deuterons.

The polarizations of the incident particle were set up in
the following manner. The reference frame was chosen as in
Figure 2, which is similar to that in Ref. [8]. The z axis is
along the momentum of the incident particle kin. The y axis
is along kin × kout, where kout represents the momentum of
the outgoing particle. The spin orientation S makes the angle
β with respect to kin. The projection of S onto the xy plane
makes the angle φ with respect to the y axis. For measurements
of iT11 and Ayy , the spin orientation S was chosen along the y

axis (β = 90◦, φ = 0◦). For this choice of the spin orientation,

iT11 = 1

2
√

3Nu

[(
N1

P1
− N−1

P−1

)
−

(
Nu

P1
− Nu

P−1

)]
, (1)

and

Ayy = 1

P0

(
1 − N0

Nu

)
(2)

with

Nu =
(

N1

P1
+ N0

P0
+ N−1

P−1

)/(
1

P1
+ 1

P0
+ 1

P−1

)
, (3)

where Nm and Pm (m = 1, 0, or −1) are the yield and the
polarization for the spin magnetic substate m. The beam
from lamb shift-type polarization ion source consists of
an unpolarized component and a perfectly polarized one.
The beam polarization Pm is described as the fraction of the
polarized one. In the case of our ion source, Pm follows the
relation,

P1 = P0

0.963
= P−1

0.931
. (4)
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FIG. 3. Circuit including the Si-SSD. Each Si-SSD is written as
a condenser.

For the measurements of T20, the spin orientation was chosen
along kin (β = 0◦). We obtained

T20 =
√

2(N1 − N0)

P1N0 + 2P0N1
. (5)

and

T22 = −Ayy√
3

− T20√
6
. (6)

For the measurement of T21, β was chosen to be 54.7◦, which
satisfies 3 cos2 β = 1, and φ was chosen as 90◦. Then T21 was
described as

T21 = 1√
3P1 sin(2 × 54.7◦)

(
2N1 − N0

2P0N1 + P1N0
− 2√

3
P1T22

)
.

(7)

Figure 3 shows the circuit, including the detectors. Each
Si-SSD is written as a condenser. Each coadjacent pair of
detectors is divided by a resister. The energy of the detected
particle is proportional to the sum of two currents, IA and
IB. The active detector is identified by using a signal that is
proportional to the value P = IA/(IA + IB). P is represented
as

P = 1 − R′

R
,

where R is the total resistance of the circuit, R′ is the resistance
of the left side from the active detector.

Figure 4 shows the spectrum measured by a detector. The
measured analyzing powers for the 6Li(d, p) and 6Li(d, α)
reactions are given in Tables I and II, respectively, and
graphed in Fig. 5. The data show remarkable characteristics.

0 2 4 6 8  10  12  14  16

yi
el

d 
(a

rb
itr

ar
y 

un
it)

particle energy (MeV)

6Li(d,p0) 6Li(d,α)

6Li(d,p1)

2H(d,p)

FIG. 4. Spectrum measured by a detector.

In the (d, p) reaction, the angular distributions of the vector-
and tensor-analyzing powers are approximately described
by sin θ and the Legendre function P2q(cos θ ), respectively,
except for sign and magnitude. In the (d, α) reaction, the
latter analyzing powers,which are shown up to θ = 90◦, have
angular distributions similar to those in the (d, p) reaction but
with the opposite sign, whereas the former one is almost zero.
These characteristics of the analyzing powers are explained by
the invariant amplitude method, which is described in the next
section.

The anisotropy of the cross section of 6Li(d, p0) reaction,
which is considered to be the initial p-wave effect, was
estimated by using the same data set. The yield for unpolarized
beam was obtained by recomposing the yields for polarized
beams. The cross section is described by referring to that of the
(d, α) reaction. The latter angular distribution is expected to
be isotropic, because contributions of the incident p wave
are canceled due to the identical two bosons in the final
states and those of higher partial waves are negligibly small
as discussed in Sec. III B. Then the quotient of the yield
for 6Li(d, p0) divided by that for 6Li(d, α) represents the
anisotropy of the 6Li(d, p0) cross section and is given in
Table III and displayed in Fig. 6. In the figure, most of the data
points of the quotient are described by the angular distribution,
0.576(1 + 2 × 0.008 cos θ ), when the experimental errors are
taken into account, although a few data points deviates from
the line. In the next section, it is examined if details of the
angular distribution bring about ambiguities in analysis of the
analyzing powers.

