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Mass coefficient and Grodzins relation for the ground-state band and γ band
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It is shown that the available experimental data on the energies of the first and the γ -vibrational 2+ states
and the reduced E2 transition probabilities from these states to the ground state require for the explanation
significantly different values of the mass coefficients for the rotational motion and γ -vibrations.
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I. INTRODUCTION

The Hamiltonian of the phenomenological collective model
[1] used for description of the properties of the low-lying
collective quadrupole states contains two very important
quantities depending on the deformation parameters, namely,
the potential energy and mass coefficient. A variation of
the potential energy in the transition from spherical to
deformed nuclei is well understood. Much less is known
about the mass coefficient, however. Frequently [2–8], it
is assumed that the mass coefficient is a constant. As a
consequence in the case of the axially symmetric well
deformed nuclei the same mass coefficient is used for
description of the β- and the γ -vibrations and the rotational
motion, whose moment of inertia is proportional to the mass
coefficient.

On the other side in the microscopic approaches [9,10] in
general the mass coefficients are different for different modes
of excitation (see, e.g., Appendix A). Thus an analysis of the
experimental data aimed at the extraction of the values of the
mass coefficients, without assuming that they are equal, is a
very interesting task.

In the framework of the Bohr-Mottelson model the mass
coefficients for different modes are inversely proportional to
the products of the energy of the corresponding collective
states and the value of the E2 reduced transition probability
from this state to the ground state E(2+

i )B(E2; 2+
i → 0+

g.s.)
where i = g.s., β or γ [11,12]. For instance, in the case when
the 2+ state is a vibrational one and there is no anharmonic
effect its energy is equal to h̄

√
C/B and the B(E2; 0+

1 →
2+) ∼ h̄√

BC
. Thus, E(2+)B(E2; 0+

1 → 2+) ∼ 1
B

. In the case

when the first 2+ state is a rotational one E(2+) ∼ h̄2

Bβ2
0

and

B(E2; 0+
1 → 2+) ∼ β2

0 . Again E(2+)B(E2; 0+
1 → 2+) ∼ 1

B
.

Thus, relations between the experimentally observed quan-
tities and the parameters of the collective Hamiltonian are
established.

It is the aim of the present paper to analyze the properties
of the ground and γ bands in the well-deformed nuclei in
which vibrational motion is well separated from the rotational
one and basing on the experimental data to determine the
relation between the mass coefficients used for description of
the ground band rotational motion and γ vibrations.

II. MASS COEFFICIENTS

We are starting with the Bohr Hamiltonian [1] having
in mind a possibility to consider the cases when the mass
coefficient is effectively different for the rotational motion and
γ vibrations [13]. For this aim it is natural to assume that
the mass coefficient is a function of the collective variables
and since the wave functions of the ground and γ bands have
maxima in something different regions of the β-γ sector the
mass coefficient will be effectively different for these two
bands. Being a function of β and γ the mass coefficient can not
only be a scalar but a tensor quantity. However, for simplicity
we assume below that it is a scalar. Thus, we start with the
Hamiltonian which can be written in the Laboratory frame as

H = 1

4

(∑
µ

π+
2µπ2µ

1

B(α2)
+ 1

B(α2)

∑
µ

π+
2µπ2µ

)
+ V (α2).

(1)

Here α2µ is a collective variable and π2µ is an operator of the
conjugate momentum. In the intrinsic frame we obtain from
Eq. (1)

H = − h̄2

4B(β, γ )

(
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

3∑
k=1

Î 2
k

sin2
(
γ − 2π

3 k
)
)

−
(

1

β4

∂

∂β
β4 ∂

∂β

+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4β2

3∑
k=1

Î 2
k

sin2
(
γ − 2π

3 k
)
)

× h̄2

4B(β, γ )
+ U (β, γ ). (2)

