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Giant neutron halos in the non-relativistic mean field approach
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Giant neutron halos in medium-heavy nuclei are studied in the framework of the Hartree-Fock-Bogoliubov
(HFB) approach with Skyrme interactions. The appearance of such structures depends sensitively on the effective
interaction adopted. This is illustrated by comparing the predictions of SLy4 and SkI4 in the Ca and Zr isotopic
chains. The latter force predicts a neutron halo in the Zr chain with A > 122 due to the weakly bound orbitals
3p1/2 and 3p3/2. It is found that the energies of states near the separation threshold depend sensitively on
effective mass values. The structure of the halo is analyzed in terms of the occupation probabilities of these
orbitals and their partial contributions to the neutron density. The antihalo effect is also discussed in the case of
124Zr by comparing the occupation probabilities and wave functions of the Hartree-Fock neutron single-particle
states near the Fermi energy with the corresponding HFB quasiparticle states.
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I. INTRODUCTION

Currently, several projects for the construction of a new
generation of radioactive beam facilities are in progress (see,
e.g., Ref. [1]). Such facilities will permit researchers to
investigate the properties of unstable nuclei situated close to
drip-line regions. From the theoretical side, many efforts are
devoted to performing accurate predictions to locate the proton
and neutron drip lines as well as to describe the behavior of
unstable nuclei. Unfortunately, theoretical predictions in exotic
regions of the nuclear chart can be rather model dependent.

Self-consistent mean field methods are well-suited theo-
retical tools for describing medium and heavy nuclei. There
are two main lines of investigation based on the mean
field approach, namely, the relativistic mean field (RMF)
method, which treats effective Lagrangians in the Hartree
approximation, and the nonrelativistic Hartree-Fock (HF)
method, which uses effective interactions such as the Gogny
and Skyrme forces. Recent reviews can be found in Refs. [2,3].
When approaching the drip lines, one deals with open-shell
nuclei for which the effects of pairing correlations become
quite important, especially for such properties as the tails of
matter distributions. The pairing correlations can be described
by the nonrelativistic Hartree-Fock-Bogoliubov (HFB) theory
[4,5] or by the relativistic Hartree-Bogoliubov (RHB) theory.
The most widely used choice is to add a phenomenological
pairing interaction acting in the particle-particle channel [6].
Alternatively, one can use the same meson-nucleon Lagrangian
to generate the particle-particle interaction, then make a zero-
range approximation, and finally readjust the particle-particle
interaction by an overall factor [7].

Furthermore, the chemical potential λ becomes close to
zero in the vicinity of drip lines, and it is necessary to
treat properly the contributions of the quasiparticle continuum
when evaluating the pairing correlations [5]. Thus, the most

appropriate approach for such cases is to solve the self-
consistent mean field equations in coordinate space, and this
is the method we use to obtain the results of this work.

A very interesting phenomenon has been recently predicted
within the RHB approach: the formation of a neutron giant halo
(with up to six neutrons involved) in some very neutron-rich
isotopes. The radius of the neutron distribution as a function of
A shows a kink at the nucleus where the halo structure starts to
be formed. This effect has been found to be particularly strong
in Ca (with A > 60) [8] and Zr (with A > 122) [9] isotopes.
These predictions are based on the NLSH parametrization,
and similar results are obtained with the TM1 parametrization
[10]. The giant halo phenomenon is also found in the near-
drip-line Zr isotopes if one uses the NL3 parametrization in
an RMF plus resonant continuum BCS [11]. The giant halo
effect in medium-heavy nuclei has been much less investigated
within the nonrelativistic mean field approach, apart from Ref.
[12], where the halo phenomenon is studied in Ni and Sn, and
Ref. [13] for Ca isotopes. The purpose of the present work
is to investigate the giant halo effect in Ca and Zr isotopes
within the nonrelativistic Skyrme-Hartree-Fock-Bogoliubov
mean field approach. This effect may appear in the vicinity of
drip lines, if at all, and therefore it is probably still out of reach
of the next generation facilities.