III. ANALYSIS

We analyzed the data by the invariant amplitude method
[3], the essence of which is briefly summarized below.
Additional approximations applicable to low-energy reactions,
were introduced as discussed in Sec. I. That is, the available
incident partial wave is restricted to s, p, and d waves and the
angular dependence of the invariant amplitude is neglected [9].
In the invariant amplitude method, transition amplitudes are
decomposed into spin-space tensors, designated by the rank,
K , which describes the spin-space nature of the concerned
interactions; for example, when the parity of the system is
not changed, scalar amplitudes (K = 0) denote scattering by
central interactions, vector ones (K = 1) that by the spin
vector interactions like LS ones, and so on. With these
amplitudes, the physical observables are similarly decomposed
and the components are classified according to the tensor rank
involved.

The analyzing powers, Tkq , of a polarized beam for the
reaction �a + A → b + B is described by the use of the T

matrix M as

Tkq = 1

N R
Tr(Mτkq M†), (8)

where NR = Tr(M M†) and τkq is the spin-tensor operator of
the particle a with the rank k and the z component q [8]. In the
present theoretical frame, Tkq is given by

Tkq =
∑
KK ′

Tkq(K,K ′). (9)
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TABLE I. Measured analyzing powers for the 6 Li(d, p) reaction. The errors are statistical.

θc.m.(deg.) iT11 T20 T21 T22

0.0 0.007 ± 0.014 0.418 ± 0.016 −0.007 ± 0.030 0.008 ± 0.031
15.4 −0.009 ± 0.013 0.401 ± 0.017 −0.111 ± 0.028 0.024 ± 0.028
30.7 −0.073 ± 0.014 0.322 ± 0.017 −0.218 ± 0.030 0.055 ± 0.030
46.0 −0.088 ± 0.012 0.176 ± 0.018 −0.291 ± 0.027 0.116 ± 0.027
61.3 −0.110 ± 0.013 0.083 ± 0.017 −0.249 ± 0.028 0.178 ± 0.029
76.4 −0.114 ± 0.011 −0.098 ± 0.018 −0.183 ± 0.025 0.233 ± 0.026
91.5 −0.123 ± 0.013 −0.159 ± 0.018 −0.086 ± 0.027 0.277 ± 0.029

106.4 −0.106 ± 0.011 −0.119 ± 0.018 0.063 ± 0.023 0.312 ± 0.026
121.3 −0.071 ± 0.019 −0.093 ± 0.023 0.170 ± 0.036 0.198 ± 0.039
136.0 0.041 ± 0.034
150.7 −0.022 ± 0.020 0.200 ± 0.021 0.201 ± 0.036 0.055 ± 0.041
165.4 0.338 ± 0.028

For the vector and tensor analyzing powers, iT11 and T2q ,

iT11(K,K ′) = 1

NR

∑
li ,l

′
i

Yli l
′
i
(K,K ′)

×Q11,li l
′
i
(K,K ′), (10)

T2q(K,K ′) = 1

NR

∑
li ,l

′
i

Xli l
′
i
(K,K ′)

×Q2q,li l
′
i
(K,K ′), (11)

where NR is proportional to differential cross sections and is
given by

NR =
∑
K

NR(K,K), (12)

NR(K,K) =
K∑

li=K−K

K ′∑
l′i=K

′−K ′

×Q00,li l
′
i
(K,K)Zli l

′
i
(K,K), (13)

with

Xli l
′
i
(K,K ′) =

∑
si s

′
i sf

ŝi ŝi
′ŝaW (s ′

i sa2sa; sasi)

×W (2siK
′sf ; s ′

iK)

× Re{F ∗(sisf Kli)F (s ′
isf K ′l′i)}, (14)

Yli l
′
i
(K,K ′) =

∑
si s

′
i sf

ŝi ŝi
′ŝaW (s ′

i sa1sa; sasi)

×W (1siK
′sf ; s ′

iK)

× Im{F ∗(sisf Kli)F (s ′
isf K ′l′i)}, (15)

Zli l
′
i
(K,K) =

∑
si sf

Re{F ∗(sisf Kli)F (sisf Kl′i)}. (16)

Here, sa denotes the spin of the particle a, si(sf ) the
initial (final) channel spin and li the incident orbital angular
momentum. The function F is the invariant amplitude and Q

is a function of cos θ and sin θ . Their explicit forms are given
in Tables I–V in Ref. [3] for K,K ′ � 2.