We are considering nuclei near the axial symmetry limit
with small amplitudes of the γ -oscillations around γ = 0
and β-oscillations around β = β0 �= 0. It is supposed that the
rotational motion, the γ vibrations and β vibrations are well
separated from each other as it takes place in the well deformed
nuclei. In a correspondence with these assumptions we take a
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potential U as a sum of two separate terms corresponding to
the potentials for β and γ vibrations

U (β, γ ) = 1

2
Cβ(β − β0)2 + 1

2

Cγ

β2
0

γ 2. (3)

Looking at the kinetic energy part of the Hamiltonian (2) we
see that it consists in three terms each of which is the main
one, correspondingly, for the β vibrations, for the γ vibrations
and for the rotations. The mass coefficient B(β, γ ) being
a function of the collective variables introduces a coupling
between different types of collective motion. In addition, the
kinetic energy term of γ vibrations includes 1

β2 , and the rota-
tional energy term depends on β and γ through the moments
of inertia. In a correspondence with our main assumption
we should simplify the kinetic energy part of the Hamiltonian
(2) so as to decouple rotational motion, γ vibrations and
β vibrations. To separate the collective variables in the
Hamiltonian we should put B(β, γ ) to be equal to some
number. It is natural to do it in a self-consistent way, i.e., to
take instead of the function B(β, γ ) its average value over
the wave function of the state under consideration. However,
we neglect by this way the effect of the nondiagonal matrix
element of the inverted mass coefficient, which is difficult to
estimate, however. Having three collective variables in the
Hamiltonian, namely, β, γ, and Euler angles we consider
three types of states: ground state, γ -vibrational excitation
and β-vibrational state. For this reason calculating the wave
functions for every of these states we introduces instead of the
function B(β, γ ) its averages:

(i) over the ground state

〈g.s.|B(β, γ )|g.s.〉 ≡ Brot (4)

when we consider ground state rotational band;
(ii) over the γ -vibrational state

〈γ |B(β, γ )|γ 〉 ≡ Bγ (5)

when we consider γ -vibrational state;
(iii) over the β-vibrational state

〈β|B(β, γ )|β〉 ≡ Bβ (6)

when we consider β-vibrational state. The procedure de-
scribed above assumes a use of the projection operators.

Using Eqs. (3)–(6) and the assumption on a small am-
plitudes of γ and β vibrations we obtain from Eq. (2) the
following approximate Hamiltonian:

H = h̄2

2〈i|B|i〉
(

− 1

β4

∂

∂β
β4 ∂

∂β
− ∂2

∂γ 2
− 1

γ

∂

∂γ
+ K2

4γ 2

+ 1

3
(I (I + 1) − K2)

)
+ 1

2
Cβ(β − β0)2 + 1

2

Cγ

β2
0

γ 2,

(7)

where i = g.s., β or γ band depending what state is consid-
ered.

Below we analyse different relations between the observ-
ables of the ground and the γ bands which include not only
the reduced E2 transition probabilities but also the energies
of the states. It means that both the stiffness coefficients of

the potential energy and the mass coefficients, are involved in
these relations. The eigenfunctions of the states of the ground
and the γ bands of the Hamiltonian (7) are

�K=0(I ) =
√

2I + 1

8π2
DI

M0ψ0(β)

(
2
√

BrotCγ

h̄

)1/2

× exp

(
−

√
BrotCγ

2h̄
γ 2

)
, (8)

�K=2(I ) =
√

2I + 1

16π2

(
DI

M2 + DI
M−2

)
ψ ′

0(β)

(
2Bγ Cγ

h̄2

)1/2

γ

× exp

(
−

√
Bγ Cγ

2h̄
γ 2

)
, (9)

where ψ0(β) and ψ ′
0(β) describes the β oscillations around the

value β = β0. A difference between ψ0(β) and ψ ′
0(β) is due

to a difference between Brot and Bγ . However, in this paper
we do not consider the effect of the β motion and therefore do
not need in a concrete form of the functions ψ0(β) and ψ ′

0(β).
Above �K=0(I ) and �K=2(I ) are the wave functions of the
ground- and the γ -vibrational bands, respectively, obtained
under the assumption that there is no K-mixing. They are
orthogonal in spite of different values of the effective mass
coefficient used in calculations.

