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Excited states of 9
�Be and 10

��Be in an α cluster model
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The energies of the degenerate spin-flip doublet (3+/2, 5+/2) of 9
�Be and of the 2+ state of 10

��Be are analyzed
in the α cluster model using a phenomenological dispersive three-body �αα force that reproduces the ground
state energy of 9

�Be. Two types of phenomenological �α and αα potentials and a few s-state �� potentials are
taken as input. The energies of the excited states of the hypernuclei, treated as three- and four-body systems,
calculated using the Variational Monte Carlo method, are in good agreement with the experimental values. Our
results demonstrate that the existing data are insensitive to whether one employs a dispersive �αα force along
with potentials in the relative angular momentum state l = 0 and 2 as in the present work or whether one uses
nonlocal �α potential as in earlier analyses.
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I. INTRODUCTION

Recently, we made a cluster model analysis [1,2] of
the ground state binding energies of s- and p-shell ��

hypernuclei using the Variational Monte Carlo (VMC) method.
For clusters restricted to interacting through potentials in the
relative angular momentum state l = 0 the calculated s-shell
hypernuclear binding energies are in very good agreement
with those obtained with the non VMC calculations [3–6].
In the last few years a number of cluster model analyses
of p-shell hypernuclei using the Faddeev approach [3,5–7]
have been performed. In all the above-mentioned analyses a
wide range of potentials were used. For a description of the
αα system the potentials of Ali and Bodmer [8] and Chien
and Brown [9] in l � 0 were used. A wide range of l = 0
�α potentials with ambiguities in the short range behavior
of the force was included. Of these, the Isle [3] and Myint,
Shinmura, and Akaishi [4] �α potentials are considered to be
realistic and have been widely used in the study of hypernuclei.
While the former is phenomenological, the latter has been
microscopically calculated using a D2 �N potential but
tailored to fit B� of 5

�He. Further, a weak p-wave �α potential
[4] that is motivated from the NSC97e model of �N interaction
has also been used. The �� interaction was described by a
sum of three-range Gaussian potentials simulated from various
versions of Nijmegen models. The energy calculated in the
Faddeev approach [7] for the degenerate spin-flip doublet
(3+/2, 5+/2) of 9

�Be in the s- and p-wave model for the
�α potential in Ref. [4] and the Ali and Bodmer αα potential
[8] is close to the experimental value. However, for the Chien
and Brown αα potential [9], it is marginally overbound. The
ground state energy is found to be lower by approximately 10%
in comparison with the data. The overbinding was attributed
to the dispersive �NN force, which has been ignored in the
Faddeev method.

Hiyama et al. [10] analyzed S = −1 and −2 p-shell
hypernuclei in the cluster model in the framework of a
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variational method employing Jacobi-coordinate Gaussian-
basis functions. The �x (cluster x = alpha, triton, deuteron)
nonlocal potentials were obtained by folding the three-range
Gaussian hyperon-nucleon (YN) potential simulating the
G matrix (the YNG interaction) into the density of the x cluster.
The YNG interactions between �N are derived from the
Nijmegen one-boson exchange model ND. The odd/even state
�N potential [10] was modified to tune the �x potential so
that it fits the ground or excited state energy of the hypernuclei
containing clusters. The �α potential so obtained along with
the αα state-independent potential explains the energies of the
ground and excited states of a host of p-shell hypernuclei
including 9

�Be and 10
��Be. Thus a modified odd state �N

potential appears to be crucial in explaining the data. From
the analyses [3,5–7,10,11], it seems that the contribution of
dispersive �NN forces [12,13], which theoretically have been
established to be making significant contributions [14–16]
to the energy of hypernuclei, can be ignored in the �αα

channel. Here it is worthwhile to remark that microscopically
calculated �α potentials [4,10] may not be free from the
inherent uncertainties of the boson exchange models and of
the prescription adopted for solving many-body problems.
Further, �α potentials are yet to be tested against the �α

scattering data to explore the realities accommodated by these.
However, in all the cluster model analyses referred to above
the �α potentials that fit the binding of 5