We apply the above formulas to the reactions
6Li(d, p)7Li(g.s.) and 6Li(d, α)4He. The d +6Li system at
the present energy is situated under a broad resonance that
had been described as a 2+ resonance with the 800-keV
width located at 80 keV below the reaction threshold [10,11].
Also some isospin mixing effects had been reported for the
state [4]. Furthermore, the recent analysis of related reactions
by the R-matrix theory [12] predicted that this broad resonance
consists of two components of the same spin parity, 2+; one
located at Ex = 22.09 MeV with 	 = 580 keV and the other
at Ex = 22.78 keV with 	 = 1670 keV. However, the present
incident energy is covered by both of these components, and it
is difficult to discriminate apriori their contributions one from
other. Then we treat them as a whole by describing as the 2+
contribution, which accordingly includes all contributions of
the 2+ configurations at the given energy.

TABLE II. Measured analyzing powers for the 6Li(d, α) reaction. The errors are statistical.

θc.m.(deg.) iT11 T20 T21 T22

0.0 −0.018 ± 0.021 −0.578 ± 0.039 0.005 ± 0.014 0.031 ± 0.054
10.3 −0.017 ± 0.021 −0.551 ± 0.039 0.132 ± 0.016 0.011 ± 0.053
30.9 −0.013 ± 0.021 −0.405 ± 0.037 0.330 ± 0.020 −0.097 ± 0.044
51.4 0.014 ± 0.021 −0.089 ± 0.034 0.369 ± 0.023 −0.270 ± 0.030
71.7 −0.003 ± 0.021 0.146 ± 0.031 0.244 ± 0.023 −0.389 ± 0.033
91.8 0.004 ± 0.021 0.253 ± 0.030 −0.008 ± 0.021 −0.394 ± 0.036
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FIG. 5. Experimental results for 6Li(d,

p)7Li (left column) and 6Li(d, α)4He (right
column). The abscissas represent the scattering
angle in the c.m. system.

TABLE III. Quotient of the yield of
6Li(d, p0) divided by the yield of 6Li(d, α).

θc.m.(deg.) Quotient

0.0 0.588 ± 0.012
5.4 0.587 ± 0.011

30.7 0.587 ± 0.012
46.0 0.597 ± 0.011
61.3 0.585 ± 0.011
76.4 0.565 ± 0.010
91.5 0.556 ± 0.008

106.4 0.583 ± 0.008
121.3 0.567 ± 0.013
136.0 0.599 ± 0.013
150.7 0.557 ± 0.013
165.4 0.569 ± 0.012

A. 6Li(d, p0)

First, we analyzed the 6Li(d, p0) reaction. In this case
sA = sa = 1 and sB = 3

2 , sb = 1
2 . Then, the initial channel spin

was si = 0, 1, 2 and the final one was sf = 1, 2. Because
si + K = sf ,K = 0, 1, 2, 3, 4. In the present reaction, the
parity of the system is changed by the reaction from positive
to negative (
P �= 0), and then the amplitudes of K = 0
vanish. The amplitudes induced by central forces appear as
an amplitude of K = 1, because the p-state wave function
of the captured neutron in the final nucleus transforms the
original amplitudes by multiplying a vector. Similarly, the
amplitudes by LS interactions appear as those of K = 0, 1, 2,
and the amplitudes by tensor interactions as K = 1, 2, 3. In
the following, contributions of K = 3 amplitudes will be
neglected because they are induced by the f wave of the
final proton that has very small overlap with the s wave of
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FIG. 6. Quotient of the proton yield divided by the α-particle
yield. The angular distribution of the quotient is simulated by a(1 +
2Pσ cos θ ). The solid curve is for Pσ = 0.008 and a = 0.576. The
dashed curves represent the range of Pσ = 0.008 ± 0.014.