Using the eigenfunctions (8) and (9) we can calculate the
reduced matrix elements of the quadrupole moment operator
Q2µ, which is taken in the same approximation as the
Hamiltonian (7), i.e.,

Q2µ = q

(
D2

µ0β0 + D2
µ0(β − β0) + 1√

2
(D2

µ2 + D2
µ−2)β0γ

)
.

(10)

The results are

〈2+,K = 0‖Q2‖0+,K = 0〉 = qβ0, (11)

〈2+,K = 2‖Q2‖0+,K = 0〉

= qβ0

(
h̄√

Bγ Cγ

)1/2
4(Brot/Bγ )1/4(

1 + √
Brot/Bγ

)2 , (12)

〈2+,K = 2‖Q2‖2+,K = 0〉

=
√

10

7
qβ0

(
h̄√

Bγ Cγ

)1/2
4(Brot/Bγ )1/4(

1 + √
Brot/Bγ

)2 . (13)

Taking the corresponding energy eigenvalues

E(2+,K = 0) = h̄2

Brotβ
2
0

, (14)

E(2+,K = 2) = h̄

β2
0

√
Cγ

Bγ

(
2 −

√
Bγ

Brot

)
, (15)
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TABLE I. The calculated values of the K-mixing parameter tan ϕ

and of the ratio of the mass coefficients for γ vibrations and rotation
in the cases with (Bγ /Brot) and without (Bγ /Brot(ϕ = 0)) K mixing.

Nucleus tan ϕ Bγ /Brot Bγ /Brot(ϕ = 0)

156Gd −0.0021 2.18 2.19
158Gd −0.0049 2.39 2.43
160Gd −0.0066 2.41 2.46
158Dy −0.0298 2.06 2.25
160Dy −0.0075 2.37 2.42
164Dy −0.0084 2.61 2.67
162Er −0.0172 2.22 2.32
164Er −0.0122 2.48 2.54
166Er −0.0059 2.42 2.45
168Er −0.0057 2.46 2.50
168Yb −0.0103 2.40 2.47
170Yb −0.0043 2.71 2.74

where we did not include a contribution of the zero
point energy of the β vibrations, we obtain the following
relations:

E(2+,K = 2)〈2+,K = 2 ‖ Q2 ‖ 0+,K = 0〉2

E(2+,K = 0)〈2+,K = 0 ‖ Q2 ‖ 0+,K = 0〉2

= Brot

Bγ

4(Brot/Bγ )1/4(
1 + √

Brot/Bγ

)2

(
2 −

√
Bγ

Brot

)
, (16)

and

0.7
〈2+,K = 2 ‖ Q2 ‖ 2+,K = 0〉2

〈2+,K = 2 ‖ Q2 ‖ 0+,K = 0〉2
= 1 (17)

In the derivation of these relations we have neglected by the
terms proportional to E(2+,K = 0)/E(2+,K = 2).

It is interesting to substitute into the relations (16) and
(17) the experimental data for the ground and the γ bands
respectively. Using the experimental data for a selected set of
rare earth nuclei given in Tables I and II we obtain for the

TABLE II. The values of Rγ/g.s. deter-
mined under the assumption that Bγ = Brot

(Rγ/g.s.(cal)) and the experimental values of
Rγ/g.s. (Rγ/g.s.(exp)).

