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We formulate the self-consistent separable random phase approximation (SRPA) method and specify it for
Skyrme forces with pairing for the case of axially symmetric deformed nuclei. The factorization of the residual
interaction allows diagonalization of high-ranking RPA matrices to be avoided, which dramatically reduces the
computational expense. This advantage is crucial for the systems with a huge configuration space, first of all for
deformed nuclei. SRPA self-consistently takes into account the contributions of both time-even and time-odd
Skyrme terms as well as of the Coulomb force and pairing. The method is implemented to describe isovector
E1 and isoscalar E2 giant resonances in a representative set of deformed nuclei: 154Sm, 238U, and 254No. Four
different Skyrme parameterizations (SkT6, SkM∗, SLy6, and SkI3) are employed to explore the dependence of
the strength distributions on some basic characteristics of the Skyrme functional and nuclear matter. In particular,
we discuss the role of isoscalar and isovector effective masses and their relation to time-odd contributions. The
high sensitivity of the right flank of E1 resonance to different Skyrme forces and the related artificial structure
effects are analyzed.
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I. INTRODUCTION

Self-consistent mean-field models with effective energy-
density functionals (Skyrme-Hartree-Fock, Gogny, relativis-
tic) are established as reliable tools for the description of
nuclear structure and dynamics; for a comprehensive review
see Ref. [1]. In particular, there is a rising implementation
of these models to dynamical features of nuclei (see, e.g.,
Refs. [2–6]), which is caused, to a large extent, by ex-
ploiting the spectra and reaction rates of exotic nuclei in
astrophysics [7,8]. However, applications of self-consistent
models to nuclear dynamics are still limited even in the linear
regime which is usually treated within the random phase
approximation (RPA). The calculations are plagued by dealing
with high-ranking RPA matrices. This is especially difficult
for deformed systems where lack of symmetry requires a huge
one-particle-one-hole (1ph) configuration space.

The RPA problem becomes much simpler if the residual
two-body interaction is factorized (i.e., reduced to a separable
form):

∑
p1h1ph

〈p1h1|Vres|ph〉 a+
p1

a+
h1

apah →
K∑

k,k′=1

κk,k′X̂kX̂k′, (1)

where X̂k = ∑
ph〈p|X̂k|h〉a+

p ah is a hermitian 1ph operator
and κkk′ is a matrix of strength constants. The factorization
allows the reduction of a high-ranking RPA matrix to a much
smaller one with a rank of 4K (where the coefficient 4 is caused
by the isospin and time-parity factors, see discussion in the
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next section). The separable expansion can be formulated in a
fully self-consistent manner and provide a high accuracy with
a small number (K ∼ 2–6) of the separable terms.

Several self-consistent schemes for separable expansions
have been proposed during the last decades [9–16]. However,
these schemes are not sufficiently general. Some of them are
limited to analytical or simple numerical estimates [9–12];
the others are not fully self-consistent [14]. Between them
the approach [15,16] for Skyrme forces is quite promising.
However, it still deals with RPA matrices of rather high rank
(∼400).

Recently, we have developed a general self-consistent sep-
arable RPA (SRPA) approach applicable to arbitrary density-
and current-dependent functionals [17–23]. The method was
implemented to the Skyrme functional [1,24–26] for both
spherical [19–22] and deformed [23] nuclei. In SRPA, the
one-body operators X̂k and associated strengths κk,k′ are unam-
biguously derived from the given energy-density functional.
There remain no further adjustable parameters. The success
of the expansion depends on an appropriate choice of the
basic operators X̂k . Experience with spherical SRPA gives
guidelines for an efficient choice such that a few separable
terms suffice to reproduce accurately the exact RPA spectra
[19–21]. The success becomes possible because of the fol-
lowing factors: (i) an efficient self-consistent procedure [9,11]
based on sound physical arguments; (ii) proper inclusion of all
parts of the residual interaction, time-even as well as time-odd
couplings; (iii) incorporation of the symmetries (translation,
particle number, etc.) leading to a correct description of the
related zero-energy modes; and (iv) building the separable
operators in such a way that they have maxima at different
slices of the nucleus and thus cover both surface and interior
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dynamics. Furthermore, we note that SRPA is very general
and can be applied to a wide variety of finite Fermion systems.
For example, SRPA was derived for the Kohn-Sham functional
[27,28] and widely used for description of linear dynamics of
valence electrons in spherical and deformed atomic clusters
[17,18,29–32].