the deuteron, the main component of the incident wave. The
deuteron D state is implicitly included as the internal freedom
of the deuteron. Because the central force produces the
dominant contributions to the reaction, the vector amplitudes
(K = 1) will be dominant over other amplitudes. The vector
components of the amplitudes due to the LS and tensor
interactions are also included in this amplitude. Thus, as
the first step, we neglected F (sisf Kli), except for K = 1,
and assumed li = l′i = 0, which corresponds to the s-wave
incident. Due to these approximations, we derived from
Eqs. (9)–(11) the vector and tensor analyzing powers as

iT11 = 0, (17)

T2q = −2
√

3√
5

α1P2q(cos θ ), (18)

α1 = X00(1, 1)

Z00(1, 1)
, (19)

where Pkq is the associated Legendre function and the
magnitudes of T2q for q = 0, 1, 2 are given by α1, which can
be treated as a flexible parameter. Later, α1 is determined by
including corrections due to the K ′ = 2 amplitudes and p and
d waves. Figure 7 shows the calculation with the parameters
in Table IV compared with the experimental data, where the
K = 1 contribution by Eq. (18), which is described by the
dashed lines, is found to reproduce the essential features of
the measured T2q . Then, before discussing the final result of
the calculation, we examine the constituents of X00(11) and
Z00(11) in Eq. (19) to see the role of each spin state specified
by the channel spins, in the analyzing powers.

From Eqs. (14) and (16),

X00(1, 1) = 1

4
√

3
|F (11)|2 − 1

20
√

3
|F (12)|2

+ 7

20
√

3
|F (21)|2 − 7

20
√

3
|F (22)|2

+ Re

{
2√
15

F ∗(01)F (21)

− 3

2
√

5
F ∗(11)F (21) + 3

10
F ∗(12)F (22)

}
, (20)

TABLE IV. Quantities α1 ∼ α5, which were determined so as to
fit the 6Li(d, p0) data, by a most-likelihood method.

Pσ −0.006 0.008 0.022

α1 −0.168 ± 0.027 −0.168 ± 0.027 −0.168 ± 0.027
α2 0.043 ± 0.040 0.040 ± 0.040 0.036 ± 0.040
α3 −0.006 ± 0.014 −0.008 ± 0.013 −0.010 ± 0.013
α4 0.019 ± 0.027 0.019 ± 0.027 0.019 ± 0.027
α5 0.006 ± 0.030 0.005 ± 0.030 0.005 ± 0.030

Z00(1, 1) = |F (01)|2 + |F (02)|2 + |F (11)|2
+ |F (12)|2 + |F (21)|2 + |F (22)|2, (21)

where F (sisf Kli) is abbreviated as F (sisf ) because K and
li were fixed as K = 1 and li = 0. First, we show that
one can extract information about the spin of the resonance
state from the analyzing power data, assuming that the
resonance state is specified by a particular spin and parity
which produces dominant contributions to observables for
instance the analyzing powers. Accordingly, amplitudes of
configurations of other spin and/or parity are classified as
the nonresonance component and are tentatively neglected.
Among si = 0, 1, 2, it is sufficient to consider si = 1 and 2
for the resonance spin, because si = 0 appears only as an
interference term in Eq. (20), and cannot contribute to T2q

when the partner amplitude vanishes. That is the amplitude of
si = 0 does not dominate over other amplitudes in producing
the analyzing powers. Thus one can exclude si = 0 from the
candidate of the spin of the resonance, although the si = 0
amplitudes contribute to the cross section as seen in Eq. (21),
Z00(1, 1) is proportional to the cross section. When si = 1
dominates (the parity is positive because of li = 0),

α1 = − p − 5

20
√

3(1 + p)
, p ≡ |F (12)|2

|F (11)|2 . (22)

The possible α1 is in the range −0.02887 � α1 < 0.1443 due to
0 � p < ∞. Then, α1, which describes the measured tensor-
analyzing powers, α1 = −0.167±0.018 (Table IV), deviates
far from this range of α1 and one cannot choose α1 so as to
reproduce the experimental data when si = 1. That is, si = 1
cannot explain the measured analyzing powers and then the
spin and parity of the resonance cannot be 1+. Contrary to
that, when si = 2 dominates,

