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The continuum shell model is an old but recently revived method that traverses the boundary between
nuclear many-body structure and nuclear reactions. The method is based on the non-Hermitian energy-dependent
effective Hamiltonian. The formalism, interpretation of solutions, and practical implementation of calculations
are discussed in detail. The results of the traditional shell model are fully reproduced for bound states; resonance
parameters and cross-section calculations are presented for decaying states. Particular attention is given to one-
and two-nucleon reaction channels, including sequential and direct two-body decay modes. New calculations
of reaction cross sections and comparisons with experimental data for helium and oxygen isotope chains are
presented.
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I. INTRODUCTION

New horizons are in sight in the field of nuclear physics as
we move away from the line of nuclear stability. In everyday
experience we observe only a tiny fraction of the nuclear world,
but recent advances in observational techniques reveal a hidden
realm of extraordinary nuclear complexes. The term “exotic”
is commonly used to highlight the unusual nature of newly
discovered nuclear systems where structure and stability are
governed by the intricate interplay of quantum many-body
physics and the dynamics of nuclear reactions. Weakly bound
nuclei and unstable resonances appear as important links in
the chain of nuclear evolution. In the cosmos, their structure
and properties are central for energy generation in stars and
production of elements in the universe. Furthermore, quantum
objects of mesoscopic nature are common to many fields of
science, including but not limited to atoms and molecules,
nanoscale condensed matter systems, atomic clusters, atoms
in traps, and prototypes of quantum computers [1]. In many
applications to mesoscopic systems one needs to understand
and utilize the features of marginal stability and the strong
coupling between the discrete spectrum and the continuum.

The mean field along with the corresponding shell structure
is a starting point in the theoretical analysis of a quantum
many-body system. The shell structure itself becomes exotic
on the borderline of the continuum [2–5]. Single-particle,
pairwise, and cluster excursions into the continuum become
essential, forming halo states and resulting in complex mixing
of internal many-body states and continuum configurations.
The problems of the continuum shell model (CSM), or
combining the description of reactions with the structure
calculations, have been discussed almost since the dawn of the
shell model, and these are summarized in the classical text [6].
However, fueled by the discoveries of exotic systems, the acute
need in theoretical understanding, and growing computational
capabilities, this subject has recently received due attention,
leading to significant advances during the past few years. In this
work we concentrate on the version of the CSM [7,8] that goes
back to the Feshbach projection formalism [9–12] and, even
much earlier, to the approach by Weisskopf and Wigner [13]

and works in atomic physics by Rice [14] and Fano [15,16].
Alternative formulations, such as those of Refs. [17–20] (see
the review in Ref. [21]), were also successfully developed
recently.

The specific attractive features of the approach discussed
in the following are the natural unification of structure and
reactions, full agreement with the results of the traditional
shell model (SM) in the discrete spectrum, correct energy
behavior of resonance widths and reaction cross sections near
thresholds, self-consistent consideration of isotope chains, and
exact unitarity of the scattering matrix. At this point we
use the standard residual interactions adjusted in numerous
applications of the conventional SM, although the problem of
better interactions in the continuum remains open (with the
first steps in this direction being made in Ref. [22]).

We organize the discussion here starting with the formal
description of the CSM approach in the following section;
this will be the formalism that we imply under the term CSM
throughout this work. In Sec. II we also discuss mathematical
details of the formulation, relation to observables, and the
unitarity of the scattering matrix. Section III is devoted to the
detailed consideration of different parts of the approach; we
consider the limit of the conventional SM, one-body decay
channels, and sequential and direct two-body channels. The
realistic applications are shown and compared with experiment
in Sec. IV.

II. FORMULATION OF THE CONTINUUM SHELL MODEL

A. Effective Hamiltonian

In what follows we assume that the many-body Hilbert
space is spanned by Slater determinants constructed from the
single-particle (s.p.) orbitals |j 〉 in the mean field. Using the
notation of secondary quantization we denote the s.p. creation
and annihilation operators for discrete orbitals as b

†
j and bj ,

labeled by a combined discrete label j . For the continuum
states we use s.p. operators b

†
j (ε) and bj (ε), which are labeled

with the discrete index j and the continuous s.p. energy
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variable ε. If properly constructed for a mean-field potential
(see the later discussion related to one-body reactions), these
states are automatically orthogonal and form a complete set. In
this work, however, we require only separate orthogonality of
the bound states, [bj , b

†
j ′ ]+ = δjj ′ , and of the continuum states

normalized according to [bj (ε), b†j ′ (ε′)]+ = δ(ε − ε′) δjj ′ .

The full many-body space can be separated into two parts.
The set of N -particle bound states |1; N〉 = b

†
j1

. . . b
†
jN

|0〉 form
the “internal” space, P , where the index 1 = {j1, j2, . . . , jN }
labels the Slater determinant, the m-scheme representation in
the SM terminology. The remaining space, Q, is the “external”
continuum, that is, many-body states that contain one or
more particles in the continuum. The external many-body
states |c,E〉 are labeled by total continuum energy E and
the set of asymptotic variables c that define a reaction channel
(including the characteristics of the residual nucleus). The
channel variable c is discrete only in the case of the one-body
decay where energy conservation fully determines energies of
the two decay products. In general this variable is continuous,
containing relative energies or momenta of decay products
needed for full specification of the final state. In the description
of the formalism that follows we use the notation

∑
c

and
δcc′ , which in the case of the continuous channel variables
should be interpreted as

∫
dc and δ(c − c′), respectively. In

Sec. III D, where channel c in the two-body decay implies the
presence of the relative energy variable, the sum over channels
is explicitly given in terms of an integral. By construction, the
many-body states in P and Q spaces are mutually orthogonal
and normalized as

〈1|2〉 = δ12, 〈c; E|c′; E′〉 = δcc′δ(E − E′). (1)

Within the total space P + Q, we solve the stationary
Schrödinger equation

H |α; E〉 = E|α; E〉, (2)

where the full wave function |α; E〉 is in general a superposi-
tion of internal states |1〉 and external states |c; E′〉,

|α; E〉 =
∑

1

α1(E)|1〉 +
∑

c

∫
dE′αc(E′; E)|c; E′〉. (3)

The Hamiltonian H has parts acting within and across P and
Q spaces,

H = HPP + HPQ + HQP + HQQ. (4)

The external states can be eliminated by introducing a
propagator that acts exclusively within Q space,

GQQ(E) = 1

E − HQQ + i0
, (5)

where the infinitesimal imaginary displacement selects the
appropriate boundary conditions for the scattering problem.
Next we assume that the channel labels c correspond to the
eigenchannels [23] in the Q space, HQQ|c; E〉 = E|c; E〉.
Then the Schrödinger equation (2) “projected” into the

subspace P becomes

∑
2

[
〈1|H |2〉 +

∑
c

∫
dE′

×〈1|H − E|c; E′〉〈c; E′|H − E|2〉
E − E′ + i0

− δ12E

]
α2 = 0.

(6)

The amplitude of the continuum admixture in the full wave
function (3) is

αc(E′; E) =
∑

1
α1(E)Ac∗

1 (E′, E)

E − E′ + i0
, (7)

where we introduced the following notation for the HPQ
coupling amplitude:

Ac
1(E′, E) = 〈1|H − E|c; E′〉. (8)

This amplitude depends on the continuum variable of energy
E′ and running energy E. As follows from the definition (8),
there is no explicit E dependence when internal and external
spaces are orthogonal. However, the important E′ dependence
remains; the kinematic factors included in the definition of the
channel states |c; E′〉 ensure that the phase space shrinks to
zero and the channel c becomes closed below threshold energy
Ec characteristic for a given channel. Whence, the amplitudes
Ac

1 vanish at E′<Ec.
The set of equations (6) for coefficients α1 looks like an

eigenvalue problem with the effective Hamiltonian matrix H
in the intrinsic space defined as

〈1|H(E)|2〉 = 〈1|H |2〉
+

∑
c

∫
dE′ A

c
1(E′, E)Ac∗

2 (E′, E)

E − E′ + i0
. (9)

The integral in Eq. (9) can be further decomposed into its
Hermitian part (principal value), �(E), and the anti-Hermitian
part, −(i/2)W (E),

∑
c

∫
dE′ A

c
1(E′, E)Ac∗

2 (E′, E)

E − E′ + i0

=
∑

c

P.v.

∫
dE′ A

c
1(E′, E)Ac∗

2 (E′, E)

E − E′

− iπ
∑

c(open)

Ac
1(E)Ac∗

2 (E), (10)

where Ac
1(E) ≡ Ac

1(E,E). Thus, the effective Hamiltonian
for the P space (11) takes the form

H(E) = HPP + �(E) − i

2
W (E). (11)

The resulting dynamics generated by the effective Hamil-
tonian (11) contains a usual P-space contribution, which we
identify here with the traditional SM corrected by the virtual
“off-shell” excitations into the continuum via the self-energy
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FIG. 1. (Color online) Diagrammatic equation for the full Hamil-
tonian corresponding to the dynamics in the P space, Eq. (11). Parts
H

◦
and V on the figure indicate the one- (s.p. energies) and two-body

parts of the internal Hamiltonian HPP .

term,

〈1|�(E)|2〉 =
∑

c

P.v.

∫
dE′ A

c
1(E′, E)Ac∗

2 (E′, E)

E − E′ , (12)

and supplemented by the anti-Hermitian term,

〈1|W (E)|2〉 = 2π
∑

c(open)

Ac
1(E)Ac∗

2 (E), (13)

which represents the irreversible departure into Q space (i.e.,
decays); see Fig. 1. The term W, which comes from the poles
in integration (9), has a factorized form, which is shown in the
following to relate to conservation of probability and unitarity
of the scattering matrix. The amplitudes Ac(E) here represent
on-shell processes that depend only on one energy parameter
and correspond to real decays with energy conservation,
E′ = E. These poles in integration appear only when
running energy E is above the decay threshold Ec for a
channel c. The channels where decays are allowed are referred
to as open. At E → Ec + 0 the amplitudes Ac

1 vanish
because of the kinematic factors implicitly included in their
definition.