The enormous reduction of computational expense by
SRPA is particularly advantageous for deformed systems
where 1ph configuration space grows huge. SRPA becomes
here a promising tool for large scale studies. It is the aim
of this article to present a first implementation of SRPA for
axially deformed nuclei with pairing. Like the full RPA, SRPA
follows two strategies to compute the dynamical response. It
can be calculated via determination of RPA eigenvalues and
eigenstates or by a direct computation of the multipole strength
functions related to experimental cross sections. We discuss
both ways.

As a first test, we apply the method to the description of
isovector E1 and isoscalar E2 giant resonances (GR) in the
deformed nuclei 154Sm, 238U, and 254No. These nuclei cover a
broad size range from rare-earth to superheavy elements. Four
different Skyrme forces (SkT6 [33], SkM∗ [34], SLy6 [35], and
SkI3 [36]) are used to explore the dependence of the results
on the actual parametrization. For our aims it is important
that these forces represent different values of some relevant
nuclear matter characteristics (isoscalar and isovector effective
masses and asymmetry energy). We discuss the dependence of
the collective strength on these characteristics, scrutinize the
impact of time-odd coupling terms in the Skyrme residual
interaction, and demonstrate the important role of the Landau
fragmentation.

The article is organized as follows. The general SRPA
formalism is presented in Sec. II and specified for Skyrme
forces in Sec. III. In Sec. IV we discuss the choice of input
operators. Results of the calculations are analyzed in Sec. V.
The summary is done in Sec. VI. Some important details of
the method are given in Appendices A–C. For more details,
see documentation in Ref. [23].

II. BASIC SRPA EQUATIONS

A. The separable expansion

In the most general form, the factorization of the residual
interaction (1) reads

V̂res → V̂ sep
res = −1

2

∑
ss ′

K∑
k,k′=1

{κsk,s ′k′X̂skX̂s ′k′ + ηsk,s ′k′ ŶskŶs ′k′ },

(2)

where the indices s and s ′ label neutrons and protons, X̂sk

are time-even hermitian one-body operators and Ŷsk are their
time-odd counterparts, and κsk,s ′k′ and ηsk,s ′k′ are the strength
matrices. Time reversal properties of the operators are

T X̂skT
−1 = γ X

T X̂sk, γ X
T = +1,

(3)
T ŶskT

−1 = γ Y
T Ŷsk, γ Y

T = −1,

where T is the operator of time reversal. The expansion (2)
needs to take care of both classes of operators because
the relevant Skyrme functionals involve both time-even and
time-odd couplings; see Ref. [1] and Appendix A. Though
time-odd variables do not contribute to the static mean
field Hamiltonian of spin-saturated systems, they can play
a role in time-dependent perturbations and nuclear dynamics.
Altogether, the presence of time-even and time-odd couplings
in the functional naturally leads to the formulation of the
separable model in terms of hermitian operators with a given
time-parity. These operators have the useful property

〈[Â, B̂]〉 ∼ (
1 − γ A

T γ B
T

)
, (4)

which means that the average value of the commutator at the
ground state | 〉 is not zero only for operators of the opposite
T parities (γ A

T = −γ B
T ). This property is widely used in the

following.