Important discrepancies are often found in the position
of the neutron drip line predicted by different models. For
instance, these differences clearly appear in the neutron
drip line of Ni isotopes calculated in relativistic [14] and
nonrelativistic [5] approaches. Even among parametrizations
of the Skyrme force used in HFB calculations, one can obtain
different drip-line predictions. It is found in Ref. [13] that
drip lines in Ca isotopes occur for heavier systems if one uses
SkM∗ rather than the widely used SLy4. In this work, we find
that the parametrization SkI4 [15] also leads to bound Ca and
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Zr isotopes with a larger neutron excess than SLy4. Thus, it
is foreseen that giant halo predictions based on the Skyrme-
HFB approach will suffer from some model dependences.
While waiting for new experimental data that will help dis-
criminate among the available models, it would be interesting
to analyze the reasons for some of these discrepancies.

For our analysis, we choose two Skyrme parametriza-
tions, namely, SLy4, which is commonly adopted to treat
neutron-rich systems since it includes constraints coming from
the neutron matter equation of state, and the SkI4 energy
functional of Reinhard and Flocard [15]. The reason for the
latter choice is simply that it leads to bound Zr isotopes having
more neutrons than the SLy4 force, and, hence, the giant halo
phenomenon can take place. As for the Ca isotopes, neither
SLy4 nor SkI4 can produce bound Ca isotopes that are neutron
rich enough to lead to a halo effect.

The present calculations include pairing correlation effects,
and these correlations can induce an antihalo effect, as pointed
out in Ref. [16]. We discuss this effect in the case of the
124Zr nucleus by comparing the HFB results with the corre-
sponding HF ones.

The article is organized as follows. In Sec. II, we briefly
describe the theoretical framework. In Sec. III A, we present
the two-neutron separation energies, neutron radii, and HF
single-particle spectra for neutron-rich Ca and Zr isotopes, and
we compare our nonrelativistic results with the corresponding
RHB results obtained with the NLSH parametrization [8,9].
We discuss the differences found in the HF spectra with
the adopted Skyrme parametrizations by analyzing, in some
cases, the mean field and spin-orbit contributions to the total
potential. In Sec. III B, we consider in more detail the case of
Zr isotopes and investigate giant halo and antihalo effects by
analyzing occupation probabilities, neutron density profiles,
and wave function tails. In Sec. IV, our conclusions are drawn.

II. THEORETICAL FRAMEWORK

The theoretical framework used in this paper is the HFB
approach. For zero-range two-body forces, the HFB equations
have the form

[h(r) − λ]u(E, r) + �(r)v(E, r) = Eu(E, r),
(1)

�(r)u(E, r) − [h(r) − λ]v(E, r) = Ev(E, r),

where λ is the Fermi energy, h is the sum of the kinetic
energy and the HF mean field potential, and � is the pairing
potential; u and v are the upper and lower components of the
quasiparticle wave function associated with the quasiparticle
energy E, which we choose to be positive. In this work,
we assume spherical symmetry as in the RHB approach, so
that the HFB equations depend only on the radial coordinate r

and they can be solved directly in r space.
We shall only consider bound systems, i.e., cases in which

λ is negative. The reason is that, if λ becomes positive, there
are states with 0 � E � λ whose wave functions u, v do not
decrease exponentially at large distances [4]. Then, the matter
density built with v2 does not vanish asymptotically, and the
nucleus is unbound. For negative λ, the spectrum consists

of a discrete part for E less than −λ and a continuous
part for E above −λ. To calculate the continuum spectrum,
the HFB equations should be solved with scattering type
boundary conditions for the upper components of the HFB
wave functions [5]. Since the continuum-HFB calculations are
rather heavy, the continuum spectrum is usually discretized
by imposing box boundary conditions, i.e., the condition that
the HFB wave functions vanish at a given distance from the
nucleus. This is sufficient for our present purpose provided
that the box radius is properly chosen. We have checked that
our results obtained with a box radius of 20 fm are very close
to those of a full continuum calculation. Thus, most of the
results presented here have been obtained by imposing box
boundary conditions. Only the results discussed in Sec. III B
are obtained with scattering-type boundary conditions.