�He may safely
be assumed to be simulating the dispersive �NN force.
But the contribution of dispersive energy 〈V�αα〉 between
the �-α-α triad in the calculations referred to above could
not be accounted for. This may be because of 16 pairs of
nucleons in the triad �N1N2 and a nucleon coming from each
α. The contribution 〈V�αα〉 in the energy is quite significant
as has been calculated microscopically [14] and neglecting it
overbinds the 9

�Be and 10
��Be. As the major contribution [16] in

the �αα channel arises because of the dispersive �NN force,
we decided to call it a phenomenological dispersive three-body
force. Therefore, in our earlier analyses [1,2] of ground
state binding energy of S = −1 and −2 p-shell hypernuclei,
we proposed a phenomenological three-body �αα force in
analogy with the dispersive �NN force. We represented it
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through the simple form

V�αα = W0f
2
(
r�α1

)
f 2

(
r�α2

)
, (1)

where radial behavior is assumed to have the form f 2(r) =
exp(−0.5r)/0.5r . The potential strengths (W0 = 17.0 MeV
for Isle [3] and 13.5 MeV for Myint, Shinmura, and Akaishi
[4] �α potentials) yield B� values of (6.62, 6.60) and
(6.53, 6.55) MeV for the αα potentials of Refs. [8] and [9],
respectively, close to the experimental value 6.7 MeV of 9

�Be.
The �� potential, which fits the ground state binding energy
of 6

��He, gives the B�� of 10
��Be to be 15.38 MeV for Isle �α

and Ali-Bodmer αα potentials, much lower than the currently
accepted experimental value of 17.7 ± 0.7 MeV but in close
agreement with the value (B�� = 14.6 ± 0.4 MeV) estimated
on the premise that a γ -ray must have escaped undetected in the
emulsion in the decay of 9

�Be∗. A similar prediction was made
in an earlier microscopic work [10]. In view of the success of
using either dispersive �NN force or odd state �N potential
in explaining the data, one can advance an argument that odd
state potential [10] adjusted to fit B� of 9

�Be may be simulating
dispersive �αα force and on the other hand the dispersive �αα

force in Refs. [1,2] may be assumed to be simulating the effect
of the odd state �α potential. Consequently, both the models
successfully explain the data.

In the last few years, a number of VMC calculations
[2,12–16] mainly for ground state of s- and p-shell hypernuclei
in the few-body framework in terms of baryons degrees of
freedom or of cluster model have been performed. Here we
analyze the experimental binding energy B� = 3.66 MeV
of the degenerate doublet (3+/2, 5+/2) of 9

�Be [17,18] and
B�� = 12.33+0.35

−0.21 MeV of the excited 2+ state of 10
��Be [10,19]

in � and α cluster models using dispersive �αα force in a
VMC approach. To our knowledge this is the first calculation
that uses the VMC method. We also calculate the quadrupole
moments and root mean square (rms) radii of hadron pairs to
gain further insight into the structure of hypernuclei.

The article is organized as follows: In the next section we
describe the Hamiltonians, wave functions, potentials model,
and quadrupole moments in the cluster model for the excited
states of 9

�Be and 10
��Be. The results and discussion are pre-

sented in Sec. III along with the calculation of quadrupole mo-
ments. We present the summary of our study in the last section.

II. EXCITED STATES OF P-SHELL HYPERNUCLEI, WAVE
FUNCTIONS, AND QUADRUPOLE MOMENTS IN

α CLUSTER MODEL

A. Hamiltonian and wave functions of p-shell hypernuclei

The energies of the degenerate doublet (3+/2, 5+/2) of 9
�Be

and the 2+ excited state of 10
��Be have been calculated in the

α cluster model. These states are considered to be built on the
first excited state J = 2+ of the 8Be core nucleus, which is
believed have L = 2, S = 0 structure. The coupling of 0s�

particle to the 8Be core in 9
�Be gives rise to a spin-flip doublet.

The measured energy spacing of ∼0.03 MeV of the doublet is
attributed to a very weak spin-orbit force that is ignored here.
The excited state 2+ of 10

��Be is the antisymmetric pair of
� coupled to J = 2+ of the 8Be core.