B. Linearized time-dependent mean field

RPA is the limit of small-amplitude harmonic vibrations
around the ground state. The dynamics is formulated in general
by a time-dependent variation on the basis of a given energy
functional E(J α

s (�r, t)),

〈�(t)|Ĥ |�(t)〉 −→ E
(
J α

s (�r, t)) =
∫

H(�r, t)d�r. (5)

We deal with a set of densities J
β
s (�r), where β denotes the type

of density (spatial density, kinetic density, current, spin density,
spin-orbit density, etc.) and s labels protons and neutrons. For
reasons of compact notation, we combine the density type β

with the space point �r into one index α such that

α ≡ (β, �r) ,
∑

α

. . . =
∑

β

∫
d�r . . . (6)

The densities are related to the corresponding one-body
operators Ĵ α

s (see the list in Appendix A) as

J α
s (t) = 〈�(t)|Ĵ α

s |�(t)〉 =
∑
hεs

v2
hϕ

∗
h(t)Ĵ α

s ϕh(t). (7)

Further, the state |�(t)〉 is the underlying Bardeen-
Cooper-Schrieffer (BCS) mean-field state composed from the
single-particle states ϕh(�r, t) and the corresponding pairing
occupation amplitudes vh. The time evolution is determined
by variation of the action 〈�(t)|i∂t |�(t)〉 − ∫

d�rH(�r, t). Till
now we keep the occupation amplitudes vh fixed at their ground
state values and consider the variation of the single-particle
states. This yields the time-dependent mean-field equations as

i
d

dt
ϕh = ĥϕh, (8)

with the mean field Hamiltonain ĥ being a functional of the
local and instantaneous densities J α

s (�r, t). The freezing of the
occupation amplitudes vh somewhat inhibits application of
SRPA for vibrational modes with a strong pairing impact (e.g.,
for low-lying modes in neutron-rich light deformed nuclei)
[37]. However, in the present study we are interested in giant
resonances where pairing dynamics plays a minor role.
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In the linear regime of small amplitude oscillations, the
time-dependent state consists of the static ground state | 〉 and
a small time-dependent perturbation

|�(t)〉 = | 〉 + |δ�(t)〉, (9)

where both |�(t)〉 and | 〉 are BCS states. Hence, all dynamical
quantities can be decomposed as a sum of the stationary ground
state and small time-dependent parts:

J α
s (�r, t) = J̃ α

s (�r) + δJ α
s (�r, t), (10a)

δJ α
s (�r, t) = 〈�(t)|Ĵ α

s |�(t)〉 − 〈
Ĵ α

s

〉
. (10b)

Inserting Eq. (10) into Eq. (5) and keeping the terms up to
the first order in δJ α

s (�r, t), one obtains the single-particle
Hamiltonian

ĥ(t) = ĥ0 + ĥres(t), (11)

with the static mean-field part

ĥ0 =
∑
αs

δE

δJ α
s

Ĵ α
s (12)

and the time-dependent response

ĥres(t) =
∑
α′s ′

δĥ

δJ α′
s ′

δJ α′
s ′ (t) (13)

=
∑
αsα′s ′

δ2E

δJα
s δJ α′

s ′

∣∣∣J=J̄ Ĵ α
s δJ α′

s ′ (t) (14)

related to the oscillations of the system. Note that the second
functional derivative is to be taken at the ground state density
as indicated by the index J = J̄ . This holds for all second
functional derivatives and so we skip this explicit index in
the following. For the brevity of notation, we also skip the
explicit dependencies on space coordinates and come back to
these details in Sec. III where the residual interaction for the
Skyrme functional is worked out.

The linearized equation of motion reads(
i

d

dt
− ĥ0

)
|δ�〉 = ĥres| 〉. (15)

Further steps require a more specific view of |δ�〉. This is
done in the next subsections from different points of view,
macroscopic and microscopic.