In the present HFB calculations, the mean field is calculated
with a Skyrme-type force, while for the pairing channel,
we use a zero-range interaction with the following density
dependence:

V (r1 − r2) = V0

[
1 − x

(
ρ(r)

ρ0

)γ ]
δ(r1 − r2). (2)

The value of ρ0 is 0.16 fm−3, corresponding approximately
to the nuclear matter saturation density given by SLy4 and
SkI4. We choose x = 0.5 to represent a pairing force half-way
between a pure volume and pure surface interaction. As
for γ, we simply take γ = 1, a choice compatible with
the conclusions of the study made in Ref. [17] about the
influence of γ on the asymptotics of nucleon distributions.
The quasiparticle energy cutoff is equal to 70 MeV, and
the maximum value of j is 15/2. The strength V0 is chosen
so as to reproduce the gaps extracted from the odd-even
mass differences (in the regions where such experimental
data are available), i.e., V0 is adjusted to be −365 and
−290 MeV fm3(−350 and −300 MeV fm3) for the Ca and
Zr isotopes calculated with SLy4 (SkI4).

III. RESULTS OF HFB CALCULATIONS

A. Separation energies, neutron radii, and HF results

The two-neutron separation energy is defined as

S2n(N,Z) = E(N,Z) − E(N − 2, Z), (3)

where E(N,Z) is the total energy of the isotope with
N neutrons and Z protons. The two-neutron separation
energies for Ca and Zr isotopes are shown in Figs. 1 and 2.
We display in these figures only the separation energies for the
bound nuclei, i.e., those having a negative chemical potential
in the HFB calculations. For instance, the separation energy
is still positive in 64Ca with SkI4-HFB (S2n = 0.2 MeV)
but the chemical potential is already positive and equal to
0.24 MeV. We thus define as the drip-line nucleus the last
isotope having both positive separation energy and negative
chemical potential. The shown results correspond to box-HFB
calculations, which give practically the same S2n values as
continuum-HFB calculations.

The most important fact we can observe in Fig. 1 is the
large difference between the drip-line location predicted by
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FIG. 1. Two-neutron separation energies for Ca isotopes cal-
culated with SLy4-HFB (triangles), SkI4-HFB (circles), and RHB
(diamonds). The RHB results correspond to Ref. [8].

the Skyrme-HFB with SLy4 and SkI4 and that predicted by
the RHB calculations of Ref. [8] for the Ca isotopes. It can
be seen that for Skyrme forces, the drip line is located at 62Ca
(60Ca) with SkI4 (SLy4), while for RHB calculations, the drip
line extends up to 72Ca. It must be noted that in Ref. [13], the
two-neutron separation energy was found to be still positive
in 78Ca with the interaction SkM∗. In any case, with the two
Skyrme parametrizations adopted here, the region in which a
giant halo could exist in Ca isotopes cannot be explored, since
the last bound nucleus is reached before.

In the Zr isotopes, differences also occur among the model
predictions. As seen in Fig. 2, for the force SLy4, the drip line
is located at 122Zr, whereas for SkI4, it is at 138Zr. The latter
result is similar to the RHB prediction in which the drip line
is located at 140Zr.