B. Scattering matrix and unitarity

The “outside” view from the reaction side of the problem
is equally important. In accordance with general scattering
theory, the transition matrix,

T cc′
(E) =

∑
12

Ac∗
1 (E)

(
1

E − H(E)

)
12

Ac′
2 (E), (14)

describes the process that starts in the entrance channel c′ with
amplitude Ac′

2 originated from the interaction HPQ, continues
through internal propagation within the P space driven by
the non-Hermitian energy-dependent effective Hamiltonian
(11) (with all excursions into Q space included), and ends
by exit to the channel c described by the amplitude Ac∗

1 (E).
The scattering matrix can be written as

Scc′
(E) = exp(iξc){δcc′ − 2πiT cc′

(E)}exp(iξc′ ). (15)

The additional phase shifts ξc(E) describe the potential
scattering or a contribution of remote resonances outside of
the valence space of the model. The correct normalization of
the transition and scattering matrices can be checked by the
comparison with perturbation theory.

The factorized nature of the non-Hermitian contribution to
the effective Hamiltonian is the key for conserving the unitarity

of the S matrix [24]. This can be demonstrated by considering
the propagator for the effective Hamiltonian,

G(E) = 1

E − H , (16)

generated from the unperturbed propagator for the full Hermi-
tian part,

G(E) = 1

E − HPP − �(E)
. (17)

With W = 2πAA†, where A represents a channel matrix
(a set of columns of vectors Ac

1 for each channel c), we iterate
the Dyson equation

G = G − (i/2)GWG (18)

and, owing to the factorized form of W , come to

G = G − iπGA
1

1 + iπA†GA
A†G, (19)

which is called the Woodbury equation in the mathematical
literature.

The transition matrix, T = A†GA, can then be written
with the aid of the matrix R = A†GA, which is analogous to
the R matrix of standard reaction theory. The unitarity of the
S matrix follows directly from these equations (see also [25]):

T = R

1 + iπR
, S = 1 − iπR

1 + iπR
. (20)

C. Energy dependence and resonances

The effective Hamiltonian of Eq. (11) is energy dependent:
At each scattering energy E its running eigenvalues are
complex numbers Eα(E). This highlights the structure in
Eq. (3): that the eigenstate is a superposition of internal
states and asymptotic decay states that have the right energy.
The relatively small, and numerically tractable, dimension
of basis states, in exchange for non-Hermiticity and energy
dependence, is a noteworthy advantage of this method as
compared to direct discretization of the continuum used in
other approaches.

The eigenvalue problem involving a complex matrix of a
general form requires finding two sets of adjoint eigenvectors:
right, |α〉, and left, 〈α̃|. They satisfy

H|α〉 = Eα|α〉 and 〈α̃|H = E∗
α〈α̃|. (21)

The left and right eigenstates correspond to time-reversed
motions; they no longer have to coincide because the
T invariance in the internal space is broken by irreversible
decays. The global symmetry with respect to the direction
of time is, however, maintained by the full Hamiltonian,
which includes the products of reactions. As a result, the left
and right eigenstates have the wave functions interrelated by
complex conjugation, which is the time-inversion operation.
The Hermitian conjugation of the Hamiltonian switches the
roles of left and right; the same effect can be reproduced
by selecting an advanced propagator boundary condition
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in (5) discussed earlier. The biorthogonality relation is given
by 〈α̃|β〉 = δαβ ; similarly, the expectation value of an operator
X is 〈α̃|X|β〉. These properties, the formalism of CSM, and
its interpretation become transparent in the one-body problem
discussed in Sec. III A; for further notes on this topic we refer
to Ref. [26].

There are various interpretations of the eigenvalues Eα(E)
of Eq. (6). Only for bound states below all decay thresholds
is a condition Eα(E) = E satisfied since W = 0. With
nonzero W , the eigenvalues of the effective Hamiltonian are
in general complex,

Eα(E) = Eα(E) − i

2
�α(E), (22)

describing the quasistationary states. These resonances and
their widths �α � 0 satisfy the Bell-Steinberger relation

〈α̃|W |α〉 = �α, (23)

where the left-hand side can be expressed through the
amplitudes Ac

1 transformed to the biorthogonal basis of
quasistationary states |α〉.

The continuation of the original problem to the lower part
of the complex energy plane, E → E = E − (i/2)�, allows
the condition

Eα(E) = E . (24)

The complex energy roots here can be identified with the poles
of the scattering matrix (14), and the eigenvectors with many-
body resonant Siegert states [27] since by construction the
eigenstate (3) is a regular function with outgoing asymptotics.
One can also use the Breit-Wigner approach [28] and identify
resonances differently, with a condition

Re[Eα(E)] = E, �α = −2Im[Eα(E)]. (25)

In the limit of small imaginary part (narrow resonances), both
definitions are equivalent. However, in general the difficulty
in parametrizing the resonance width and centroid energy is
related to the nonexponential character of decay caused by
the energy dependence of the Hamiltonian parameters. Wide
resonances cover broad regions of energy and therefore are
particularly affected by this dependence. This leads to the
nongeneric and asymmetric shape of the resonance cross
section, which makes standard Breit-Wigner or Gaussian
parametrizations inappropriate.

With either definition, Eqs. (24) or (25) for resonant states
are complicated sets of nonlinear equations. In some cases [7]
the condition (24) may lead to unphysical solutions. For the
realistic calculations shown in Sec. IV we select the Breit-
Wigner definition (25) and implement an iterative approach,
starting from the energy determined by the conventional SM
with W = 0. Although it is convenient to express the solutions
in terms of resonant states, the parameters are definition
dependent and become misleading for broad states or in the
case of overlapping resonances when interference is important.
In these cases one should turn to the observable scattering
cross section determined by the S matrix of Eq. (15). The
computation of the scattering cross section is a problem of

matrix inversion, which is linear in accordance with physical
principles, but it has to be done at each energy, which can
make this task numerically unstable for narrow resonances.
The cross sections can be calculated using the R matrix of
Eq. (20) and the Woodbury equation, in which case complex
arithmetic can be avoided. We will see complementary pictures
that can be obtained by calculating the cross section and
via resonance parameters coming from the diagonalization
of the effective Hamiltonian in the example shown in
Sec. IV.

III. FROM HAMILTONIAN TO DYNAMICS

The derivation just used is based on the decomposition of
the full Hamiltonian, Eq. (4). Another useful classification
traditional to the SM is by the type of many-body processes
it can generate. At this stage we restrict ourselves to one-
and two-body interactions and limit the space Q by the
states with only one or two nucleons in the continuum. The
typical SM limitations by few valence shells are imposed on
the intrinsic space P . In this framework we define the full
Hamiltonian and discuss processes associated with each of the
terms.

Our discussion here, however, does not touch the lack of
knowledge of the effective interaction. Although sophisticated
methods of deriving the effective interactions have been sug-
gested [22,29], the best results and the most predictive power
in the conventional SM come from the phenomenological
interactions, such as USD [30], fitted to experimental data.
The situation becomes increasingly more complicated when
effective interactions involving the continuum are to be used
[26]. In this work we identify the internal interaction HPP ,
together with the Hermitian self-energy term � included, with
a SM Hamiltonian of the standard form

HPP + � =
∑

j

εj b
†
j bj + 1

4

∑
j1j2j3j4

V (j1j2; j3j4)b†j1
b
†
j2
bj3bj4 .

(26)

The parameters, s.p. energy levels and antisymmetrized two-
body matrix elements, are known from fits to experimental
data, such as found in Ref. [30] (see also the review in
Ref. [2]), and are available from interaction libraries, such as
that of Ref. [31]. The energy dependence of these parameters
that comes from �(E) is ignored here since it has not
been included in the fitting process. As demonstrated in the
following this dependence is weak and �(E) is a smooth
function of energy. Defining the internal Hamiltonian in this
way we guarantee that below thresholds the CSM provides
results identical to the well-established SM with effective
interactions. Above thresholds, the SM interactions were fitted
to experimental data using R-matrix analysis, which identifies
interactions (26) in the same way [Eq. (20)]. The consistent
readjustment of SM interaction parameters by taking into
account the energy dependence of the Hermitian part is
beyond the scope of this paper but remains a subject of future
work.
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In this work we assume that the Hamiltonian describing the
motion of nucleons in the continuum is purely single-particle:

HQQ =
∑

j

∫
dεεb

†
j (ε)bj (ε). (27)

The asymptotic one- and two-particle continuum states con-
sidered in this work are antisymmetrized products of internal
eigenstates α of the residual nucleus and the wave function(s)
of particle(s) in the continuum. The states in one-body
channels,

|c,E〉 = b
†
j (ε)|α; N − 1〉, E = Eα + ε, (28)

are labeled by energy E and the discrete channel index c, which
combines the s.p. quantum numbers j and characteristics α for
the eigenstate of an (N − 1)-particle daughter system.

The assumption (27) allows one to express similarly the
two-nucleon channel states,

|c; E〉 = b
†
j (ε)b†j ′ (ε′)|α; N − 2〉, (29)

characterized by the combined total energy E = Eα + ε + ε′
of the daughter energy Eα and energies of emitted nucleons
in s.p. states j and j ′. Here the channel c contains in addition
information on the continuous relative energy distribution
between emitted particles. Within this work we do not consider
cases when both particles in the continuum are charged;
thus the assumptions in Eqs. (27) and (29) are sufficient.
The generalization for bound states of two particles in the
continuum is relegated to the next stage.