Nucleus Rγ/g.s.(cal) Rγ/g.s.(exp)

156Gd 0.986 0.325
158Gd 0.962 0.256
160Gd 0.952 0.248
158Dy 0.833 0.308
160Dy 0.950 0.258
164Dy 0.939 0.199
162Er 0.904 0.287
164Er 0.921 0.225
166Er 0.964 0.251
168Er 0.962 0.239
168Yb 0.931 0.246
170Yb 0.962 0.183

ratio (16) the values in the limits 0.2–0.3 which indicate on
a significant difference between the two mass coefficients Bγ

and Brot. Their ratio is shown in Table I for the case of an
absence of the K mixing in the column Bγ /Brot(ϕ = 0). For
the branching ratio (17) the values for these nuclei are confined
in the interval 1.0–1.4. It is clear that the branching ratio (17)
can be strongly influenced by the K-mixing effect. Indeed, a
small admixture of the K = 0 component to the |2+,K = 2〉
state can change strongly the E2 decay probabilities from
this state to the ground state band. The reason is the large
B(E2) values between the states of the ground band. The
K mixing can also influence the relation (16), however, not
much.

Using the values of the K-mixing parameter tan ϕ (see
Appendix B for definition) and F = 〈2+,K=2‖Q2‖0+,K=0〉

〈2+,K=0‖Q2‖0+,K=0〉 ob-
tained according the procedure described in Appendix B and
the experimental data for

Rγ/g.s. ≡ E(2+
γ )B(E2; 0+

g.s. → 2+
γ )

E(2+
g.s.)B(E2; 0+

g.s. → 2+
g.s.)

= E(2+
γ )

E(2+
g.s.)

Aγ/g.s.,

(18)

we can find the values of Bγ /Brot corrected by the K-mixing
effect. The results are presented in Table I, where we show
for comparison the values of Bγ /Brot obtained for the case
of the absence of the K-mixing (ϕ = 0). The ratio of Bγ

and Brot is quite large (2.2–2.7) and the use of two very
different values of the mass coefficients is essential for a good
description of the data on Rγ/g.s.. This is shown in Table II
where the experimental values of Rγ/g.s. are compared with
those calculated under the assumption that Bγ = Brot.

We note from Table I that the values of Bγ

Brot
fluctuate

from nucleus to nucleus. The fluctuations of the ratio Bγ /Brot

from nucleus to nucleus and the large deviation of this
ratio from unity are surprising and need additional comments.
In the microscopical approach [9,10] the main contribution to
the mass coefficient corresponding to the vibrational motion
comes from the single particle states lying near the Fermi
surface in the single particle configurational space. For this
reason, due to the fluctuations in the single particle spectrum
near the Fermi surface with the atomic mass the value of the
mass coefficient can fluctuate significantly. As is shown in
Appendix A this value can be also quite different for different
types of collective motion whose quantum characteristics
determines which pairs of the particle-hole (two-quasiparticle)
states contribute to the value of the corresponding mass
coefficient. Thus, the common use of equal mass coefficients
for the ground and the gamma band in phenomenological
analyses [2–8] is a simplification, which we show to be not
appropriate in general, however.

The anharmonic effects in the vibrational motion can also
influence the results for the ratio of the mass coefficients.
Indeed, a mixing of the one-phonon γ -vibrational state with the
two-phonon (one β-phonon and one γ -phonon) state decreases
the energy of the 2+

γ state and simultaneously decreases
the value of B(E2; 2+

γ → 0+
g.s.) because the weight of the

one-phonon component decreases and the E2 transition from
the two-phonon component is mainly forbidden. As a result
the product E(2+

γ )B(E2; 2+
γ → 0+

g.s.) decreases also. However,
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this effect does not exceed 30% [14] what is not enough to
explain large effects shown in Table II.

III. SUMMARY

Analyzing the experimental data on the energies of the
first and the γ -vibrational 2+ states and the reduced E2
transition probabilities between them and from these states
to the ground state it is shown that although the branching
ratio from the γ -vibrational state require for the explanation
only a small K-mixing effect, the ratio of the products
E(2+