We check now whether our nonrelativistic model can
predict a giant neutron halo structure by analyzing the neutron
radii, which are shown in Fig. 3. As mentioned before, for
Ca isotopes, the neutron drip line is reached before the halo
structure starts to be formed for both the adopted Skyrme
parametrizations. The same is happening for Zr isotopes if one
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FIG. 2. Same as Fig. 1, but for Zr isotopes. RHB results
correspond to Ref. [9].
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FIG. 3. Neutron radii for Ca and Zr isotopes. Symbols same as
in Fig. 1; RHB results correspond to Refs. [8,9]. Radii calculated as
r0A

1/3 (r0 = 1 fm) are shown by a dotted line.

uses the SLy4 force. However, in the case of SkI4, the situation
is very different, with a change in the slope of neutron radii
around A = 122 and values close to those of RHB.

To understand better why the drip line is so model depen-
dent, Figs. 4 and 5 show the HF energies of the bound states
close to the Fermi level in Ca and Zr isotopes, respectively. For
Ca isotopes, we can see that apart from a different splitting of
the 1f and 2p states, the two Skyrme forces give a rather
similar pattern for the bound spectrum. The HF drip-line
nucleus is 60Ca with both SLy4 and SkI4; 62Ca is not bound
since the state 1g9/2 remains slightly unbound with the two
forces, at variance with the RMF calculations in which this
state becomes weakly bound at A = 62 [8]. Because of this
fact, the drip line in the RHB calculations is extended up to
the region where the giant halo can be formed, in contrast with
the HFB calculations of Ca isotopes based on SLy4 or SkI4.
It must be noted, however, that this tendency is not obeyed by
the Skyrme SkM∗ parametrization, which gives a bound 1g9/2
orbital in the Ca isotopes with A � 60 resulting in a drip line
located at higher A [13].

For Zr isotopes, the structure of the HF bound spectrum is
not the same for the two adopted Skyrme parametrizations. We
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FIG. 4. SkI4-HF (left) and SLy4-HF (right) neutron single-
particle energies for bound states in Ca isotopes.
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FIG. 5. Same as Fig. 4, but for Zr isotopes.

can observe that at A = 122, the state 3p3/2 becomes weakly
bound with SkI4, while it remains slightly unbound with SLy4.
This allows one to shift the drip line with SkI4, the states
2f 7/2 and 3p1/2 becoming then weakly bound at A = 124
and 126, respectively. This is similar to what happens in the
RMF calculations and explains why both the SkI4-HFB and the
RHB calculations provide a halo structure in Zr isotopes. How
these weakly bound HF states contribute to the halo structure
in the presence of pairing correlations is discussed in the next
subsection.

Let us now analyze the elements responsible for the
differences found in the single-particle spectra and in the
drip-line predictions. We can write the HF equation as

h̄2

2m

[
− d2

dr2
ψ(r) + l(l + 1)

r2
ψ(r)

]
+ Veq(r,ε)ψ(r) = εψ(r),

(4)

where the equivalent potential Veq reads

Veq(r, ε) = m∗(r)

m
U0(r) + m∗(r)

m
Uso,lj (r)

− m∗2(r)

2mh̄2

(
h̄2

2m∗(r)

)′2
+ m∗(r)

2m

(
h̄2

2m∗(r)

)′′

+
[

1 − m∗(r)

m

]
ε. (5)

with Uso,lj (r) = Uso(r) × [j (j + 1) − l(l + 1) − 3/4]. The
local equivalent potential Veq takes into account the effects of
the Skyrme-HF effective mass, and the exact HF wave function
φ(lj ) of energy ε is related (up to a normalization factor) to
the solution ψ of Eq. (4) by the relation ψ = (m∗/m)1/2φ.
The functions U0(r) and Uso(r) are the central and spin-orbit
HF potentials, whereas m∗(r) is the effective mass [18]. The
first two terms of Eq. (5) are the main contributions, the next
two terms are small corrections, and the last term has a small
contribution for states in the vicinity of zero energy.