A. Single-particle decay and resonances

Now we need to define the interaction HPQ+HQP responsi-
ble for coupling of intrinsic space with the continuum. We start
with the one-body part and associate it with some potential V

assuming this potential to be spherically symmetric.
We first treat a pure s.p. problem of a particle moving

in the mean field or independent particle shell model. The
generalization covering all s.p. channels in a many-body
environment is straightforward and is discussed in what
follows. Of course, this subject is extensively covered by
textbooks [32–34]. The purpose of the formulation presented
here is to emphasize the conceptual similarity between the full
CSM and its trivialized version represented by a single particle
in a potential. The notions and definitions of resonances,
scattering matrix and its poles, time reversal properties, and
non-Hermiticity already appear in this simplest case. This
section also highlights some technical details used later for
the s.p. part in the full CSM, including the generic threshold
behavior of the decay amplitudes.

In the coordinate representation the Schrödinger equation
for the radial part of the s.p. wave function,

〈r|b†j |0〉 = [Ylχ ]j
uj (r)

r
, (30)

where Yl and χ represent the angular and spin parts coupled
to total angular momentum j , is

{
− d2

dr2
+ l(l + 1)

r2

+ 2µ

[
V (r) + e2 Zz

r

] }
uj (r) = k2uj (r), (31)

where k2 = 2µε,µ is the reduced mass, and z and Z are
charges of the particle and of the residual nucleus, respectively.
The spin-orbit part can be included here by assuming that the
potential V (r) depends on l and the spin orientation, which in
our notation are hidden in the s.p. index j .

For Eq. (31) with V (r) = 0, we have the regular,
Fl(kr), Fl(0) = 0, and the irregular, Gl(kr), solutions as
Coulomb wave functions with the charge parameter η =
µe2Zz/k. For a neutral particle, z = 0, the regular and
irregular solutions can be expressed in terms of spherical
Bessel and Neumann functions,

Fl(kr) = krjl(kr), Gl(kr) = −krnl(kr). (32)

The two independent solutions are related by the Wronskian,

Gl

d

d(kr)
Fl − Fl

d

d(kr)
Gl = 1. (33)

Thus, the Q-space states are energy-normalized regular solu-
tions,

〈r|j ; ε〉 = 〈r|b†j (ε)|0〉 = [Ylχ ]j

√
2µ

πk

Fl(kr)

r
. (34)

Following the definition in Eq. (8), we obtain the s.p. decay
amplitude of

aj (εj , ε) = 〈j |HPQ − ε|j ; εj 〉

=
√

2µ

πkj

∫ ∞

0
drFl(kj r)[V (r) + εj − ε]uj (r).

(35)

A positive-energy internal state uj (r) decays with the width
γj = 2πa2

j determined by the this equation; under this choice
of phases, the decay amplitudes are real.

This result for the decay width can be reproduced through
the equivalent consideration of the on-shell scattering process.
Let us introduce incoming and outgoing (Coulomb) waves
O±

l (r) = Gl(r) ± iFl(r). Consider a resonant state uj .
(Through the rest of this section we concentrate on a state
with a given set of s.p. quantum numbers j, so we will omit
this subscript in the notation; the orbital momentum subscript
l, which is a part of the combined index j, is also omitted.) The
state u can be normalized as a discrete state when the decaying
component that obeys the Siegert [27] outgoing wave boundary
condition,

lim
r→∞u(r) = NO+(kr), (36)
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is neglected. Then the outgoing flux normalized by velocity
determines the decay width

γ = 2πa2 = k

µ
|N |2. (37)

It follows from here that the asymptotics of the decaying states
are given by the decay amplitude,

lim
r→∞u(r) = −

√
2πµ

k
a(ε)O+(kr), (38)

where we selected a phase to be consistent with the previous
definition. Using the Wronskian relations, the outgoing part
can be extracted from the wave function uj , leading to

a(ε) = −
√

1

2πµk

(
u

dF

dr
− F

du

dr

)∣∣∣∣
r→∞

. (39)

This equation is identical to Eq. (35) since the Schrödinger
equation (31) that must be used to determine the outgoing
component guarantees that

d

dr

(
u

dF

dr
− F

du

dr

)
= −2µFV (r)u(r), (40)

where F is any of the Coulomb wave functions.
The eigenstate wave function in the asymptotics can

be expressed via the s.p. scattering phase shift, uj (ε) ∼
cos(δj )Fl + sin(δj )Gl . The related S matrix then can be found
as

S = exp(2iδ) = u d
dr

O− − O− d
dr

u

u d
dr

O+ − O+ d
dr

u

∣∣∣∣∣
r→∞

, (41)

which is consistent with definitions (14) and (15). The poles of
the scattering matrix correspond to the condition of the regular
wave function with the outgoing wave in asymptotics. Just as in
the general case in Sec. II, this cannot be satisfied at real energy,
whereas if the problem is taken into a complex energy plane,
k → κ = k − iκ and ε → e = ε − iγ /2, the discrete set of
solutions emerges. Thus, the resonance energy ε and the width
γ can be defined as real and imaginary parts, respectively,
of the complex energy, which is the pole of the scattering
matrix. Consistent with the general theory, the time-reversed
problem is physically equivalent; the boundary condition then
is that the wave function be regular at the origin and represent
an incoming wave in asymptotics. This is a T -reversed state,
with the corresponding “left” momentum eigenvalue κ̃ being
related to that of the “right” eigenstate as κ̃ = −κ∗. This
agrees with the symmetry properties of the S matrix,

S(κ) = S∗( − κ∗) = S−1( − κ), (42)

and ensures that the left and right energy eigenvalues are
complex conjugate.

Numerically, the decay amplitudes can be calculated di-
rectly from (35) or (39); it has been demonstrated in Ref. [35]
for proton emitters that these methods are equally effective in
practice. The effective non-Hermitian s.p. Hamiltonian can be
solved, resulting in Gamow states via an iterative procedure
based on the Green’s function, similar to the approach

discussed in Refs. [36,37]. Green’s function is constructed
for the free particle case V = 0 by using Coulomb functions
at some momentum k0 and the Siegert boundary conditions,

G(r, r ′) = 1

k0
F (k0r<)O+(k0r>). (43)

The r< and r> denote the smaller and the larger of r and
r ′, respectively. The integral equation for the resonant state
becomes

u(r) =
∫ ∞

0
G(r, r ′)

[
κ2 − k2

0 − 2µV (r ′)
]
u(r ′)dr ′. (44)

This leads to the following equation for the radial part u(r):

u(r) = 1

k0
F (r)

{∫ ∞

r

O+(r ′)
[
κ2 − k2

0 − 2µV
]
u(r ′)dr ′

}

+ 1

k0
O+(r)

{∫ r

0
F (r ′)

[
κ2 − k2

0 − 2µV
]
u(r ′)dr ′

}
.

(45)

The complex momentum κ is determined self-consistently
with the decay flux defined by the outgoing component in
this equation.

B. Threshold behavior

The behavior of the decay width and the self-energy term
�(ε) in the vicinity of threshold is particularly important. The
one-body decay is an instructive example of the CSM at work.
Following the preceding definitions we evaluate∫ ∞

0
dεj

|aj (εj , ε)|2
ε − εj + i0

= �(ε) − i

2
γ (ε) (46)

in the vicinity of the single-particle threshold at zero energy
using Eq. (35), which we decompose as

aj (εj , ε) = 〈j |V |j ; εj 〉 + (εj − ε)〈j |j ; εj 〉. (47)

Only the first term in (47) leads to a pole in Eq. (46). The
main contribution comes from low-energy scattering states,
namely in the limit when the de Broglie wavelength of the
scattered particle exceeds the range of the potential. For a
charged particle, the energy behavior of the amplitude (35)
follows from that of the regular Coulomb function. For a
neutral particle, in this limit Fl = (kr)l+1/(2l+1)!! ∝ ε(l+1)/2.
Thus at low energies we can assume that

〈j |V |j ; εj 〉 = æj (
√

εj )l+1/2, (48)

where the constant æj is

æj = (2µ)(l+3/2)/2

√
π (2l + 1)!!

∫ ∞

0
rl+1V (r)uj (r)dr. (49)

When the decay amplitude (47) is substituted in the integral
(46) only the term ∝ æ2

j contains the contribution from the pole
if ε > 0. The residue at that pole under low-energy conditions
is given by Eq. (48). This term controls the appearance of decay
width and the near-threshold behavior. All other contributions
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can be conveniently expressed using the projection operator
onto external space, Q̂ = ∫

dεj |jεj 〉〈jεj |. Thus,

�(ε) = 〈j | − HQQ − Q̂V − V Q̂|j 〉
+ ε〈j |Q̂|j 〉 + πæ2

j( − ε)εl
√−ε, (50)

and for the imaginary part

γj (ε) = 2πæ2
j(ε)εl+1/2, (51)

where  is the Heaviside step function. The first two terms
in Eq. (50) appear as a correction to the energy because of
the possible nonorthogonality between the states of Q and P .
They are small in any reasonably selected situation; they are
identically zero in the examples shown in the following where
spaces P and Q are obtained from the full numerical solution
of the Woods-Saxon potential. Only the second term in (50)
depends linearly on energy.

The last term in Eq. (50) appears only below threshold
and represents virtual excitation into the continuum, induced
by interaction. This contribution is a continuous function of
energy and is also smooth except for the s-wave neutral-
particle decay channel. The behavior of the self-energy �(ε)
including the s-wave cusp ∼√

ε is well studied in hadron
physics; it is a direct consequence of threshold unitarity (see
also Refs. [33,38]). The scaling coefficient æj that enters this
expression is typically small; the same coefficient determines
the energy scaling of the decay width above threshold,
Eq. (51) (see Fig. 3). The behavior γ ∼ εl+1/2 is consistent
with the phase-space volume for one-body decay. It is
universal, so that, if the potential were adjusted to reproduce a
certain resonance energy, then the behavior of the width as a
function of resonance energy remains the same [38,39].