α1 = − 7(1 − p)

20
√

3(1 + p)
, p ≡ |F (21)|2

|F (22)|2 . (23)

The range of possible α1 is −0.2021 � α1 < 0.2021 because of
0 � p < ∞. This range of α1 includes α1 = −0.167 ± 0.018.
That means, in the case of si = 2, one can choose α1 so as to fit
the data. From these considerations, we could identify the spin
and parity of the resonance state as 2+. This assignment agrees
with the conventional one for the spin-parity of the resonance
and this agreement will support the basic idea of the present
analysis. In the case of si = 2, p = 0.095 ± 0.053. This
indicates that spin-flip amplitudes (sf �= si) are considerably
small compared with spin-nonflip amplitudes (sf = si).
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FIG. 7. (Left:) Experimental result for
6Li(d, p)7Li. The dashed curves represent the
prediction by Eqs. (17)–(18) with α1 = −0.167.
The solid curves represent the prediction by
Eqs. (27)–(29) and (35) with parameters in
Table IV and β = −0.115. (Right) Experimental
results for 6Li(d, α)4He. The dashed curves
represent the prediction by Eq. (43). The solid
curves represent the prediction by Eq. (45) with
f = 0.86. The abscissas represent the scattering
angle in the c.m. system.

Further, when the spin-flip amplitudes are neglected, we
could estimate the fraction of the 2+ component. We define
the fraction by

fR ≡ |F (22)|2
|F (11)|2 + |F (22)|2 . (24)

From Eqs. (20) and (21),

α1 = 5 − 12fR

20
√

3
. (25)

Using α1 = −0.167 ± 0.018, we obtained

fR = 5 − 20
√

3α1

12
� 0.899 ± 0.052. (26)

In the second step, we refined the calculation by includ-
ing contributions of the interference terms between K = 1
and 2, where the p and d waves in the incident partial wave

are considered as long as they interfere with the s wave. Using
Table V of Ref. [3], one can write the tensor-analyzing powers
as follows:

T20 = 1

1 + 2Pσ cos θ

[
−2

√
3√

5
α1P20 +

√
15α2 cos θ sin2 θ

− 2
√

6α3 cos θ +
√

15α4 sin2 θ −
√

6α5

]
, (27)

T21 = 1

1 + 2Pσ cos θ

[
−2

√
3√

5
α1P21 +

√
5

2
α2(2 cos2 θ − 1)

× sin θ + 3α3 sin θ +
√

5

2
α4 cos θ sin θ

]
, (28)
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T22 = 1

1 + 2Pσ cos θ

[
−2

√
3√

5
α1P22 −

√
5

2
α2 cos θ sin2 θ

+
√

5

2
α4 sin2 θ

]
, (29)

with

α2 = X01(1, 2)

Z00(1, 1)
, α3 = X01(1, 1)

Z00(1, 1)
,

α4 = X02(1, 2)

Z00(1, 1)
, α5 = X11(1, 1)

Z00(1, 1)
, (30)

Pσ = Z01(1, 1)

Z00(1, 1)
,

where α3 and α5 describe the p-wave corrections for the
K = 1 amplitudes, and α2 and α4 describe the p- and d-wave
contributions in the interference terms between amplitudes
K = 1 and 2. As described in Sec. II, the angular distribution
of the differential cross section was experimentally examined
to obtain the information of Pσ . The measured cross section
is shown in Fig. 6. The vertical axis represents the quotient of
the cross section of 6Li(d, p) divided by that of 6Li(d, α). The
quotient can be canceled by each solid-angle of the detectors.
Because the cross section of 6Li(d, α) is practically isotropic
as discussed in Sec. III B, the anisotropy of the quotient is
identical to that of 6Li(d, p) cross section, which is considered
to be p-wave effects. Finally, using Table I of Ref. [3], the cross
section for 6Li(d, p) is represented as

σp(θ )/σα(θ ) = a(1 + 2Pσ cos θ ). (31)