The 10
��Be is treated as a four-body system in the �� + αα

model. For the calculation of energy of the 2+ excited state,
we consider αα particles moving in the relative lαα = 2 state
and other cluster-cluster pairs have relative angular motion in
the s state. The Hamiltonian is given by

Hαα
�� =

2∑
i=1

(Kα(i) + K�(i + 2)) + V (2)
αα (r12)

+
∑
i<j i=1,2,j=3,4

V
(0)
�α(rij )

+
4∑

i=3

V�αα(ri1, ri2) + V
(0)
��(r34), (2)

where labels 1,2 specify the two α clusters and labels 3,4
the two � particles. V

(lxy )
xy denotes the potential for the pair

xy(= αα,�α, and ��) in the relative angular momentum lxy

state and constrained by experimental data pertaining to the
relevant pair. The V�αα is the phenomenological dispersive
three-body Yukawa shape potential. The hypernucleus 9

�Be
is analyzed in terms of three-body � + αα clusters. The
degenerate doublet (3+/2, 5+/2) is assumed to be built on
the relative lαα = 2 of two Bose particles with l�α = 0. On
suppressing one � index and making V(0)

��(r34) = 0, Eq. (1)
reduces to the Hamiltonian for 9

�Be. The contribution of
〈V�αα〉 to the energy is quite significant as shown in
Refs. [12–16], neglecting it among the �αα clusters overbinds
the 9

�Be and 10
��Be. It may be noted that V(0)

�α , which reproduces
the experimental energy of the 5

�He hypernucleus, simul-
ates the dispersive energy and other smaller effects.

The trial wave functions for hypernuclei in the state (J, Jz)
are the product of two-body correlation functions f (l)

xy in the
relative angular momentum l state and the functions ξJ

Jz
and ζ J

Jz
:

(i) �αα system in the state (J, Jz) = (3+/2, 3/2) and
(5+/2, 5/2)

�αα
� (J, Jz) =

[
2∏

i=1

f
(0)
�α(ri3)

]
f (2)

αα (r12)ξJ
Jz

(3)

(ii) ��αα system in the state J = 2, Jz = 2

�αα
��(J, Jz) =

[∏2

i=1

∏4

j=3
f

(0)
�α(rij )

]

× f
(0)
��(r12)f (2)

αα (r34)ζ J
Jz

. (4)

The function ξ (or ζ ) is obtained by coupling the spherical
harmonic Y2ml

(�12) and the appropriate spin function χsms
.

The correlation functions f (l)
xy (r), as usual, are obtained from

the solution of the Schrödinger-type equation for the relative
angular momentum state l.

B. Potentials models

The phenomenological V
(l)
hh (hh = �α, αα) interaction

[3,4,8] in the angular momentum state l is given as

V
(l)

hh (r) = V l
rep exp

( − (
r
/
βl

rep

)2)
−V l

att exp
( − (

r
/
βl

att

)2) + VCoul(r), (5)
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TABLE I. The parameters of the potentials in state l used in the
present work. The �α potentials from Refs. [3] and [4] are designated
as Isle and MSA, respectively, and the αα potential from Ref. [8] is
abbreviated as AB.

Potentials Angular V l
rep βl

rep V l
att βl

att

momentum l (MeV) (fm) (MeV) (fm)

�α

Isle 0 450.4 1.25 404.9 1.41
MSA 0 91.0 1.30 95.0 1.70

αα

AB 2 20.0 1.53 30.18 2.85
Chien and
Brown [9]

2 176.5 1./0.620 85.0 1.0/1.35

where V l
i and βl

i are the strength and the range parameter in
the relative l state, respectively, for i = rep(att), and VCoul(r)
is the finite size Coulomb αα potential, which is zero for the
�α pair. The potential parameters for hh = �α for l = 0 are
taken from Refs. [3,4] and reproduce the experimental data on
5
�He. The αα potentials of Ali and Bodmer [8] and Chien and
Brown [9] were chosen in l = 2 and the results for the binding
energies in the two cases do not differ by more than 0.11 MeV
as has been observed in earlier work [7]. We refer the reader
to Ref. [9] for the radial form factor of the Chien and Brown
potential. The potentials’ parameters are listed in Table I.