C. One-body channels in a many-body system

The one-body decay amplitude in a many-body system is
given by the s.p. decay and the spectator overlap,

Ac
1(E) = aj (ε)〈1; N |b†j |α; N − 1〉, (52)

where energy of the continuum state is E = Eα + ε and
c = {α, j}. This amplitude is to be directly used in the
non-Hermitian effective Hamiltonian (11). Even on the level
of s.p. decays, the approach outlined here goes beyond the
consideration based solely on spectroscopic factors. Here the
non-Hermitian part of the effective Hamiltonian is not a s.p.
operator. Indeed, even s.p. decays can generate significant
restructuring inside the nucleus. Effects such as shape changes
or changes in pairing coherence are extremely important
for the physics of nuclei far from stability. The energy
dependence that was discussed earlier is another distinct
feature.

Although in all calculations presented in this work we use a
general form of the effective Hamiltonian, in the following we
show a set of approximations that establish a correspondence
with the traditional SM description of decay. For simplicity
we assume that all internal s.p. states can be identified by
spin and parity (i.e., the space is small enough not to include

several major shells). In the case of remote thresholds, the
decay amplitudes become essentially independent of energy,
and the set of continuum channels c = {α, j} includes almost
all possible daughter states α. The completeness in α and
energy independence can be then used to simplify the non-
Hermitian term that becomes diagonal,

〈1|W |2〉 = 2πδ12

∑
j

|aj |2〈1; N |b†j bj |1; N〉. (53)

As a result, W is then a s.p. operator that assigns a width
(37) to each s.p. state j coupled to the continuum, W =∑

j
γjb

†
j bj . The same picture emerges when the residual SM

interaction is weak. Then s.p. motion masters the dynamics,
and the sum over daughter systems α is dominated by a
single term. This again leads to Eq. (53), that is energy
dependent: W (E) =

∑
j
γj (E)b†j bj . The operator W here

can be conveniently combined with the SM Hamiltonian just
by introducing complex s.p. energies for unstable orbitals in
the mean field (for a simple instructive example see Ref. [40]).
Another point to be mentioned here is related to the treatment
of the non-Hermitian part. In the full CSM diagonalization,
virtual transitions to the continuum and real decays influence
the internal structure. This is particularly important at strong
continuum coupling when coherence with respect to decay
leads to the super-radiance phenomenon [7,25,41].

The second situation leading to the SM picture is the limit of
weak continuum coupling when the matrix W can be treated
perturbatively. In the lowest order, decays do not affect the
internal state and we can solve the Hermitian problem first
to obtain a many-body state |α〉 with the width given by the
expectation value

�α = 〈α|W |α〉 = γjϒj (α). (54)

This expresses a many-body decay width as a product
of the s.p. width and the spectroscopic factor ϒj (1) =
〈1; N |b†j bj |1; N〉.

D. Two-nucleon emission

A two-body decay channel state is fixed by an N−2 nucleus
in its eigenstate α and a state of two nucleons in the continuum,
Eq. (29). These states are characterized by the combined total
energy E = Eα + ε + ε′ of the daughter energy Eα and
energies of emitted nucleons in s.p. channels j and j ′, the
total angular momentum, and the isospin of the emitted pair.
Unless we are dealing with a bound two-particle continuum
state, the channel, besides total energy E, has another con-
tinuous index describing the energy distribution between the
particles.

As was done earlier, the two-body transition amplitude is
generated by the matrix element 〈1|H |c; E〉 of the original
Hamiltonian. Two different contributions can be identified:
“direct” and “sequential” (Fig. 2). The one-body part of the
total Hamiltonian H defined here cannot contribute to the
direct decay vertex 1 → α + j + j ′. The two-body interaction
responsible for this direct transition is discussed in the
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FIG. 2. (Color online) Diagrams for two-body decays: sequential
(left part) and direct (right part).

following. Even without two-body interactions, the “dressed”
vertex is not zero since the N −2 daughter state is a part of the
virtual cloud of the N−1 system to which one-body transitions
are allowed. Such a second-order perturbative sequential
mechanism of decay is possible regardless of whether the
one-body channel is open or closed. A similar approach and
classification of processes has been recently discussed in the
context of two-proton radioactivity [42,43], where on one
hand the case is complicated by being a three-body Coulomb
problem [44], while on the other hand extremely weak decays
do not affect the internal nuclear structure, allowing the use of
the traditional real-energy SM [43].

1. Sequential decay

The dressed s.p. vertex for two-nucleon emission
〈1|H |c; E〉 can be calculated with the help of Eq. (3) and
solution (7),

Ac
1(Ec,E) =

∑
β

A
{βj}
1 (Eβ + ε, E) A

{αj ′}
β (Eα + ε′, Eβ)

Eβ − Eα − ε′

− ({ε, j} ↔ {ε′, j ′}). (55)

Assuming that internal and external s.p. states are orthogonal
and using the one-body decay amplitude (52) for the second-
order process that takes place via a virtual state β being
suppressed by the energy barrier, we obtain

Ac
1(E) =

∑
β

aj (ε)aj ′ (ε′)

×
( 〈1|b†j |β〉〈β|b†j ′ |α〉

Sβ + ε
− ({ε, j} ↔ {ε′, j ′})

)
,

(56)

where we are considering on-shell decay so that the initial
state with energy E = Eα + ε + ε′ undergoes a transition via
the intermediate state with energy Eβ + ε. This is reflected in
the denominator, Sβ + ε = Eβ − E + ε, where Sβ stands for
the separation energy from the intermediate system. Since c =
{jε, j ′ε′, α} here contains a continuous index, the summation
over channels is expressed as

〈1|W (E)|2〉 = π
∑
α,j,j ′

∫
dεdε′

× δ(E − Eα − ε − ε′)Ac
1(E)Ac∗

2 (E). (57)

To avoid double-counting from fermion permutation we
included a factor of 1/2 while making the domain of integration
symmetric. Equation (57) may contain poles in open one-body
channels corresponding to real states of an N − 1 system
through which the two-body decay process can proceed. Such
processes can be viewed as a second-order correction to the
one-body decay via the daughter state β as a resonant state.
Here we discuss only the off-shell contribution. An example
of sequential decay is shown in Fig. 2.

The calculation of the non-Hermitian term W in the most
general case was carried out numerically in the examples
shown in Sec. IV. Here we illustrate the case of a weakly
decaying state |αi〉 when the decay width can be approximated
by the diagonal element, � = 〈αi |W |αi〉. In this limit the
problem is close to that of sequential decay discussed in
Refs. [43,45].

Taking into account the direct and exchange contributions
to Eq. (56), assuming spherical symmetry, and performing the
summation over magnetic quantum numbers, we obtain two
spectroscopic factors,

ϒd = δjj ′δββ ′
|〈αf ||bj ||β〉〈β||bj ||αi〉|2

(2αi + 1)(2β + 1)
(58)

and

ϒx = ( − 1)β+β ′


 αi j β ′

αf j ′ β




× 〈αf ||bj ′ ||β ′〉∗〈β ′||bj ||αi〉∗〈αf ||bj ||β〉〈β||bj ′ ||αi〉
2αi + 1

,

(59)

where here (and in the following) we use the Greek index of
the many-body state as a symbol of angular momentum. The
reduced matrix elements are defined as in [32]. The total width
in the channel |αi〉 → |αf 〉 is given by

� = 1

2π

∫
dεdε′δ(Et − ε − ε′)

∑
ββ ′jj ′

γj (ε)γj ′(ε′)

×
(

ϒd

(Sβ + ε)2 + ϒx

(Sβ + ε′)(S ′
β + ε)

)
. (60)

As an illustration, we discuss a case of the 0+ → 0+ two-
neutron decay. Here ϒx = ϒd ≡ ϒ , and we can view a
full width as a sum of partial widths that depend on the final
state αf and intermediate state β. The characteristic energies
in the problem are the one-neutron separation energy to the
state β, Sβ = Eβ − Eαi

, and the two-neutron decay energy,
Et = Eαi

− Eαf
(minus the two-neutron separation energy).

We assume a situation with small available energy Et = ε +
ε′, when the energy scaling of the s.p. decay widths, γj =
2π |aj (ε)|2 ∼ εl+1/2, can be used. Introducing q = Et/Sβ we
obtain

�β(0 → 0) = ϒ
γl(Et )γl′(Et )Et

S2
β

Bll′ (q), (61)
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which includes the phase-space integral

Bll′(q) = (2 + q)

2π

∫ 1

0

xl+1/2(1 − x)l+1/2

(1 + qx)2[1 + q(1 − x)]
dx. (62)

In the limit Sn  Et we obtain Bll′ (q) = B(l + 3/2, l′ +
3/2)/π , where B(x, y) is a beta function. The decay rate
is suppressed by the energy denominator S2

β . The two-body
decay width scales with energy as E2

t . This is consistent with
the phase-space volume estimate, � ∼ δ3(Pt − P )δ(Et −
E)�i(d3ki/εi), where P is total momentum and the product �i

runs over the fragment indices including the daughter nucleus.
For the isotropic case integrated over all angles, the width
is proportional to γ ∼ k ∼ E

1/2
t in one-body decay; the

same assumptions lead to � ∼ E2
t for the two-body decay

(three-body final phase space).
In the opposite limit, Sn � Et or q → ∞, we have

Bll′ (q) = B(l − 1/2, l′ + 1/2)/(2πq2). This expression
diverges for an s wave. The exact integration in the s-wave
case gives

�β=1/2(0 → 0) = γ 2
0 (Et )ϒβEt

4(2Sβ + Et )
√

Sβ(Sβ + Et )
. (63)

Note the divergence in the s-wave channel when separation
energy goes to zero. The s-wave state in the intermediate
nucleus β is so broad that even being slightly higher in energy
it still poses no barrier for the sequential decay. The generic
behavior of the isotropic decay width as a function of energy
can be traced from Eq. (63), where � ∼ E2

t if energy is low,
Et � Sβ , but once energy gets above Sβ the behavior changes
to � ∼ √

Et . This shows that the presence of the one-body
resonance changes the nature of sequential decay, reflecting
the one-body phase-space characteristics. For simplicity of
our discussion so far the width of the intermediate state β has
been ignored; however, this width is present in the realistic
calculations discussed in the following.