The quantities, a and Pσ are treated as flexible parameters
and are determined so as to fit the experimental data in
Table III by a most-likelihood method. The obtained param-
eters are Pσ = 0.008 ± 0.014 and a = 0.576 ± 0.011. Fixing
the parameter Pσ in this range, the quantities α1, α2, . . . , α5

are also treated as flexible parameters and are determined
so as to fit the experimental data of the analyzing powers
by a most-likelihood method. In Table IV, we gave as
typical cases three sets of the parameters (α1, α2, . . . , α5)
and Pσ . The deduced parameters αi are almost constant
for 0.008 − 0.014 � Pσ � 0.008 + 0.014. Thus the analyzing
powers hardly depend on such details of the angular distribu-
tion of the cross section. The analyzing powers, T2q calculated
with these parameters, are shown by solid curves in Fig. 7.
They show good agreements with the data. Here, the most
important correction is given by α2, which describes the
p-wave correction. It is noted that the magnitude of α1 is
not affected by including the anisotropy of the cross section.
Because the contributions of the above corrections are small,
we will neglect further corrections due to other terms, for
example, those of K = K ′ = 2, which do not include the
incident s wave.

To investigate the energy dependence of the theoretical
parameter α’s, the present analyses had been applied to the
analyzing powers of higher-energy (d, p) reactions at 600 and
960 keV. For the convenience of comparison, their data [5],

which are described in the Cartesian representation Aij , were
transformed to T2q by the well-known relations [8]

Azz =
√

2T20, (32)

Axz = −
√

3T21, (33)

Axx − Ayy = 2
√

3T22. (34)

Then T2q derived have angular distributions similar to those
at 90 keV. The calculation had successfully reproduced the
analyzing-power data although they are not displayed in
figures. In these cases, the magnitude of α1 decreases, whereas
other α’s increase with the increase of the incident energy; for
instance, α1 obtained at 960 keV is reduced by about 20%
compared to the one at 90 keV. This will mean that the 2+
contribution that includes the resonance effects decreases with
the increase of the energy and the non-resonance contributions
such as the incident p wave one increase. For detailed analyses
of such energy dependence, one will need more experimental
data of the analyzing powers in this energy region.

A finite iT11 was obtained by including the p wave in the
incident partial wave. By using Table IV of Ref. [3],

iT11 = 1

1 + 2Pσ cos θ
β sin θ (35)

with

β = 3β1 + 3√
2
β2, (36)

where β1 describes the contribution of the K = 1 amplitude
and β2 that of the interference between the amplitudes K = 1
and 2,

β1 = Y01(1, 1)

Z00(1, 1)
, β2 = Y01(1, 2)

Z00(1, 1)
. (37)

In Fig. 7, iT11 calculated by Eq. (35) reproduced the data by
fixing β = −0.115 ± 0.016.

B. 6Li(d, α)

Next, we analyzed the reaction 6Li(d, α). In this case, sa =
sA = 1 and sb = sB = 0. Thus, the initial channel spin is si =
0, 1, 2 and the final one is sf = 0. The parity is not changed by
the reaction (
P = 0). Thus, the transition by K = 0(0+ →
0+) and the one by K = 2(2+ → 0+) are allowed, and the
transition by any central interaction from the 2+ state is now
forbidden. The K = 0 amplitude does not contribute to the
tensor analyzing powers by itself and appears in T2q only as
an interference term with the K = 2 amplitude. Because the
2+ configuration is the major amplitude and the 0+ one is
the minor one in the initial state, the K = 2 transition makes
the main contribution and the K = 0 transition will give a
correction. The total tensor-analyzing powers are given by

T2q = T2q(2, 2) + 
T2q, (38)

where T2q(2, 2) is the contribution of the K = 2 transition term
and 
T2q is the interference term between K = 0 and 2.
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Keeping only the K = 2(2+ → 0+) transition, the analyz-
ing powers are described for the s-wave incident as

T2q(2, 2) = 1

NR

X00(2, 2)Q2q00,

NR = Z00(2, 2)Q0000, (39)

where

Z00(2, 2) = |F (2020)|2, (40)

X00(2, 2) =
√

7

10
|F (2020)|2. (41)