C. Macroscopic part of SRPA

1. Scaling perturbed wave function

It is convenient to obtain the perturbed mean-field state
|�(t)〉 by the scaling transformation [11]

|�(t)〉s =
K∏

k=1

exp[−iqsk(t)P̂sk] exp[−ipsk(t)Q̂sk]|〉s , (16)

where both |�(t)〉s and | 〉s are the Slater determinants and
Q̂sk(�r) and P̂sk(�r) are generalized coordinate (time-even) and
momentum (time-odd) hermitian one-body operators. These

operators fulfill the properties

Q̂sk = Q̂
†
sk, γ

Q
T = 1, (17a)

P̂sk = i[Ĥ , Q̂sk] = P̂
†
sk, γ P

T = −1 (17b)

where Ĥ = ĥ0 + V̂res stands for the full Hamiltonian em-
bracing both the one-body mean-field Hamiltonian and the
two-body residual interaction. The commutator in Eq. (17b)
is assumed to be mapped into the one-body domain [see, e.g.,
the mapping into ĥres in Eq. (19)]. If the functional includes
only time-even densities, then V̂res does not contribute to the
commutator and so Ĥ can be safely replaced by ĥ0.

2. Separable operators and strength constants

The operators (17) generate time-even and time-odd real
collective deformations qsk(t) and psk(t). Using Eq. (16) and
assuming only small deformations, the transition densities
(10b) read

δJ α
s (t) = i

∑
k

{qsk(t)
〈[
P̂sk, Ĵ

α
s

]〉 + psk(t)〈[Q̂sk, Ĵ
α
s ]〉}, (18)

where, following Eq. (4), time-even densities contribute only
to responses 〈|[P̂sk, Ĵ

α
s ]|〉 while time-odd ones contribute only

to 〈|[Q̂sk, Ĵ
α
s ]|〉. Then the response Hamiltonian (13) recasts

as

ĥres(t) =
∑
sk

{qsk(t)X̂sk + psk(t)Ŷsk}, (19)

where the time dependence is concentrated in the amplitudes
qsk(t) and psk(t) while all time-independent terms are collected
in the hermitian one-body operators

X̂sk =
∑
s ′

X̂s ′
sk = i

∑
α′αs ′

δ2E

δJα′
s ′ δJ α

s

〈[
P̂sk, Ĵ

α
s

]〉
Ĵ α′

s ′ , (20a)

Ŷsk =
∑
s ′

Ŷ s ′
sk = i

∑
α′αs ′

δ2E

δJα′
s ′ δJ α

s

〈[
Q̂sk, Ĵ

α
s

]〉
Ĵ α′

s ′ , (20b)

with the properties

X̂ = X̂†, γ X
T = +1, X̂∗ = X̂, (21a)

Ŷ = Ŷ †, γ Y
T = −1, Ŷ ∗ = −Ŷ . (21b)

Obviously, X̂sk and Ŷsk are the reasonable candidates for
the time-even and time-odd operators in the separable expan-
sion (2). The operator X̂sk involves contributions only from the
time-even densities while the operator Ŷsk only from the time-
odd ones. The upper index s ′ in the operators (20) determines
the isospin (proton or neutron) subspace where these operators
act. This is the domain of the involved density operators Ĵ α′

s ′ .
To complete the construction of the separable expan-

sion (2), we should determine the matrices of the strength
constants κsk,s ′k′ and ηsk,s ′k′ . This can be done through
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variations of the basic operators

δXsk(t) = 〈�(t)|X̂sk|�(t)〉 − 〈X̂sk〉
= i

∑
s ′k′

qs ′k′(t)
〈[
P̂s ′k′, X̂s ′

sk

]〉
= −

∑
s ′k′

qs ′k′(t)κ−1
s ′k′,sk, (22a)

δYsk(t) = 〈�(t)|Ŷsk|�(t)〉 − 〈Ŷsk〉
= i

∑
s ′k′

ps ′k′(t)
〈[
Q̂s ′k′ , Ŷ s ′

sk

]〉
= −

∑
s ′k′

ps ′k′(t)η−1
s ′k′,sk , (22b)

where

κ−1
s ′k′,sk = κ−1

sk,s ′k′

= −i
〈[
P̂s ′k′ , X̂s ′

sk

]〉
=

∑
αα′

δ2E

δJα′
s ′ δJ α

s

〈[
P̂sk, Ĵ

α
s

]〉 〈[
P̂s ′k′, Ĵ α′

s ′
]〉
, (23a)