We have chosen three-range Gaussian simulated ��

potential [3] that is phase shift equivalent to the Nijmegen
realistic interaction NSC97e. This has the form

V
(0)
��(r) =

3∑
i=1

vi exp
( − r2

/
α2

i

)
, (6)

where symbols have meaning as given in Ref. [3]. The other
effective potential V

(0)
��(r) (denoted by NAGSIM) was taken

from Ref. [5] and has been constrained to reproduce B��

of 6
��He. The two potentials differ in attractive strengths of

the midrange part of V
(0)
��. We have also chosen the �� single

channel effective potential [4] V e1
�� that is constructed from the

Nijmegen soft-core NSC97e potential and reproduces B�� of
6
��He. An Urbana type �� potential has been successfully
used in the past [2,12,15] to explain the binding of S = −2
s- and p-shell hypernuclei. Therefore, in the present analysis
an Urbana type potential with strength V ��

0 = 5.65 MeV,
consistent with B�� of 6

��He, is also included:

V
(0)
��(r) = Vc(r) − V ��

0 T 2
π (r), (7)

where

Vc(r) = 2137

1 + exp (r−0.5)
0.2

,

Tπ (r) = (1 + 3/x + 3/x2)(exp(−x)/x)(1 − exp(−2r2))2,

x = 0.7r,

and other symbols have the same meaning as in Refs. [12–16].
Because the phenomenological dispersive �αα force in

Eq. (1) successfully explains the ground state binding energies
of 9

�Be and 10
��Be, we use it to analyze their spectra as well.

C. Energy and quadrupole moment

The energy −B��(or − B�) for the S = −2 (or −1) system
in the cluster model in the state (J, Jz) is evaluated using the
relation

− Bλ(J, Jz) =
〈
�N

λ (J, Jz)
∣∣H N

λ

∣∣�N
λ (J, Jz)

〉
〈
�N

λ (J, Jz)
∣∣�N

λ (J, Jz)
〉 , (8)

where symbols λ and N have the following definitions:

(i) �αα model of 9
�Be λ = � and N = αα

(ii) ��αα model of 10
��Be λ = �� and N = αα.

The VMC estimates of the energy were made for 100,000
points. The statistical error in the energies are of the order of
half a percent.

We calculate the quadrupole moments in the unit of
electronic charge e using the expression

〈Q〉J,J = 〈
�N

λ (J, Jz)
∣∣Q∣∣�N

λ (J, Jz)
〉
Jz=J , (9)

where the quadrupole moment’s operator is given by

Q =
2∑

i=1

2
(
3z2

i − r2
i

)
, (10)

with the summation index i running over coordinates of two
α’s treated as point particles. The distances are measured from
the c.m. of the two α’s.

III. RESULTS AND DISCUSSION

A. Spin-flip doublet (3+/2, 5+/2) of 9
�Be

A detailed study of the ground state energy of 9
�Be in the

�αα model was performed in our earlier work [2] using s-state
hh potentials along with the dispersive �αα force given in
Eq. (1). In the same spirit we calculated the excitation energies
of the degenerate doublet (3+/2, 5+/2) for chosen αα and
�α potentials. The lαα = 2 αα potential of Ali and Bodmer
[8] and the Isle �α potentail for l = 0 were employed. The
binding energy of the spin-flip doublet as shown in Table II
for a combinations of potentials turns out to be close to the
experimental value.

Our results demonstrate that the difference in energy for Ali
and Bodmer [8] and Chien and Brown [9] αα potentials for a
given �α potential is small. On the other hand use of the �α

potentials of Isle [7] and Myint, Shinmura, and Akaishi [4]
makes a difference of about 3% in the energy for a given αα

potential. Such a behavior is also observed in Ref. [20]. To
compare our calculations with those of Cravo, Fonseca, and
Koike [20] we also used the phenomenological �α potential of
Maeda and Schmid [21] that uses a sum of two Woods-Saxon
terms. Such potentials induce weak correlation. This potential
along with the Ali-Bodmer αα potential gives the binding
energy 6.52 MeV close to the experimental value but excluding
either dispersive three-body �αα or explicit use of �α and
αα potentials in higher partial waves. Despite that, the VMC
binding energy is marginally lower by about 3% than the one
calculated by Cravo, Fonseca, and Koike [20] who have used
same �α potential for higher partial waves. The plausible
reason for this difference is given in Ref. [7]. We note that
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TABLE II. Degenerate spin-flip doublet (3+/2, 5+/2) of 9
�Be in the αα� model. The spin quantum numbers