From Tables I and III in Ref. [3],

Q0000 = 1, Q2q00 = −2
√

5√
7

P2q (42)

From Eqs. (39)–(42), the K = 2 transition term is described
as

T2q(2, 2) = − 1√
5
P2q, (43)

which is independent of the theoretical parameters.
From Eq. (2.13) in Ref [3], the interference term is

described as


T2q = Re{F ∗(0000)F (2020)}
|F (2020)|2 + |F (0000)|2 · 2

√
2√

5
P2q . (44)

Totally,

T2q = − 1√
5
f P2q, (45)

where

f =
(

1 − 2
√

2
Re{F ∗(0000)F (2020)}

|F (2020)|2
)

fR, (46)

with

fR = |F (2020)|2
|F (2020)|2 + |F (0000)|2 , (47)

which describes the fraction of the 2+ component. Figure 7
shows a comparison of the experimental data with the
theoretical prediction. There, the K = 2 transition term
Eq. (43), which is described by the dashed lines, explains most
of the measured analyzing powers in both of the magnitudes
and the angular distributions without any adjustable parameter.
This means that the decay of the 2+ state is the dominant
mechanism of the transition. The total calculation by Eq. (45)
with f = 0.862 ± 0.087 is described by the solid lines and
gives good agreements with the data, where the correction due
to the K = 0 amplitude is clarified to be small. From Eq. (46),
we derived the order of magnitude of the K = 0 amplitude in
the first order in the following form

Re{F ∗(0000)F (2020)}
|F (2020)|2 = 1 − f

2
√

2
= 0.0488, (48)

which is very small compared to 1. More detailed estimation
was made for fR by using the approximation,

|Re{F ∗(0000)F (2020)}| � |F (0000)||F (2020)|. (49)

The approximation is valid when the imaginary parts of the
amplitudes are small compared to the real ones and, at low
energies, the real interactions are more important than the
imaginary ones as the general trend. In the present case,
the approximation provides a typical value of fR for small
|F (0000)|/|F (2020)|. Using above, we had fR from Eq. (46)
by taking the terms up to n = 2 in the expansion by (1 − f )n,

fR � [
1 + 1

8 (1 − f )2]−1
. (50)

Substituting the experimental value (f = 0.862 ± 0.087),
we obtained the 2+ fraction fR = 0.9976 ± 0.0030. Then
the si = 0 configuration has a very small fraction and the
contribution to T2q is enhanced by the interference with
the si = 2 configuration. Contributions of the incident d

wave to T2q have been examined by formulas similar to those
for the p wave effect in the (d, p) reaction (see Appendix),
where f and the d-wave parameter Pσ are treated as
flexible parameters. To fit the analyzing-power data of the
(d, α) reaction, we obtained f = 0.877 ± 0.087 and Pσ =
−0.046 ± 0.077, where the magnitude of f agrees with the
previous value within the experimental errors and Pσ is small
compared to the errors and practically will be approximated
by zero. Thus, at the present energy, one will neglect the
anisotropy of the angular distribution of the (d, α) cross section
due to the incident d wave. To examine the validity of this
approximation, we calculated the differential cross section by
Eq. (A5) at higher energies up to 975 keV. The calculation
describes well the measured cross sections [13] within the
experimental errors. The energy dependence of Pσ obtained is
shown in Fig. 8, which suggests Pσ at Ed = 90 keV to be very
small in an extrapolation consideration.

To see the energy dependence of f , we extended the
analysis of the (d, α)T2q data to higher energies up to Ed =
960 keV, including the incident d-wave effect with Pσ obtained
above which is simulated by a smooth function of the incident
energy. The calculated analyzing powers reproduced the
feature of the measured ones [14] although the quality of the
agreement between the calculated and the measured becomes
worse at higher energies, particularly for T22. In Fig. 9, the
obtained f is shown as the function of the incident energy,
which decreases with the increase of the energy, remarkably

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  200  400  600  800  1000

P
σ
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FIG. 8. Energy dependence of the theoretical parameter Pσ .
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FIG. 9. Energy dependence of the theoretical parameter f .

beyond Ed = 400 keV. More detailed investigations of the
analyzing powers at such energies will be useful to obtain
information about the nature of the 2+ resonance [12].