2. Direct decay

Direct two-body transitions are generated by the two-body
part of the Hamiltonian HQP , which takes a nucleon pair
coupled to angular momentum L,pL = [bjbj ′ ]L,from internal
space P and transfers it to the two-body continuum Q (see the
right part in Fig 2). The transition amplitude has the generic
form

Ac
1(E) = a(j1j2)(ε1, ε2)〈1; N |(p(jj ′)

L )†|α; N − 2〉, (64)

where a direct two-body transition amplitude, a(j1j2)(ε1, ε2), is
introduced [and is not to be confused with s.p. amplitudes
aj (ε)]. This amplitude can be calculated for a given two-
body interaction. For example, by assuming for simplicity
a coordinate form V (2)(r, r ′), where r and r ′ are particle
coordinates in the mean-field frame, the amplitude can be
expressed following the definition of Eq. (8) and normalized

free-particle states Fj as

a(j1j2)(ε1ε2) = 〈j1j2|V (2)|j1, ε1; j2, ε2〉
= 2µ

π
√

k1k2

∫ ∞

0
drdr ′Fj1 (r)Fj2 (r ′)

×V (2)(r, r ′)uj1 (r)uj2 (r ′). (65)

The low-energy behavior of the direct amplitude can be
understood without specification of the residual interaction
by taking into consideration the long-wavelength behavior
of the Bessel functions associated with the regular solution,
Fl(r) ∼ (kr)l+1 at k → 0. The decay rate can be estimated by
integration over continuous channel variables as in Eq. (57):

� ∼
∫

|a(j1j2)(ε1ε2)|2δ(Et − ε1 − ε2)dε1dε2 ∼ El1+l2+2
t .

(66)

The same answer as the one obtained for the sequential
transition reflects the nature of the three-body final phase
space. The direct transition however is not suppressed by the
one-body energy barrier and is not related to decay amplitudes
for one-body decays.

We conclude the discussion of two-body decay processes
with a word of caution: The full amplitude in a given decay
channel is the sum of the direct and sequential contributions
and the observed width or cross section carries their interfer-
ence.

IV. APPLICATIONS

A. How the method works

Before turning to the discussion of the specific results
we outline the stages involved in the calculation. A special
feature of our approach is the exact treatment of threshold
behavior. This requires the knowledge of the topography
of thresholds and therefore has to rely on the preceding
solution for the daughter systems. In this way we come to
problems that involve the daughter chains in their entirety.
Thus, except for the case of the traditional SM, where the
Hermitian Hamiltonian matrix is diagonalized separately for
each nucleus, in all calculations the nuclides (or, in our
examples that follow, the isotopes) are coupled by the decay
chains.

The procedure starts from the closed core (specifically,
4He or 16O) and continues toward heavier isotopes so that
the properties of all possible daughter nuclei are known prior
to each new calculation. The process of calculating resonant
states is iterative. We start with a given state obtained from
the conventional SM. For this state we review all possible one-
body and two-body decays. To determine the contribution to W

from each individual one-body channel we conduct a scattering
calculation where we use Eq. (35) to determine a s.p. decay
amplitude. The state uj is determined from the solution for
the Woods-Saxon potential; it is then normalized as a discrete
state and identified with a s.p. SM state that is involved in
the process. The amplitudes for two-body sequential channels
are determined using one-body amplitudes, as discussed in
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Sec. III D. The diagonalization of the full Hamiltonian with
the non-Hermitian part results in the next iteration for energy
and width of the state under consideration. For each resonant
state this process continues until convergence is reached. The
Breit-Wigner definition of resonances is used so that scattering
calculations are done at real energy.

By construction of the model, with �(E) [Eq. (11)],
assumed to be included in the adjusted SM Hamiltonian with
neglected energy dependence, bound levels coincide with
those in the standard SM. For unbound states, this choice
makes our internal propagator equivalent to the R matrix used
in spectroscopic analysis of experimental data. Therefore this
design is most suitable for the effective extraction of interaction
parameters from experiment.

The continuum coupling restructures internal states, and
energies of resonances above the decay threshold deviate
from the SM predictions. For narrow states and well-separated
resonances, the resulting effect is small. The spherical shape of
the semimagic system is stable; in addition, strong collective
pairing reduces the effect of decays onto internal structure in
these particular examples. Hence, for s.p. decays [case (a) in
Table I], the use of the spectroscopic factor approximation
discussed in Sec. III C is rather good. Here we are far from

a strong coupling to the continuum [12,25,49,50], which
might cause an internal phase transition with formation
of broad (super-radiant) and very narrow (trapped) states.
In nuclear physics this phenomenon separates compound
and direct reactions [25,51,52]. A trace of this effect is
seen in Table I, where decaying states have their resonant
energy shifted from the SM prediction, with the lowest
states of the given quantum numbers being pushed into the
continuum [7].

The cross-section calculations follow directly the formal-
ism outlined in Sec. II B. In these calculations we use the same
set of decay channels, thereby, because of unitarity, ensuring
proper treatment of the flux loss to nonelastic channels. The
large-scale repetitive matrix inversion and instability in the
vicinity of the poles present a significant technical challenge.
In this work we employed a new numerical method that
expands the unperturbed propagator (17) in the time domain
using Chebyshev polynomials. The entire procedure is similar
to the Lanczos technique and involves only matrix vector
multiplication, which is a fast operation with sparse matrices.
The resulting R matrix is then used in the Woodbury equa-
tion (19), leading to a full propagator and scattering cross
section.

TABLE I. Comparison of conventional SM and CSM with data for He isotopes.a The first
two columns indicate the mass number and spin of the state. The next three columns compare
energies as follows: E(SM)— traditional shell model; E(CSM)—full CSM including two-body
decay modes; E(EX)—experimental data (some of which have large uncertainties and depend
on the method of analysis). The three columns to the right show decay widths: �(a)—CSM
with one-body decay channels; �(CSM)—CSM with all channels and experimental reaction
kinematics. The experimental data in column �(EX) are taken from Refs. [46–48].

A J E(SM) E(CSM) E(EX) �(a) �(CSM) �(EX)

4 0 0 0 0 0 0 0
5 3/2 0.992 0.992 0.798 1.0 0.729 0.648
5 1/2 4.932 4.932 2.07 broad 6.00 5.57
6 0 −1.379 −1.379 −0.973 0 0 0
6 2 0.515 0.515 0.825 0 0.037b 0.113
6 2 4.745 4.110 4.74 4.74
6 1 5.889 5.889 6.98 6.98
6 0 11.088 10.183 13.85 13.85 broad
7 3/2 −1.016 −1.016 −0.529 0.091 0.126 0.15
7 1/2 2.240 2.240 2.1 4.45 2.93 2
7 5/2 2.85 2.850 2.39 3.49 4.03 1.99
7 3/2 4.495 4.521 (5.3) 5.79 (6.77) (4)
7 3/2 10.223 9.304 15.24 15.24
8 0 −3.591 −3.591 −3.112 0 0 0
8 2 0.19 0.196 0.48 0.336 0.238 0.8
8 1 2.427 2.427 4.40 3.37
8 0 6.376 5.974 11.5 11.5
8 2 6.882 6.740 12.13 12.13
9 1/2 −1.992 −1.992 (−1.84) 0.543 (0.334) 0.1
9 3/2 2.805 2.805 (−0.69) 5.12 (0.568) 0.7
10 0 −1.649 −1.649 −2.04 0.073 c 0.3

aAll numbers in MeV; energies are measured from the ground state of 4He.
bThis result includes one- and two-body decay modes; single-particle decay width is 6 keV (see
text).
cThe state is likely to decay via two-body mode thorough the process dominated by l = 0
transitions involving states from the sd shell. These configurations are not a part of our model.
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B. Helium isotopes

For the chain of helium isotopes from 4He to 10He, the
results are summarized in Table I. The internal valence P
space contains two s.p. levels, p3/2 and p1/2; the α-particle
core is kept inert. The effective interaction within this model
space and s.p. energies are borrowed from Refs. [53,54].
Without additional terms, this would be merely a conventional
SM, leading to the bound states that are listed as E(SM) in
Table I (with all energies being measured from the ground
state of 4He).

The one-body part of the coupling Hamiltonian HPQ+HQP
is defined using the Woods-Saxon potential. The parameters
of the potential are V = 46.92 MeV, VSO = 28.9 MeV;
radius R = 2.064 fm and diffuseness 0.7 fm are the same
for the central and spin-orbit Woods-Saxon density form
factors. In our calculations the potential depth was adjusted to
retain the resonant nature of one-body reactions. As discussed
in Sec. III A, the internal wave functions of this potential
are then used to calculate the decay amplitudes. It should
be stressed that modification of the mean field given by the
interaction HPQ + HQP from isotope to isotope is a subject
of separate investigation; generally, only in clear s.p. cases
is adjustment of depth a good approach for determining the
mean field. In our earlier investigations [8], such mean-field
modifications were not always used and this typically led to
smaller widths.