i )B(E2; 2+
i → 0+

g.s.), where i = g.s. or i = γ which for
the 2+

g.s. was introduced into consideration by L. Grodzins [15],
implies significantly different values of the mass coefficients
for the ground band and for the γ -band. Thus, the common
use of equal mass coefficients for the ground and the gamma
band is a simplification, which is not appropriate in general,
however. This conclusion is done for the well-deformed nuclei
in which rotational and vibrational motion are rather well
separated. The reason for this is the following. In the case
of a well separated rotational and vibrational motion the
transition matrix elements of the quadrupole operator satisfy
the Alaga rules and the intrinsic quadrupole matrix element
which is by definition independent from angular momentum
can be extracted from the experimental data. This matrix
element is used to determine a corresponding mass coefficient.
This separation of the angular momentum dependence of the
quadrupole transition matrix elements is impossible in the case
of transitional nuclei.
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APPENDIX A

In the cranking type approach [9] the following expressions
can be derived for the moment of inertia and the mass
coefficient of the γ vibrations in deformed nuclei:


 = 2h̄2
∑

k

|〈k|j1|gs〉|2
Ek − Eg.s.

, (A1)

Bγ = 2h̄2
∑

k

∣∣〈k| ∂
∂a22

|g.s.〉∣∣2

Ek − Eg.s.
. (A2)

In these relations the summation is performed over the
excited states. Using the relations

〈k|[H, j1]|g.s.〉 = (Ek − Eg.s.)〈k|j1|g.s.〉, (A3)

〈k|
[
H,

∂

∂a22

]
|g.s.〉 = (Ek − Eg.s.)〈k| ∂

∂a22
|g.s.〉, (A4)

the expressions (A1) and (A2) can be rewritten in the following
way:


 = 2h̄2
∑

k

|〈k| [H, j1] |g.s.〉|2
(Ek − Eg.s.)3

, (A5)

Bγ = 2h̄2
∑

k

∣∣∣〈k|
[
H, ∂

∂a22

]
|g.s.〉

∣∣∣2

(Ek − Eg.s.)3
. (A6)

Restricting our consideration by the Hamiltonian of indepen-
dent particles moving in a deformed field

H = Hspher − βh̄ω0r
2Y20 − a22h̄ω0r

2 1√
2

(Y22 − Y2−2) (A7)

we obtain the following expressions for 
 and Bγ :


 = 3


2h̄2(h̄ω0)2

∑
ss ′

(ns − ns ′ )
∣∣〈s| 1√

2
(q21 + q2−1)|s ′〉∣∣2

(εs − εs ′ )3


β2,

(A8)

Bγ = 2h̄2(h̄ω0)2
∑
ss ′

(ns − ns ′ )
∣∣〈s| 1√

2
(q22 + q2−2)|s ′〉∣∣2

(Es − Es ′ )3 .

(A9)

Here q2µ is the single-particle quadrupole moment operator.
Furthermore s, s ′ are quantum numbers of the single particle
states; ns is an occupation probability of the single particle
state s and εs is a single particle energy. Comparing Eq. (A8)
and the hydrodynamic expression for the moment of inertia

 = 3Brotβ

2 we obtain

Brot = 2h̄2(h̄ω0)2
∑
ss ′

(ns − ns ′ )
∣∣〈s| 1√

2
(q21 + q2−1)|s ′〉∣∣2

(εs − εs ′ )3 .

(A10)

The expression (A9) corresponds to the adiabatic limit of γ

vibrations when the frequency of the γ vibrations ωγ is small
compared to the energies of the single-particle transitions. The
more general expression is

Bγ = 2h̄2(h̄ω0)2

×
∑
ss ′

(ns − ns ′ )(εs − εs ′)
∣∣〈s| 1√

2
(q22 + q2−2)|s ′〉∣∣2

(
(εs − εs ′ )2 − ω2

γ

)2 .

(A11)

Comparing Eqs. (A10) and (A11) we see that in the general
case Brot is not equal to Bγ . Only in the limit when ωγ is small
compared to (εs − εs ′ ) and for small deformation Brot and Bγ

coincide. Indeed, in the case of deformation going to zero a
dependence of the matrix elements 〈s| 1√

2
(q2µ + q2−µ)|s ′〉 on

the projection µ contains only in a Clebsch-Gordan coefficient
and disappears after summation over the projections of the
single-particle angular momenta.
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The expressions (A10) and (A11) do not include the effect
of pairing. However, the generalization including pairing is
well known [16] and does not influence our conclusions.