We first consider the Ca isotopes, as illustrated by the
nucleus 60Ca and the single-particle state 1g9/2. For this
nucleus, the state 1g9/2 is bound with the force SkM∗
(ε ∼ −1.3 MeV) [13], whereas it is a single-particle resonance
with SLy4 (ε ∼ 0.3 MeV) and with SkI4 (ε ∼ 1 MeV). We
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FIG. 6. Square of the 1g9/2 wave function with the forces SkM∗,
SLy4, and SkI4 in 60Ca.

display in Fig. 6 the square of the HF 1g9/2 wave functions
in 60Ca calculated with SkM∗, SLy4, and SkI4. Their general
behaviors are quite similar up to more than twice the nuclear
radius.

The four functions (a) the mean field U0(r), (b) the
mean field multiplied by the effective mass, U0m∗ (r) =
U0(r)[m∗(r)/m], (c) the spin-orbit term Uso,lj (r), and (d) the
spin-orbit term multiplied by the effective mass, Uso,lj∗ (r),
are calculated with the three parametrizations and displayed
in Fig. 7. They are shown in the radial region around 4.5 fm
where the square of the single-particle wave function 1g9/2
has its maximum. In this region, one sees that the potentials
U0m∗ (r) and Uso,lj∗ (r) of SkM∗ are deeper than those of SkI4
and SLy4. One can observe that the effective mass m∗(r) plays
an important role in shifting down the 1g9/2 single-particle
energy of SkM∗ to below the values of SkI4 and SLy4. In the
nucleus 60Ca, the values of the neutron effective mass m∗

n/m at
r = 0 are 0.788, 0.680, and 0.606 for SkM∗, SLy4, and SkI4,
respectively; whereas at r = 4.6 fm, they are 0.946, 0.842, and
0.814. This explains why U0m∗ is deepest for SkM∗, although
U0(SkM∗) itself is the least attractive.

We perform a similar analysis for Zr isotopes. We consider
the case of 122Zr and the HF wave function of the state 3p3/2
calculated with the two parametrizations SLy4 and SkI4. This
state is bound in the HF spectrum with SkI4 (ε ∼ −0.02 MeV),
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FIG. 7. Four functions defined in text calculated with the three
parametrizations in 60Ca for l = 4 and j = 9/2.
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FIG. 8. Square of the 3p3/2 wave function with forces SLy4 and
SkI4 in 122Zr.

but it is unbound with SLy4 (ε ∼ 0.6 MeV). We show in
Fig. 8 the square of the wave function 3p3/2 calculated with
the two forces.

Figure 9 shows the four functions U0(r), U0m∗ (r), Uso,lj (r),
and Uso,lj∗ (r) calculated with SLy4 and SkI4. They are plotted
in the radial region around 8 fm where the square of the
single-particle wave function has its highest maximum. The
differences between the top and bottom panels are negligible,
reflecting the fact that around r = 8 fm, the effective mass
m∗

n/m in 122Zr is 0.994 and 0.990 for SLy4 and SkI4,
respectively. Furthermore, one can see that the mean field
potential is sizably deeper with SkI4, while the differences in
the spin-orbit potentials are much less important.

From this study, we can see the decisive role of the effective
mass upon the energy of single-particle states when their wave
functions are around the surface region. In the example of
the 1g9/2 state in 60Ca, the relative positions of the central
and spin-orbit potentials are much affected by the m∗/m

factor. When the states are outside the surface region and
the m∗/m factor becomes close to unity, the single-particle
energies are directly governed by the mean field U0(r), which
in turn depends on neutron-proton symmetry properties such
as the symmetry energy coefficient.
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FIG. 9. Four functions calculated with the forces SLy4 and SkI4
in 122Zr for l = 1 and j = 3/2.
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FIG. 10. Occupation profiles W (E) (in MeV−1) for three states
in 132Zr, calculated with SkI4-HFB.

B. Structure of the giant halo in Zr isotopes

In the presence of pairing correlations, the bound single-
particle states shown in Fig. 5 are becoming quasiparticle
resonances. To describe them properly, we solved the HFB
equations with scattering-type boundary conditions. To re-
duce the numerical effort, we employed scattering boundary
conditions only for the quasiparticle states with the energy
−λ < E < 15 MeV because they are the most affected by
pairing correlations, while for the other states we used box
boundary conditions.