As already discussed, at low energies the s.p. decay widths
behave according to Eq. (51). In our case this approximate
behavior for the l = 1 partial wave is γ (ε) = 0.834 ε3/2 MeV

FIG. 3. Single-particle decay width as a function of resonance
energy for the p- and sd-shell models. The solid lines represent
the results of the reaction calculations based on the Woods-Saxon
potential appropriate for the corresponding case (helium or oxygen)
discussed in the text. One experimental point on the p-state line
corresponds to the ground-state 3/2− resonance in 5He (ε =
0.895 MeV and γ = 648 keV). Two points for the d3/2 state
correspond to the experimentally known 3/2+ resonances in 17O
(ε = 0.941 MeV and γ = 98 ± 5 keV) and 19O (ε = 1.540 MeV
and γ = 310 ± 30 keV [55]). The near-threshold power-law fits of
Eq. (51) are shown with dashed lines.

for both p3/2 and p1/2 states (see Fig. 3). Higher above the
decay threshold, the concept of decay width as an observable
quantity becomes ambiguous; however, one can trace the poles
of the scattering matrix, which sharply dive down into the
complex plane, while the real part of the pole remains finite.
This important property prohibits adjustment of the potential
depth for the high-lying s.p. resonances. An example of this
situation is given by the 1/2−state in 5He, which in the
compilation [46] of 1988 (and also used in our work [8])
appeared at an energy of nearly 5 MeV above the threshold.
The 0p1/2 resonance pole cannot have such a high value for its
real part. Thus adjustment of the mean field is neither possible
nor warranted in this situation.

The results of the CSM calculation are shown in
Table I. Here we primarily concentrate on the s.p. channels
owing to their close relation to experimental data. Unlike the
case of oxygen (see Sec. IV C), and the results reported in
Ref. [8], we deliberately present here a somewhat simpler
study and trace results in detail. The “Borromean” 6He
nucleus is the only case discussed in the following where
two-body decays appear to be important. The sequential
two-body decay as a second-order process built on one-body
amplitudes involves no additional parameters. In our earlier
work [8], the roles of direct and sequential decay were analyzed
for the helium chain under different assumptions for the inter-
actions and with the older experimental data available at that
time.

The results of our calculations for resonance energies
are shown as E(CSM) in Table I. Experimentally known
energies of corresponding states or resonances are listed in
the E(EX) column. On the right side of the table we show the
decay widths determined using the Breit-Wigner definition.
The column �(a) corresponds to the calculation that includes
only one-body channels and uses reaction characteristics fully
determined by the CSM. The column �(CSM) shows the full
CSM results. Because the results are sensitive to scattering
kinematics the full calculation is carried out at experimentally
observed Q values, where available. The full calculation also
includes a case of sequential two-body decay as discussed in
the following.

Next we comment on some of the features of the results.

(i) The ground states of 4,6,8He are nucleon-stable, in
agreement with experiment.

(ii) The correspondence with previously known results is
preserved. For example, the 7He ground state 3/2− has
only a single open channel for decay into the ground state
of 6He with a Q value of 0.364 MeV; the spectroscopic
factor for this particle removal is ϒ = 0.498. A
calculation with the Woods-Saxon potential adjusted to
produce a 3/2 resonance at this energy gives a width
of 0.183 MeV; together with the spectroscopic factor
this amounts to a 91-keV width, which is consistent
with the 91-keV width obtained in a full calculation.
As proven in Sec. III A, perturbation theory, which is
equivalent to the use of the conventional SM with the
spectroscopic factor, is valid, provided that the decay
width (perturbative term) is small. Another case is a
broad 3/2−

2 state in this nucleus; coupling through the
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continuum mixes all 3/2−states, making the use of a
perturbative approach invalid. We emphasize here that
the CSM does not use external spectroscopic factors.

(iii) The two-neutron decay of the 2+state in 6He is of
particular interest. Because of the extreme sensitivity of
the decay width to the reaction kinematics, we conduct
this discussion by assuming observed energies. The
latest experimental data show the 2+ state to be only
27 keV above the single-neutron decay threshold. At this
energy, the potential calculation gives a width of about
3.7 keV. The spectroscopic factors of ϒ1/2 = 0.166 and
ϒ3/2 = 1.670 lead to a total single-nucleon decay width
of about 6.3 keV, consistent with the CSM calculation
in Table I. This result is significantly smaller than the
experimental value, emphasizing the dominant role of
two-neutron decay, which is equivalent to α decay in
this example. The sequential two-body decay is primar-
ily determined by the kinematic phase-space integral,
where the sequential two-body process proceeds via an
intermediate state β,

γjj ′(Q) = 1

2π

∫ Q

0
dε

γj (ε)γj ′(Q − ε)

(ε + Eβ − Eα)2 + �2
β/4

. (67)

In this equation the intermediate state is assumed to be
an isolated resonance so that the s.p. propagator can
be represented by a Lorentzian. The transition through
the intermediate 1/2− resonance in 5He is too weak
because of the high barrier. The Q value of 0.825 MeV
and separation energy S = 1.243 MeV lead to the
width γjj ′ being less than 1 keV. Sequential two-body
decay through the β = 3/2− state is significant: By
substituting realistic kinematics into the integral (67)
we obtain γjj = 17 keV. This is the result of a pure
potential calculation, which has to be supplemented
with spectroscopic factors and recoupling coefficients
as discussed in Sec. III D. In fact, given the simplicity
of this recoupling and the trivial spectroscopic factors
in 5He, only the afiorementioned spectroscopic factors
of 6He enter into the final result. The CSM calculation
leads to a total width of 37 keV for the 2+state,
which can be compared with the experimental value of
113 ± 20 keV.

(iv) The results reveal information about nuclear structure
and dominant decay modes. For example, for the 7He
isotope, the results agree with the recent experiments
[47,48] and support the “unusual structure” of the 5/2−
state identified in Ref. [48]. Owing to its relatively high
spin, this state, unlike the neighboring 1/2− state, decays
mainly to the 2+ excited state in 6He.

(v) An experimental controversy is related to the location
of 1/2− state in 7He. In contrast to the findings of
Refs. [47,48,56], the experimental study [57] finds this
state to be lower in energy. Our calculation gives an ex-
citation energy of 3.3 MeV for this resonance. However,
the cross section obtained with the same Hamiltonian
(Fig. 4) peaks at much lower energy and appears
to be more consistent with [57]. The state is very
broad; threshold effects and the presence of other states
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FIG. 4. (Color online) CSM results for 7He isotopes. The
full scattering cross section is plotted for several reactions:
n(6He, 6He)n—elastic neutron scattering off the ground state of
6He; n(6He, X)—total cross section of neutron scattering by 6He;
and n(6He, 6He∗)n—inelastic scattering of 6He to the excited 2+state.
The remaining curve shows a typical Breit-Wigner shape for elastic
scattering via the single 3/2− resonance.

significantly influence the broad resonances, as we
clearly record in our calculations. Because of this, a
parametrization in terms of the width and resonance
centroid may be quite ambiguous. This suggests a
possible tentative explanation for the present uncertainty,
although further studies are certainly needed.

(vi) For the heaviest isotopes and, in particular, for the
discussion of the presently interesting case of 9He, the
extension to the sd shell is necessary, especially in light
of recent experimental evidence showing the ground
state of 9He to be 1/2+.

(vii) The scattering cross-section curves as a function of
energy start from threshold and generally are not
symmetric and have neither Gaussian nor Lorentzian
shape. For low-lying states with the width big enough to
reach threshold, the distortion is particularly noticeable.

(viii) For broad resonances, the identification of resonances
(or poles of the scattering matrix) with a peak in the cross
section is inadequate. Interference between different
resonances, including rather remote ones, is significant
in this case.

(ix) When it comes to reaction cross sections, the CSM
method only extends the traditional techniques and does
not invalidate old approaches for physically justified
situations. As seen from Fig. 4, the narrow J =
3/2−resonance is well described with a typical Breit-
Wigner curve,

σ = π

2k2

∑
lj

(2Jr + 1)

(2Ji + 1)

�2
r

(E − Er )2 + �2
r /4

,

where �r = 91 keV and Er = −1.016 MeV are taken
from the discrete calculation in Table I. The deviations
at thresholds are known limitations of the Breit-Wigner
approximation.

064314-12



CONTINUUM SHELL MODEL PHYSICAL REVIEW C 74, 064314 (2006)

16O
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24O

25O

26O

27O

28O

FIG. 5. (Color online) CSM calcula-
tion for oxygen isotopes with the HBUSD
interaction. The states (vertical bars) are
plotted as a function of energy relative to
the ground state of 16O. States shown with
solid black lines are stable in our model;
they are either below decay thresholds
or with decays forbidden owing to the
angular-momentum restrictions in the
selected model space. States from yel-
low (color online)/lighter shade of gray
(long lifetime) to red/darker gray (short
lifetime) are resonance states. For some
of the low-lying states the energy (in
units of keV), spin and parity are given.
Along with the resonance structure above
thresholds, the elastic d-wave neutron
scattering cross section, off the ground
state of a daughter nucleus with M = 0
(even mass) or M = 1/2 (odd mass)
magnetic quantum number, is plotted as
a function of energy. The cross section
is obtained as a part of the same CSM
calculation.

C. Oxygen isotopes

The intrinsic space here is represented by the s1/2, d3/2, and
d5/2 s.p. orbitals composing the usual sd SM. The standard
SM interactions (USD [30] or its slightly modified version for
heavier isotopes, HBUSD [58]) were used in the calculations.

Since we use the Woods-Saxon potential for reaction cal-
culations, it is important to make sure that the potential creates
proper resonance states. For few low-lying s.p. resonances
with large spectroscopic factors, we adjust the depth of the
potential so that the correct s.p. resonance energy is indeed
ensured. The Woods-Saxon potential parametrization with a
mass-dependent depth [59,60] was demonstrated to reproduce
the s.p. resonances and bound states with good precision
for nuclei around mass A = 16. The parameters are the
depth V = 55.77 MeV and the spin-orbit potential VSO =
25.6 MeV; the radius R = 3.05 fm and diffuseness 0.65 fm are
the same for the central and spin-orbit parts. For the majority
of high-lying states, the potential was not readjusted and the
decay amplitude was computed directly from Eq. (35). The
resonance phenomenon in this case is due to the many-body

effects, where the complexity of the many-body states makes
the overlap in Eq. (52) small.