of the excited states, the quadrupole moments, and the contribution of the dispersive three-body 〈V�αα〉 for the
α� potentials listed in the first column are given in the second, third, and fourth columns, respectively. The binding
energies (subtract αα resonance energy ≈ 0.1 MeV) of the excited states; Rαα , rms distance between the two α’s; and
R(αα)�, rms distance between the c.m. of the two α’s and hyperon are given in the fifth, sixth, and seventh columns,
respectively. The results within square brackets are for Chien and Brown [9] and those outside the brackets are for
Ali and Bodmer [8]. Experimental B�(3+/2, 5+/2) = 3.66 MeV [17,18].

α� potential 9
�Be (J, J ) state −〈Q〉J,J (e fm2) 〈V�αα〉 (MeV) B� (MeV) Rαα (fm) R(αα)� (fm)

Isle (3+/2, 3/2) 6.41[6.35] 1.37[1.36] 3.54[3.45] 4.00[3.98] 2.75[2.77]
MSA 6.66[6.65] 1.31[1.29] 3.55[3.45] 4.09[4.08] 2.86[2.87]
Isle (5+/2, 5/2) 9.02[8.84] 1.46[1.45] 3.54[3.45] 3.97[3.94] 2.73[2.72]
MSA 9.63[9.51] 1.31[1.29] 3.55[3.44] 4.09[4.07] 2.87[2.86]

our result is close to the s-wave model Faddeev calculation
[7] for lα� � 2 and lαα � 4. The Woods-Saxon potential for
the spin-flip doublet produces a binding energy of 3.79 MeV,
which is about 2.7 MeV above the ground state. Furthermore,
it is to be noted that the sophisticated calculation in Ref. [10]
underestimates the separation energy of the excited state of
9
�Be by about 7%. We may remark here that it is satisfying
to note the success of our simple prescription of using the
dispersive �αα force along with s-state �α and d-state αα

potentials in explaining the binding of the degenerate doublet
of 9

�Be viz-a-viz the other calculations [7,20] that employed
�α and αα potentials for l � 0 and the calculation of Hiyama
et al. [10] who employed odd state �N potentials adjusted to
9
�Be ground state binding energy.

To further explore the structure of the excited state 9
�Be

we calculated the rms radii of the relevant pairs and the
quadrupole moments in the (J, Jz) states (3+/2, 3/2) and
(5+/2, 5/2) for all the potentials included in the present
work (see Table II). No experimental information is available
on these quantities except for the theoretically calculated
values [20] for the quadrupole moment in the �αα model
with which we compare our result. For both of the states, the
calculated values for the quadrupole moments are negative
but ≈25% higher in magnitude than the ones listed in
Ref. [20]. The difference seems to arise from the fact that
spherical harmonics for l > 2, which are excluded in our
wave function, are included in the work of Ref. [20]. Because
l = 2 makes a dominant contribution, our analysis confirms
the finding of earlier work [20] that 9

�Be has an oblate shape.
Further listed in Table II are Rαα , rms distance between two
α’s, and R(αα)�, rms distance between the c.m. of the two α’s
and the hyperon. Rαα is marginally larger than that for the
ground state found in Ref. [2]. This is not unexpected as the
αα pair is stretched out because of the centrifugal barrier in
the relative l = 2 state.

B. 2+ state of 10
��Be

The binding energy of 10
��Be for the 2+ state is calculated

in the ��αα model using the dispersive �αα force in
combination with �α and αα potentials as used here for 9

�Be.
The calculated binding energy for a range of �� potentials is
given in Table III. We note from Table III that the calculated
B�� for all but the NSC97e �� potential is within the bound

of experimental values and, therefore, these potentials seem to
be almost equivalent. The agreement between the B�� value
of the Demachi-Yanagi event [10] and the value calculated in
our model is remarkably good. A similar result was obtained
by Hiyama et al. [10] but for a nonlocal �α potential adjusted
to the B� of 9

�Be. Thus explicit use of dispersive force in
their work was ruled out. However, we feel that the nonlocal
�α potential may have simulated it. On the contrary from
the present work it appears that phenomenological dispersive
force is adequate to explain the data but it may be simulating
the effect of an l dependent �α potential.