With the continuum HFB solutions, we can calculate how
the occupation probability changes in the region around a
resonance. This information is provided by the quantity

W (E) =
∫ R

0
drr2v2

E(r), (6)

where v is the lower component of the HFB wave function,
and R is taken equal to 20 fm. As an example, we show
in Fig. 10 the values of W(E) corresponding to the states
3p1/2, 3p3/2, and 2f 7/2 in the nucleus 132Zr. In this nucleus,
the quasiparticle continuum starts at the energy E = −λ =
0.251 MeV.

By integrating the function W(E) over an energy interval
in which it has a significant value, we can associate to each
resonance an occupation probability n, i.e.,

n =
∫ E2

E1

W (E)dE. (7)

The occupation probabilities of the relevant resonant states
in Zr isotopes are shown in Fig. 11. It can be seen that
the occupation probabilities corresponding to the weakly
bound states increase progressively when going from 124Zr to
138Zr. Thus, these states contribute significantly to the pairing
correlations.

To analyze the structure of the halo, we plot in Fig. 12 the
quantity

Rlj (r) = ρlj (r)

ρ(r)
, (8)
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FIG. 11. Occupation probabilities for Zr isotopes, calculated with
SkI4-HFB.

where ρ and ρlj are the total neutron density and the
density corresponding to the channel (l, j ), respectively. From
Fig. 12, we can clearly see that at large distances, the dominant
contribution to the neutron density is given by the p states,
which are less confined by the centrifugal barrier than are the
other states with higher (l, j ) values. This structure of the giant
halo obtained by using the SkI4-HFB model is very similar to
that given by the relativistic calculations [9,11].

By comparing the neutron densities of 124,138Zr with that
of the reference nucleus 122Zr we can estimate the number of
neutrons involved in the outer skin and halo regions. We thus
find that this number is 1.15 neutrons (14.27 neutrons) in the
region beyond 6.8 fm (5.4 fm) in 124Zr (138Zr). Alternatively,
one can evaluate the number of neutrons in the weakly bound
orbitals and the resonant continuum as suggested in Ref. [13],
which gives 1.97 and 15.92 neutrons in 124Zr and 138Zr,
respectively.

C. Antihalo effect

We turn now to the analysis of the so-called antihalo effect,
which was mainly discussed in light nuclei close to the neutron
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FIG. 12. Contributions of different (l, j ) channels to the total
neutron density for 124Zr (top), 132Zr (middle), and 138Zr (bottom).
The interaction is SkI4.

drip line [16]. This effect is associated with a reduction of the
neutron radii by the pairing correlations.

In Zr isotopes, the pairing correlations affect the neutron
halo through the p and f states. We take as an illustration
the case of 124Zr for which the neutron radius is equal to
5.08 (5.01) fm in HF (HFB). We adopt a spherical symmetry
scheme for the present discussion since it is found in RMF
calculations that Zr isotopes are predicted to be spherical
beyond A = 122 [9]. In 124Zr, the 3p3/2 state is half occupied,
while 2f 7/2 (weakly bound) is empty in HF. When pairing
correlations are switched on within HFB, the occupancy of
the 3p3/2 state is much reduced and that of the 2f 7/2 is
enhanced, as one can observe in Fig. 11.