In Fig. 3 the widths of the resonant states s1/2, d3/2, and
d5/2 are shown as a function of their energy being found with
the aid of the Woods-Saxon potential with variable depth. The
curves are limited to the near-threshold region approximately
determined as kR < l (and kR � 1 for l = 0), where R is
the nuclear radius. For oxygen, this limits the d wave at about
3 MeV. The curves are close to straight lines, displaying the
appropriate power-law scaling (51) of the decay width as a
function of energy. The lines can be fit by the equations (with
ε in units of MeV) γ (s1/2) = 16 ε1/2, γ (d3/2) = 0.15 ε5/2, and
γ (d5/2) = 0.04ε5/2. These fits are shown with dashed lines.

In Fig. 5 we show an overview of the full CSM calculation
for oxygen isotopes within the sd shell. Some of the first results
were reported earlier [7,8].

Our calculations are in a good agreement with available
experimental data for the oxygen isotopes [46,61]. One has to
emphasize again that, with the assumption of the self-energy
term � being a part of the conventional SM Hamiltonian, the
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TABLE II. Lowest resonance states in the chain of oxygen isotopes. The experimental data on the left [EXP–energy of
the state (in MeV), Q—energy above threshold (in MeV), and �—width (in keV)] are compared to the theoretical results
on the right. The decay mode in the third column indicates the decay branches assumed by experimentalists [46,61].

A j Mode EXP Q � Theory E Q �

17 3/2+ γ n 5.085 0.941 96 WS 4.5 1.0 122
18 2+ γαn 8.213 0.169 1 ± 0.8 USD 9.465 1.242 200
18 1+ αn 8.817 0.773 70 ± 12 USD 10.823 2.600 85
18 4+ γαn 8.955 0.911 43 ± 3 USD 8.750 0.526 28
19 5/2+ n 5.148 1.191 3.4 ± 1 USD 5.011 1.121 5.1
19 9/2+ 5.384 1.427 ∼0 USD 5.175 1.282 0
19 3/2+ n 5.54 1.58 310 USD 5.529 1.636 290
19 7/2+ n 6.466 2.509 small USD 6.880 0.808a 63
24 2+ n ? ? ? HBUSD 4.850 0.489 18
26 0+ 2n 0 ? ? HBUSD 0 0.021 0.02
28 0+ 2n 0 ? ? HBUSD 0 0.345 14

aThe Q value is measured for the excited state in the daughter system.

bound states are exactly the same as obtained in the usual
SM calculation. The novelty appears when the states above
decay thresholds are considered. The properties of a few
experimentally identified resonances in oxygen isotopes are
compared to the CSM predictions in Table II.

There are two cases in 17O and 19O corresponding to the
neutron emission from the d3/2 orbital. These rather pure s.p.
decays do not involve much in the realm of many-body physics
and so are well described with the Woods-Saxon potential
model (Fig. 3). Here the SM may be used to predict the neutron
decay energy; however, there is an obvious improvement if the
experimental Q value is used in the s.p. reaction calculations.
The power law for the energy dependence of the decay width
can enhance the predictive power of the description.

The two-body case of 18O is more complicated; however,
there are only 14 states in the sd SM. The comparison of
the level structure and neutron scattering cross section with
data is shown in Fig. 6. The SM below the neutron decay
threshold (zero on the plot) is in impressive agreement with
the data. Here, for all sd-SM states shown with longer ticks (in
red, color online), the experimental counterpart can be easily
identified in the observed spectrum. Practically all remaining
observed negative-parity states below neutron threshold can
be identified with particle-hole excitations using the extended
p-sd-pf SM. In the theoretical calculation, these states are
shown with small lines (where the WBP cross-shell interaction
from Ref. [31] was used).

Because of the resonant nature of states, the experimental
picture above neutron decay threshold becomes more ambigu-
ous. The lowest near-threshold state 2+ may correspond to
one of the higher lying 2+ states in our model (see Fig. 6
and Table II). Because of the significant difference in energy
above threshold between this state and its possible theoretical
counterpart, comparison of the decay widths is inappropriate.
Following this state, there are rather narrow 4+ and 1+ states
(with the experimental assignment of 1+ for the latter state still
uncertain); see Table II and Fig. 6. Although in the theoretical
calculation these states come out in a different order, their
observed and calculated widths appear to agree. Beyond this
point there are several broad, ∼(100–200) keV, unidentified

resonances observed experimentally. They may be juxtaposed
to the 150- to 400-keV wide 2+, 3+, and 1+ states appearing
in the CSM calculation. To support this argument, we show
on the lower panel of Fig. 6 the CSM neutron scattering
cross section computed using Eq. (15). Since this calculation
takes into account only l = 0 and l = 2 partial waves, the
peaks from negative-parity states do not appear. On the upper

FIG. 6. (Color online) (Lower panel) The result of the CSM
calculation of the level scheme and neutron scattering cross section
from the ground state of 17O. Marked levels corresponding to the
sd-shell model states are included in the CSM calculation. All
other levels result from the expanded sd-pf shell calculation (see
text); the configurations of this type are not coupled to continuum
and corresponding (negative-parity) states do not appear in the
cross-section plot. (Upper panel) The empirical level scheme in 18O.
The neutron scattering cross section on the upper panel is indirectly
inferred from the 14C(αn)17O reaction [62] and other compilations
[61,63,64]. The parts of the cross section shown with a solid line are
expected to be dominated by the positive-parity l = 0 or l = 2 partial
waves and thus can be distantly juxtaposed to the curve on the lower
plot.
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plot we roughly reproduce the experimental cross section
obtained from indirect reactions [61–64]. The portion of the
curve corresponding to positive-parity resonances, which are
expected to be present in the theoretical calculation, is shown
by the solid black curve. There is a reasonable similarity in
the resonant structure corresponding to the set of wide states
2+, 3+, and 1+. In the experiment, the spin-parity assignments
for the states shown in Fig. 6 in brackets have not yet been
confirmed.

The cross-section picture indicates that our interpretation
is plausible, although differences, by factors of 2 to 4, in the
resonance parameters may be partly due to different definitions
of the width used in the data analysis. The broadness of these
resonances that causes difficulties in experimental analysis
and interpretation of peaks is here a trivial consequence of
the simple two-particle structure of 18O, which implies high
spectroscopic factors for s.p. decay. The situation changes for
the next isotope, 19O, where there is only one broad s.p.
3/2+ state that stands out in the calculations of the cross
section. The majority of other states are narrow owing to
the many-body complexity. They would not be visible on a
plot of the cross section; however, this allows for the direct
comparison of widths and energies shown in Table II.

Little is known about the heavier oxygen isotopes, although
this situation will change in the near future as new radioactive
beam experiments come online. In Table II we quote some
(in our view) of the most interesting predictions of the model.
The cases of 26O and 28O are just beyond the drip line. The
ground states of these nuclei are unstable with respect to
neutron pair emission. Section III D, although being centered
around interactions, discussed how to tackle such cases.
Unfortunately, the uncertainty in the effective interactions
complicates the job of predicting. We have no firm knowledge
about the interaction coupling internal states to the continuum
and, unlike in the helium case, in the oxygen data we could
not find a case to determine this coupling phenomenologically.
Thus we only consider here the case of sequential decay
driven by what we believe to be a well-defined one-body
potential.

The second problem is that the traditional SM adjusted to
experimental data near the stability line cannot be extrapolated
with full certainty to the vicinity of drip lines. The role of the
self-energy term �(E) is another question. Indeed, the well-
established USD interaction predicts 26O to be bound, which is
known from experiments not to be the case. In our calculations
we had to resort to the HBUSD interaction specifically adjusted
to heavier isotopes. The Q value coming from this interaction
in the case of 26O is only 21 keV, whereas the typical SM
uncertainty in level energies is about 200 keV. This uncertainty
entering the power-law scaling of decay width versus energy
makes the lifetime predictions unreliable.

Thus, collecting our calculations in Table II, we see our
strongest prediction through Eq. (63). In both cases of 26O
and 28O, the lowest 3/2+, 1/2+, and 5/2+ states in the
adjacent isotopes 25O and 27O are the main candidates for
the intermediate states in the sequential two-body decay
because of the low-energy barrier in combination with large
spectroscopic factors of these mainly s.p. states. At the same
time, in the case of 26O we have neutron separation energies

S3/2 = 0.98, S1/2 = 4.39, and S5/2 = 5.54 MeV; the
corresponding spectroscopic factors are ϒ3/2 = 0.28, ϒ1/2 =
0.019, and ϒ5/2 = 2.2 × 10−4. In addition to spectroscopic
information, the kinematics of the phase-space volume is
another essential factor. A simple estimate with the aid of
Eq. (63) shows that the transition through the s state would
dominate throughout the entire region below s.p. threshold.
Owing to level energetics, two-body decay remains significant
even in the presence of the open one-body channel. However,
the simple power-law scaling used to obtain the phase-space in-
tegrals of Eq. (62) may no longer be valid high above threshold.
If the ground state in 26O were at Et = 1 MeV above the two-
neutron decay threshold, while still right at the opening of the
one-neutron decay channel into the 3/2+ state of 25O, S3/2 = 0,
the decay width coming from sequential decay would be about
30 keV, as opposed to the value of 20 eV in Table II quoted for
Et = 0.021 MeV.

V. CONCLUSION

The first goal of this work is to present a systematic and
detailed discussion of the continuum shell model as a step
toward unifying the nuclear structure with nuclear reactions.
We amplify and extend the ideas and methods started in our
earlier works [7,8]. In this presentation we clarify the CSM
formalism and show its relation to the standard SM. One of
the important points of this work is the physical interpretation
of various results. On the shell model side, we highlight the
meaning of solutions of the energy-dependent non-Hermitian
effective Hamiltonian and identify the procedures to be taken
in relation to different definitions of resonance states. On
the reaction side, we show how the scattering matrix, cross
sections, and related quantities can be calculated; the unitarity
properties of the scattering matrix built in the model are
emphasized.