η−1
s ′k′,sk = η−1

sk,s ′k′

= −i
〈[
Q̂s ′k′ , Ŷ s ′

sk

]〉
=

∑
αα′

δ2E

δJα′
s ′ δJ α

s

〈[
Q̂sk, Ĵ

α
s

]〉 〈[
Q̂s ′k′ , Ĵ α′

s ′
]〉
. (23b)

Equations (23) represent the elements of the symmetric
matrices that are inverse to the matrices of the strength
constants in Eq. (2). Indeed, Eqs. (22) can be recast to

−
∑
sk

κs ′k′,skδXsk(t) = qs ′k′(t), (24a)

−
∑
sk

ηs ′k′,skδYsk(t) = ps ′k′(t). (24b)

From that we read off the response Hamiltonian (19) as

ĥres(t) = −
∑
s ′k′

∑
sk

{κs ′k′,skδX̂sk(t)X̂s ′k′ (25)

+ ηs ′k′,skδŶsk(t)Ŷs ′k′ },
which leads within the collective space of the generators
{P̂sk , Q̂sk} to the same eigenvalue problem as the separable
Hamiltonian

Ĥ = ĥ0 + V̂ sep
res , (26)

with V̂
sep
res given in Eq. (2) (see Refs. [9,19]).

In principle, we already have at our disposal the macro-
scopic SRPA formalism for a linear regime of the collective
motion in terms of real harmonic variables

qsk(t) = q̄sk cos(ωt) = 1

2
q̄sk(eiωt + e−iωt ), (27a)

psk(t) = p̄sk sin(ωt) = 1

2i
p̄sk(eiωt − e−iωt ). (27b)

Indeed, Eqs. (20) and (23) deliver the one-body operators and
strength matrices for the separable expansion of the two-body
interaction. By substituting the response Hamiltonian (25) and
the perturbed wave function (16) into the time-dependent HF

Eq. (15), one gets the eigenvalue problem. The number K of the
collective variables (and thus of the separable terms) is dictated
by the accuracy we need in the description of collective modes.
For K = 1, the method in fact is reduced to the sum rule
approach with one collective mode [38]. For K > 1, we have
a system of K coupled oscillators and the method becomes
similar to so-called local RPA [38,39] suitable for description
of the branching and gross-structure of collective modes.

D. Microscopic part of SRPA

The macroscopic SRPA as outlined in Sec. II C serves
here as a convenient tool to derive the optimal separable
expansion. But it cannot describe the Landau fragmentation
of the collective strength. For this aim, we should build the
microscopic part of the model. In what follows, we consider the
eigenvalue problem and the direct computation of the strength
function.

The perturbation |δ�〉 belongs to the tangential space of the
variations of a mean-field state. For the pure Slater states, they
are all conceivable one-particle-one-hole (1ph) excitations:

Â
†
ph = a†

pah, Âph = a
†
hap. (28)

In the BCS case, the elementary modes are reduced to the two-
quasiparticle (2qp) excitations Â

†
ph −→ Â

†
ij = α̂

†
i α̂

†
j̄
, where

α̂
†
j generates the BCS quasiparticle state j and j̄ is its time

reversal. Just this case is employed in our actual calculations.
Both 1ph and 2qp excitations have much in common and result
in the same microscopic SRPA equations (with the exception
of pairing peculiarities outlined in Appendix C). So, in what
follows, we do not distinguish these two cases. In particular,
we use for both excitations one and the same notation, ph.