Further, the value of the quadrupole moment of 10
��Be in

the (2+, 2) state, calculated for the first time, turns out to be
around −7.0 e fm2 for all the pairs of interactions considered
in the present work. Thus the presence of not only single
but also two �’s in the Be nucleus makes the system oblate.
The relevant rms separations for various pairs are listed in
Table III. Rαα and R(αα)� are, as expected, smaller in
comparison with the values found for 9

�Be. The presence of
additional � in 10

��Be further compresses the system 9
�Be.

TABLE III. The 2+ state of 10
��Be in the αα�� model. B��

values for the �� potentials are listed in the first column. The
results for combinations of �α + αα potentials are labeled by using
abbreviations of authors’ last names. R(αα)�, rms distance between
the c.m. of αα and �. The other quantities are the same as in the
preceding tables. Experimental B��(2+) = 12.33+0.35

−0.21 MeV [10,19].

�� −〈Q〉J,J 〈V�αα〉 B�� Rαα R�� R(αα)�

potential (e fm2) (MeV) (MeV) (fm) (fm) (fm)

Isle + AB
NSC97e 7.23 3.29 11.74 3.56 3.42 2.59
NAGSIM 7.06 3.45 12.29 3.53 3.34 2.57
Urbana 7.09 3.39 12.27 3.54 3.40 2.58
V e1

�� 7.11 3.43 12.33 3.54 3.33 2.58

MSA + AB
NSC97e 7.06 3.71 11.70 3.52 3.28 2.53
NAGSIM 7.14 3.68 12.27 3.55 3.23 2.53
Urbana 7.20 3.71 12.27 3.56 3.26 2.53
V e1

�� 7.02 3.76 12.35 3.52 3.23 2.52
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It may be worth recalling here that in earlier analyses
[2,12–15] the role of both dispersive �NN and space-
exchange �N force has been explored on the binding energies
of hypernuclei. Further it is to be noted that space-exchange
�N force is equivalent to l dependent force in the case
of hypernuclei. In our work [16] we have concluded that
extraction of a unique combination of dispersive and space-
exchange forces is impossible as the determination of one
masks the other or one can simulate the other. Thus our VMC
calculation for the energy of the excited state of Be hypernuclei
demonstrates that dispersive force is adequate to explain the
data. In the light of these remarks we note that the energy
of the excited states of Be hypernuclei in the cluster model
calculations is explained using a dispersive force or nonlocal
�α potential [10]. Faddeev calculations [7] based on 9

�Be
data indicate that a dispersive force along with the l = 0, 1�α

potentials are likely to be required for explanation. The good
agreement of VMC calculated binding energies with the data
indicates that our model for explaining the ground [1,2] and
excited states of two p-shell hypernuclei seems to be quite
satisfactory.

IV. SUMMARY

In the present work we have carried out three- and four-body
cluster model VMC calculations for the excited states and
quadrupole moments of two Be hypernuclei using a variety of
�α, αα, and �� potentials combined with dispersive �αα

force. This is the first cluster model VMC calculation reported

by us. The close agreement of the calculated energies of the
excited states with the data strongly supports the prescription
of dispersive �αα force in the description of Be hypernuclei.
The result of non VMC calculation of B�� for �α nonlocal
potential that depends on odd state �N potential agrees with
ours. We note that from the present work it is not obvious
whether effective dispersive or odd state �N force alone or
an appropriate combination of the l = 0, 1 �α potential and
dispersive �NN force as is indicated in the Faddeev approach
is required to explain the data of 9

�Be and 10
��Be. Finally, we

note that both the hypernuclei are deformed and have oblate
shape.

From the work reported here we conclude that there is a
need not only to accurately measure the ground and excited
state energies of existing p-shell hypernuclei but also to add
many more new species along with the other data in the existing
list to settle the ambiguity raised above.
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