APPENDIX B

Consider the eigenvectors (8) and (9) of the unmixed
Hamiltonian (7) as a basis for the construction of the
eigenvectors of the more general Hamiltonian which includes
a K-mixing term. We are interested here only in the Iπ = 2+
states, namely, in the lowest 2+ state, i.e., |2+

g.s.〉 and in the
γ -vibrational state—|2+

γ 〉. Of course the lowest 0+ state is not
changed by the K-mixing effect, i.e.,

|0+
g.s.〉 = |0+,K = 0〉. (B1)

The |2+
g.s.〉 and |2+

γ 〉 states can be presented in the basis (8) and
(9) as

|2+
g.s.〉 = cos ϕ|2+,K = 0〉 − sin ϕ|2+,K = 2〉, (B2)

|2+
γ 〉 = sin ϕ|2+,K = 0〉 + cos ϕ|2+,K = 2〉. (B3)

The total Hamiltonian including the K-mixing term is charac-
terized by the following matrix elements:

〈0+,K = 0|H |0+,K = 0〉 = 0, (B4)

〈2+,K = 0|H |2+,K = 0〉 = E(2+,K = 0) = h̄2

Brotβ
2
0

,

(B5)

〈2+,K = 2|H |2+,K = 2〉 = E(2+,K = 2)

= h̄

β2
0

√
Cγ

Bγ

(
2 −

√
Bγ

Brot

)
, (B6)

〈2+,K = 2|H |2+,K = 0〉 = gmix. (B7)

Using the expressions for the wave functions (B1)–(B3) we
can find for the corresponding states the energies and the E2
transition matrix elements in terms of the matrix elements

(B4)–(B7). The results are

〈2+
g.s.‖Q2‖0+

g.s.〉 = cos ϕ〈2+,K = 0‖Q2‖0+,K = 0〉
× (1 − F tan ϕ), (B8)

〈2+
γ ‖Q2‖0+

g.s.〉 = cos ϕ〈2+,K = 0‖Q2‖0+,K = 0〉
× (tan ϕ + F ), (B9)

〈2+
γ ‖Q2‖2+

g.s.〉 = −
√

10

7
cos 2ϕ〈2+,K = 0‖Q2‖0+,K = 0〉

× (tan 2ϕ + F ), (B10)

E(2+
g.s.) = E(2+,K = 2)

GF 2 − tan2 ϕ

1 − tan2 ϕ
, (B11)

E(2+
γ ) = E(2+,K = 2)

1 − GF 2 tan2 ϕ

1 − tan2 ϕ
, (B12)

where

G = Bγ

Brot

(1 + √
Brot/Bγ )2

4(Brot/Bγ )1/4(2 − √
Bγ /Brot)

, (B13)

F ≡ 〈2+,K = 2‖Q2‖0+,K = 0〉
〈2+,K = 0‖Q2‖0+,K = 0〉 =

(
h̄√

Bγ Cγ

)1/2

. (B14)

The values of tan ϕ and F can be found using the
experimental data for the following B(E2) ratios:

A2γ ≡ 0.7
B(E2; 2+

γ → 2+
g.s.)

B(E2; 2+
γ → 0+

g.s.)
, (B15)

and

Aγ/g.s. ≡ B(E2; 2+
γ → 0+

g.s.)

B(E2; 2+
g.s. → 0+

g.s.)
, (B16)

which can be expressed in terms of tan ϕ and F as

A2γ =
(

cos 2ϕ(tan 2ϕ − F )

cos ϕ(tan ϕ + F )

)2

(B17)

and

Aγ/g.s. =
(

tan ϕ + F

1 − F tan ϕ

)2

. (B18)
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