The vector-analyzing power, iT11, is zero because the
invariant amplitude includes the factor 1 + (−)lf and lf = 1
for iT11 when the residual and the ejectile particles are
identical. The data of the analyzing power is consistent with
the prediction, as can be seen in Fig. 7.

IV. SUMMARY AND DISCUSSION

We measured the vector- and tensor-analyzing powers of
the polarized deuteron for the 6Li(d, p0)7Li and 6Li(d, α)4He
reactions at the very low incident energy, 90 keV. We
analyzed the data by the invariant amplitude method in a
model-independent way and found that the 2+ configuration
with the d-6Li s-wave provides the dominant contributions to
the tensor analyzing powers in both reactions. In the (d, p)
reaction, the nonresonance 1+ configuration of the d + 6Li
system contributes to the tensor-analyzing powers by order
of magnitude 10% of the measured. Other corrections due to
the non resonance component had been taken into account
by including the p- and d waves in the incident channel for
the (d, p0) reaction. For the (d, α) reaction, the 0+ state of the
d + 6Li system was taken into account as the correction. The
calculations, which included these corrections, gave excellent
agreement with the data. The measured vector-analyzing
power in the (d, p0) reaction had been explained as an
interference effect between the incident s and p waves, and
that in the (d, α) reaction was almost zero, which is consistent
with the 2+ resonance assumption.

The fractions of the 2+ configuration, which includes
the resonances, in the reactions were estimated from the
analyzing power data; the fraction in the (d, p0) reaction was
0.899 ± 0.052, which is comparable to that of the resonance
derived by the analysis of the cross section; also, the 2+
fraction in the (d, α) reaction was 0.998 ± 0.003, which is
much larger than the fraction of the resonance estimated
from the S factor by the use of the cross section, which was
analyzed by a compound-nucleus plus DWBA model [2]. The
analyzing power data for both of (d, p) and (d, α) reactions at

higher energies up to 960 keV were analyzed by the present
method, which provided information of the energy dependence
of the 2+ state fraction. These results will be valuable in
the field of nuclear astrophysics and thereby analyses of
the analyzing powers, such as the present one, will be one
favorable approach, because the analyzing powers can be
measured with some desirable accuracies even at low incident
energies. Thus, we hope to realize extensive applications of
the analyzing-power method in the future.

Finally, it should be noted that examinations will be
worthwhile if the measured analyzing powers are explained by
adopting particular reaction models, because such approaches
will provide a comprehensive understanding of the nature of
the reaction. For example we will examine the analyzing
powers for the (d, α) reaction by the compound-nucleus
plus DWBA model employed in the cross-section analysis in
Ref. [2]. The compound-nucleus amplitude does not provide
the analyzing powers due to lack of spin-dependent inter-
actions as seen in Eq. (8). For the DWBA part, we had
calculated the analyzing powers by the zero-range DWBA
used in Ref. [2], but including a deuteron LS interaction that
was neglected in Ref. [2]. However, at present, we have not
yet obtained successful results, although many parameter sets
of the optical potentials have been examined.
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APPENDIX: EXPRESSIONS OF CROSS SECTION AND
ANALYZING POWERS OF THE (d, α) REACTION WHEN

THE INCIDENT d WAVE IS CONSIDERED

Equation (45) for the tensor-analyzing powers of the (d, α)
reaction are modified by the inclusion of the interference terms
between the incident s wave and d wave. Using Q2q02(2, 2) in
Table III in Ref. [3],

T2q = 1

1 + Pσ (3 cos2 θ − 1)

(−1√
5
f P2q + 
2q

)
(A1)


20 = − 1√
2
Pσ (3 cos2 θ − 1) (A2)


21 =
√

3

2
Pσ cos θ sin θ (A3)


22 =
√

3

2
Pσ sin2 θ (A4)

and the cross section σα(θ ) is given by

σα(θ ) = σ0[1 + Pσ (3 cos2 θ − 1)], (A5)

where σ0 is a constant and Pσ is defined as

Pσ = Re{F ∗(2020)F (2022)}
|F (2020)|2 + |F (0000)|2 . (A6)
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