1. Eigenvalue problem

To formulate the eigenvalue problem, we exploit the
standard RPA technique for the separable Hamiltonian (26)
where the separable operators and strength constants are
delivered by the macroscopic SRPA; see Eqs. (20) and (23).
Following [9], the collective motion is represented in terms of

|�(t)〉ν = exp
(
Ĉ†

νe
−iων t − Ĉνe

+iων t
)∣∣ 〉, (29a)

Ĉ†
ν =

∑
s

∑
ph∈s

(
cν−
ph Â

†
ph − cν+

ph Âph

)
, (29b)

where Ĉ†
ν creates the one-phonon eigenmode ν; the operators

Â
†
ph and Âph are defined in Eq. (28); the perturbed |�(t)〉ν

and ground | 〉 states have the form of Slater determinants. We
employ here the Thouless theorem [40], which establishes con-
nection between two arbitrary Slater determinants. The wave
function (29) is a microscopic counterpart of macroscopic
scaling ansatz (16). But here we aim for a fully microscopic
description of excitations covering all the 1ph space, whereas
in the previous sections we consider macroscopic flow as a
benchmark for forming the separable interaction.
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The time-dependent response Hamiltonian ĥres(t) for the
mode Ĉ†

νe
−iων t and the separable interaction (2) reads

ĥν
res =

∑
sk

X̂sk

∑
s ′k′

κsk,s ′k′ 〈[X̂s ′k′, Ĉ†
ν]〉

︸ ︷︷ ︸
q̄ν

sk

+
∑
sk

Ŷsk

∑
s ′k′

ηsk,s ′k′ 〈[Ŷs ′k′ , Ĉ†
ν]〉

︸ ︷︷ ︸
-ip̄ν

sk

, (30)

where

q̄ν
sk =

∑
s ′k′

κsk,s ′k′ ·
∑
s ′′

∑
ph∈s ′′

〈
ph

∣∣X̂s ′ ′
s ′k′

〉(
cν−
ph +cν+

ph

)
, (31a)

p̄ν
sk = i

∑
s ′k′

ηsk,s ′k′ ·
∑
s ′′

∑
ph∈s ′′

〈
ph

∣∣Ŷ s ′′
s ′k′

〉(
cν−
ph −cν+

ph

)
. (31b)

Note that here the values q̄ν
sk and p̄ν

sk are new objects generated
by the eigenmode Ĉ†

ν . They serve for notation of ĥres and
have no relation to the collective generators q̄sk, p̄sk used in
Sec. II C. Substituting the ansatz (29) into the linearized time-
dependent HF equation (15) and employing the form (30) for
the response field yields the expression for 1ph expansion
coefficients

cν±
ph∈s = −

∑
s ′k′

q̄ν
s ′k′

〈
ph

∣∣X̂s
s ′k′

〉 ∓ ip̄ν
s ′k′

〈
ph

∣∣Ŷ s
s ′k′

〉
2(εph ± ων)

, (32)

where εph is the unperturbed energy of 1ph pair. In the
derivation above we use the operator properties (21). Then
the matrix elements 〈ph|X̂s"

s ′k′ 〉 and 〈ph|Ŷ s"
s ′k′ 〉 are real and

image, respectively, while all the unknowns cν±
ph , q̄ν

sk and p̄ν
sk

are real.
Inserting the result (32) into Eqs. (31) yields finally the set

of SRPA equations for the values q̄ν
sk and p̄ν

sk∑
s̄k̄

{
q̄ν

s̄k̄

[
F

(XX)
s ′k′,s̄k̄ − κ−1

s̄k̄,s ′k′
] + p̄ν

s̄k̄
F

(XY )
s ′k′,s̄k̄

} = 0,

(33)∑
s̄k̄

{
q̄ν

s̄k̄
F

(YX)
s ′k′,s̄k̄ + p̄ν

s̄k̄

[
F

(YY )
s ′k′,s̄k̄ − η−1

s̄k̄,s ′k′
]} = 0 ,

where

F
(AB)
s ′k′,s̄k̄ = αAB

∑
s

∑
ph∈s

1

ε2
ph − ω2

ν

{〈
ph

∣∣Âs
s̄k̄

〉∗〈
ph

∣∣B̂s
s ′k′

〉
× (εph + ων) + 〈

ph
∣∣Âs

s̄k̄

〉〈
B̂s

s ′k′
∣∣ph

〉
(εph − ων)

}
, (34)

with A,B ∈ X, Y and

αAB =

 1, for A = B

−i, for A = Y,B = X

i, for A = X,B = Y


 .