Bennaceur et al. [16] analyzed the antihalo effect in terms
of the asymptotic behavior of the neutron densities calculated
in HF and in HFB. In the latter case, the existence of a finite
pairing gap due to pairing correlations gave a faster decaying
tail in the neutron density. The states responsible for this effect
were those close to the Fermi energy, i.e., those with single-
particle energies ε ∼ λ. We plot in Fig. 13 the neutron wave
function tails of the states 3p3/2 (top) and 2f 7/2 (bottom)
calculated in HF and HFB for 124Zr. To compare the HF and
HFB wave functions, we plotted in the HFB case the lower
component of the quasiparticle wave functions, normalized
to unity. In the two insets of the figure, we display the tails
of the wave functions in logarithmic scale. One can observe
that at large distances, the HFB wave functions decay faster
than the corresponding HF ones in both cases. This confirms
the argument given by Bennaceur et al. [16] and explains in
part why the HFB neutron radius is smaller than the HF one.
However, it should be noted that the antihalo effect is not
only due to the slope of the wave functions at large distances.
Another contribution to this effect is related to the occupancies
of the states in HF and HFB. As mentioned before, when
pairing correlations are taken into account, the occupancy of
the 3p3/2 state is reduced while that of 2f 7/2 is enhanced.
Since 2f 7/2 has a smaller radial extension than 3p3/2 due to
the centrifugal barrier, the HFB radius is less than the HF one.
We can thus say that a stronger effect of the pairing correlations

-0.5
-0.4
-0.3
-0.2
-0.1

0

φ

HF
HFB

10 12 14 16
0.0625

0.125

0.25

6 7 8 9 10 11 12 13 14 15 16
r (fm)

-0.5
-0.4
-0.3
-0.2
-0.1

φ

10 12 14 16
0.03125
0.0625
0.125

FIG. 13. HF (full lines) and HFB (dotted lines) neutron wave
functions for the states 3p3/2 (top) and 2f 7/2 (bottom) in 124Zr.
Insets show the tails of the wave functions plotted in logarithmic
scale. The interaction is SkI4.
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upon the reduction of the neutron radius is expected when close
to the Fermi level one finds a weakly bound low-l state (3p3/2
in our case) together with states with higher angular momenta
(2f 7/2 in our case).

We conclude, however, by stressing that the antihalo effect
caused by pairing is not strong enough to prevent the formation
of a neutron giant halo close to the drip line for Zr isotopes, as
we have shown in the previous sections.

IV. CONCLUSIONS

In this work, we have examined the evolution of the nuclear
structure of Zr isotopes at large neutron excess, giving special
attention to the far out region of neutron densities. This is
motivated by the predictions of the RHB approach which
indicate the presence of a giant neutron halo in these nuclei.
We have used a different approach, namely, the Skyrme-HFB
model. We find that in this isotopic chain, the presence or
absence of giant halos depends essentially on the location of
the predicted neutron drip line. Thus, there is a strong model
dependence in this type of study, as illustrated by the results
obtained with the Skyrme forces SLy4 and SkI4.

For the drip line to be displaced toward heavier isotopes,
a necessary condition is that some HF orbitals become bound
when A increases. In this case, additional bound neutrons can

be accommodated, and bound nuclei of heavier mass can be
formed. An illustration of this situation is provided by the
Zr isotopes, for which this necessary condition is fulfilled by
some model like SkI4 but not by SLy4. Once the necessary
condition is realized, a neutron halo may exist if some of the
weakly bound HF orbitals correspond to low angular momenta
(3p3/2 and 3p1/2 in the case of Zr) so that the centrifugal
barrier is weak enough to let the wave functions extend far out.

Thus, the decisive factor is the HF mean field which governs
the HF single-particle spectrum, while the pairing correlations
play a lesser role. For states that are relatively outside the
nuclear surface, the single-particle energies depend mostly
on the HF mean field, i.e., on the neutron-proton symmetry
properties of the energy functional. On the other hand, the
states located near the nuclear surface have their single-particle
energies influenced by the value of the effective mass in that
region. Actually, experimental determination of neutron drip
lines in some nuclei would help place bounds on the values of
effective masses.

We have also seen that the pairing correlations can lead to
the antihalo effect. This can be understood by analyzing the
occupation probabilities and the wave function tails of the least
bound (lj ) orbitals. Finally, we note that this antihalo effect is
not strong enough to prevent the formation of a neutron giant
halo structure in neutron-rich Zr isotopes.
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