The general discussion of s.p. decays centers around the
potential s.p. problem. Not only is this textbook problem
a central part of the calculations, but it also provides an
important parallel to the full CSM description. In the case
of a particle in a potential well, the Gamow states, decay
amplitudes, and scattering matrix can be calculated through
numerical solutions of the s.p. Schrödinger equation in
coordinate space. This allows one to establish a transparent
relation and interpretation of the same quantities in the full
CSM.

The consideration of two-body decays is one of the
significant advances of the present formulation. Considering
the one- and two-body terms in the part of the Hamiltonian
that links the internal shell model and external reaction space
we get keys to the sequential and direct decays, respectively.
In the case of sequential decay, a second-order one-body
process, we discuss the transition through the resonance tail,
namely the role of broad one-body resonances located in the
intermediate nucleus above threshold. The direct, or correlated,
decay processes are strongly related to the problem of pairing
and other coherent effects in the continuum, especially in
the case of neutron excess. This problem, important also
for the physics of neutron stars, is still far from being
solved.
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The last section of this work shows practical applications of
the model. The self-consistency in energy, proper open chan-
nels and realistic reaction calculations, and parent-daughter
structure relations through the decay chain are discussed as the
essential elements of the model. The diagonalization of the full
Hamiltonian with both Hermitian and non-Hermitian parts is
emphasized as an important component for treating properly
the mutual influence of structure and reactions. Discussion of
the extreme effects of this nature, such as super-radiance, lies
outside the scope of this paper (see Refs. [25,49,50]).

Another goal of this work is to report the advance
in practical applications of the CSM and in particular to
demonstrate new cross-section calculations performed in
the same unified framework and presented along with the
bound states and resonance parametrizations. Comparison
with experimental data indicates a satisfactory agreement
for both helium and oxygen isotopes. The possible role of
sequential decay in heavy oxygen isotopes is discussed and
predictions for the decay width are given. Upcoming experi-
mental data will be instrumental for further development of the
theory.

We mentioned but did not discuss here the computational
problems, which are of a higher level of difficulty compared

to those for the normal SM. In fact, the novel methods for con-
structing Green’s functions for large-scale calculations using
the Chebyshev polynomial expansion and Woodbury equation
stand behind the presented results. Technical and numerical
details, with possible applications to other problems, will be
presented elsewhere. From the conceptual viewpoint, the basic
question of effective interactions remains unsolved. We used
here a semiempirical method of combining the SM experience
with finding the missing cross-space matrix elements from the
solution of the scattering problem and numerical fits based
on general requirements of quantum-mechanical threshold
behavior. The inclusion of giant resonances, more complicated
decay modes, and cluster channels is also on the agenda for
future work.

ACKNOWLEDGMENTS

The authors acknowledge support from the U. S. Depart-
ment of Energy, Grant No. DE-FG02-92ER40750, Florida
State University FYAP award for 2004, and the National
Science Foundation, Grant Nos. PHY-0070911 and PHY-
0244453. Help from and useful discussions with B.A. Brown
and G. Rogachev are highly appreciated.

[1] V. Zelevinsky, ed., Nuclei and Mesoscopic Physics, edited by
V. Zelevinsky, AIP Conf. Proc. No. 777 (AIP, New York, 2005).

[2] B. A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001).
[3] J. Fridmann et al., Nature 7044, 922 (2005).
[4] P. Hansen and B. Sherrill, Nucl. Phys. A693, 133 (2001).
[5] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and

A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).
[6] C. Mahaux and H. Weidenmüller, Shell-Model Approach to

Nuclear Reactions (North-Holland, Amsterdam, 1969).
[7] A. Volya and V. Zelevinsky, Phys. Rev. C 67, 54322 (2003).
[8] A. Volya and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005).
[9] H. Feshbach, Ann. Phys. (NY) 5, 357 (1958).

[10] H. Feshbach, Ann. Phys. (NY) 19, 287 (1962).
[11] I. Rotter, Rep. Prog. Phys. 54, 635 (1991).
[12] I. Rotter, Phys. Rev. E 64, 036213 (2001).
[13] V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).
[14] O. Rice, J. Chem. Phys. 1, 375 (1933).
[15] U. Fano, Nuovo Cim. 12, 156 (1935).
[16] U. Fano, Phys. Rev. 124, 1866 (1961).
[17] R. Id Betan, R. J. Liotta, N. Sandulescu, and T. Vertse, Phys.

Rev. Lett. 89, 042501 (2002).
[18] N. Michel, W. Nazarewicz, M. Ploszajczak, and K. Bennaceur,

Phys. Rev. Lett. 89, 042502 (2002).
[19] N. Michel, W. Nazarewicz, M. Ploszajczak, and J. Okolowicz,

Phys. Rev. C 67, 054311 (2003).
[20] N. Michel, W. Nazarewicz, and M. Ploszajczak, Phys. Rev. C

70, 064313 (2004).
[21] J. Okolowicz, M. Ploszajczak, and I. Rotter, Phys. Rep. 374, 271

(2003).
[22] G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, Phys. Rev. C 71,

044314 (2005).
[23] C. A. Engelbrecht and H. A. Weidenmüller, Phys. Rev. C 8, 859

(1973).
[24] L. Durand, Phys. Rev. D 14, 3174 (1976).

[25] V. Sokolov and V. Zelevinsky, Nucl. Phys. A504, 562 (1989).
[26] T. Berggren, Nucl. Phys. A109, 265 (1968).
[27] A. F. J. Siegert, Phys. Rev. 56, 750 (1939).
[28] G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).
[29] A. Holt, T. Engeland, M. Hjorth-Jensen, and E. Osnes, Nucl.

Phys. A634, 41 (1998).
[30] B. A. Brown and B. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38,

29 (1988).
[31] B. A. Brown, A. Etchegoyen, and W. Rae, Technical Report

No. MSU-NSCL 524, NSCL, Michigan State University, 1994
(unpublished).

[32] A. Bohr and B. Motttelson, Nuclear Structure, vol. I (World
Scientific, Singapore, 1998).

[33] L. Landau and E. Lifshitz, Quantum Mechanics, Non-relativistic
Theory, 3rd ed. (Pergamon Press, New York, 1981).

[34] E. Merzbacher, Quantum Mechanics (Wiley, New York, 1998).
[35] C. N. Davids and H. Esbensen, Phys. Rev. C 61, 054302 (2000).
[36] V. Burgov and S. Kadmensky, Sov. J. Nucl. Phys. 49, 967 (1989).
[37] V. Burgov and S. Kadmensky, Phys. At. Nucl. 59, 424 (1996).
[38] A. Baz, I. Zeldovich, and A. Perelomov, Scattering, Reactions

and Decay in Nonrelativistic Quantum Mechanics (Israel Pro-
gram for Scientific Translations, Jerusalem, 1969).

[39] E. Wigner, Phys. Rev. 73, 1002 (1948).
[40] V. Zelevinsky and A. Volya, in Challenges of Nuclear Structure,

ed. A. Covello (World Scientific, Singapore, 2002), p. 261.
[41] R. Dicke, Phys. Rev. 93, 99 (1954).
[42] J. Rotureau, J. Okolowicz, and M. Ploszajczak, Phys. Rev. Lett.

95, 042503 (2005).
[43] B. A. Brown and F. C. Barker, Phys. Rev. C 67, 041304(R)

(2003).
[44] L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 68, 054005

(2003).
[45] F. C. Barker, Phys. Rev. C 59, 535 (1999).
[46] Evaluated nuclear structure data file, http://www.nndc.bnl.gov.

064314-16



CONTINUUM SHELL MODEL PHYSICAL REVIEW C 74, 064314 (2006)

[47] G. V. Rogachev et al., Phys. Rev. Lett. 92, 232502 (2004).
[48] A. A. Korsheninnikov et al., Phys. Rev. Lett. 82, 3581

(1999).
[49] N. Auerbach, V. Zelevinsky, and A. Volya, Phys. Lett. B590, 45

(2004).
[50] A. Volya and V. Zelevinsky, J. Opt. B 5, S450 (2003).
[51] T. Teichmann, Phys. Rev. 77, 506 (1950).
[52] T. Teichmann and E. Wigner, Phys. Rev. 87, 123 (1952).
[53] S. Cohen and D. Kurath, Nucl. Phys. A73, 1 (1965).
[54] J. Stevenson et al., Phys. Rev. C 37, 2220 (1988).
[55] J. L. Wiza and R. Middleton, Phys. Rev. 143, 676 (1965).
[56] A. H. Wuosmaa et al., Phys. Rev. C 72, 061301(R)

(2005).
[57] M. Meister et al., Phys. Rev. Lett. 88, 102501 (2002).

[58] B. A. Brown, W. Richter, R. Julies, and B. Wildenthal, Ann.
Phys. (NY) 182, 191 (1988).

[59] B. Skorodumov et al., Phys. At. Nucl., in press; nucl-
ex/0609040.

[60] V. Goldberg et al., Phys. Rev. C 69, 031302(R) (2004).
[61] D. Tilley, C. Cheves, J. Kelley, S. Raman, H. Weller, and

F. Ajzenberg-Selove, Energy Levels of Light Nuclei, A = 3–20,
http://www.tunl.duke.edu/nucldata.

[62] J. K. Bair, J. L. C. Ford Jr., and C. M. Jones, Phys. Rev. 144,
799 (1966).

[63] S. F. Mughabghab, R. Kinsey, and C. Dunford, Neutron Cross
Sections Series (Academic Press, New York, 1981).

[64] V. McLane, C. Dunford, and P. Rose, Neutron Cross Section
Curves, Vol. 2 (Academic Press, Boston, 1988).

064314-17