The system of linear homogeneous equations (33) has a
nontrivial solution only if its determinant is zero. This yields
the dispersion equation to obtain the RPA eigenvalues ων .

2. Strength function

When exploring the response of the system to time-
dependent external fields, we are often interested in the total
strength function rather than in the particular RPA states.
For example, giant resonances in heavy nuclei are formed
by thousands of RPA states whose contributions in any case
cannot be resolved experimentally. In this case, it is more
efficient to consider a direct computation of the strength
function, which avoids the details and crucially simplifies the
calculations.

For an external electric field of multipolarity Eλµ, we
define the strength function as

SL(λµ,ω) =
∑

ν

ωL
ν M2

λµνζ (ω − ων), (35)

where ζ (ω − ων) = �/[2(ω − ων)2 + (�/2)2)] is the Lorentz
weight with an averaging parameter � and Mλµν is the matrix
element of Eλµ transition from the ground state to the RPA
state |ν〉. Unlike the standard definition of the strength function
with δ(ω − ων), we exploit here the Lorentz weight. It is
convenient to simulate various smoothing effects.

The strength function (35) can be recast to a form that does
not need information on the particular RPA states [41,42]. The
explicit derivation is given in [23]. The final expression reads

SL(λµ,ω) = �
[
zL

∑
ββ ′ Fββ ′(z)Aβ(z)Aβ ′(z)

πF (z)

]
z=ω+i�/2

+
∑

s

(
eeff
s

)2 ∑
ph∈s

εL
ph〈ph|fλµ〉2ζ (ω − εph), (36)

where eeff
s is an effective charge and fλµ is the operator of the

Eλµ transition. Further, � means the image part of the value
inside the brackets; F (z) is the determinant of the RPA matrix
(33) with ων replaced by the complex argument z; Fββ ′(z) is
the algebraic supplement of the determinant; and

A
(X)
sk (z) =

∑
s ′

eeff
s ′

∑
ph∈s ′

εph

〈
ph

∣∣Xs ′
sk

〉〈ph|fλµ〉
ε2
ph − z2

, (37a)

A
(Y )
sk (z) = i

∑
s ′

eeff
s ′

∑
ph∈s ′

ων

〈
ph

∣∣Y s ′
sk

〉〈ph|fλµ〉
ε2
ph − z2

. (37b)

For the sake of brevity, we introduced in Eq. (36) the new index
β = {skg}, where g = 1 for time-even and 2 for time-odd
quantities. For example, Ask g=1 = A

(X)
sk and Ask g=2 = A

(Y )
sk .

The first term in Eq. (36) collects the contributions of the
residual interaction. It vanishes at Vres = 0. The second term is
the unperturbed (purely two-quasiparticle) strength function.

E. Basic features of SRPA

Before proceeding to further specification of the method, it
is worth commenting on some of its essential points.

(i) To determine the unknowns cν±
ph,s of a full (nonsepara-

ble) RPA, one requires diagonalization of the matrices
of a high rank equal to the size of the 1ph basis. The
separable approximation allows reformulation of the
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RPA problem in terms of a few unknowns q̄k̄ and p̄k̄

and thus reduces dramatically the computational effort.
As is seen from Eq. (33), the rank of the SRPA matrix
is equal to 4K where K is the number of separable
operators.

(ii) The number of SRPA states |ν〉 is equal to the number
of relevant 1ph configurations used in the calculations.
In heavy nuclei, this number can reach 104–105. Every
state |ν〉 is characterized by the particular set of values
q̄ν

sk and p̄ν
sk .

(iii) Equations (20) and (23) relate the basic SRPA
values with the initial functional and input oper-
ators Q̂sk . After choosing Q̂sk , all other SRPA
equations are straightforwardly determined following
the steps

Q̂sk ⇒ 〈[
Q̂sk, Ĵ

α
s

]〉 ⇒ Ŷsk, η−1
sk,s ′k′ ⇒ P̂sk

⇒ 〈[
P̂sk, Ĵ

α
s

]〉 ⇒ X̂sk, κ−1
sk,s ′k′ . (38)

As is discussed in Sec. IV, the proper choice of Q̂sk is
crucial to achieve a good convergence of the separable
expansion (2) with a minimal number of separable
operators. SRPA itself does not provide a recipe to get
Q̂sk but these operators can be introduced following
intuitive physical arguments.

(iv) SRPA restores the conservation laws (e.g., translational
invariance) violated by the static mean field. If a
symmetry mode has a generator P̂sym, then we keep
the conservation law [Ĥ , P̂sym] = 0 by including P̂sym

into the set of input generators P̂sk together with its
complement Q̂sym = i[Ĥ , P̂sym].

(v) The basic SRPA operators can be expressed via the
separable residual interaction (2) as

X̂sk = −i
[
V̂ sep

res , P̂sk

]
ph

, Ŷsk = −i
[
V̂ sep

res , Q̂sk

]
ph

,

(39)

where the index ph means the 1ph part of the commu-
tator. It is seen that the time-odd operator P̂sk retains
the time-even part of V

sep
res to build X̂sk . Vice versa, the

commutator with the time-even operator Q̂sk keeps the
time-odd part of V

sep
res to build Ŷsk .

III. SRPA WITH THE SKYRME FUNCTIONAL

A. Skyrme functional

We use the Skyrme functional [24] in the form [25,26,38]

E =
∫

d�r(Hkin + HSk(ρs, τs, �σs, �js, ��s)

+Hpair(χs) + HC(ρp)), (40)

where

Hkin = h̄2

2m
τ, (41)

HSk = b0

2
ρ2 − b′

0

2

∑
s

ρ2
s − b2

2
ρ(�ρ) + b′

2

2

∑
s

ρs(�ρs)

+ b3

3
ρα+2 − b′

3

3
ρα

∑
s

ρ2
s + b1(ρτ − �j 2)

− b′
1

∑
s

(
ρsτs − �j 2

s

) − b4(ρ( �∇ ��) + �σ · ( �∇ × �j ))

− b′
4

∑
s

(ρs( �∇ ��s) + �σs · ( �∇ × �js)), (42)

Hpair(χs) = 1

2

∑
s

Vpair,sχ
∗
s χs, (43)

HC = e2

2

∫
d�r1ρp(�r)

1

|�r − �r1|ρp(�r1)

− 3

4
e2

(
3

π

) 1
3

[ρp(�r)]
4
3 , (44)

are kinetic, Skyrme, pairing, and Coulomb terms, respectively.
The densities and currents used in this functional are defined in
the Appendices A and C. Densities without the index s involve
both neutrons and protons, e.g., ρ = ρp + ρn. Parameters bi

and α are fitted to describe ground state properties of atomic
nuclei (see, e.g., Ref. [1]).

For the sake of brevity, we omit here the derivation of the
Skyrme mean field, which can be found elsewhere, e.g., in
Refs. [19,23,38], and present only the main values entering
the SRPA equations.

B. Second functional derivatives

The crucial ingredients of the Skyrme SRPA residual
interaction are the second functional derivatives entering
expressions for the basic operators (20) and strength matri-
ces (23). They read

δ2E

δρs1 (�r1)δρs(�r)
= b0 − b′

0δss1 − (b2 − b′
2δss1 )��r1

+ b3
(α + 2)(α + 1)

3
ρα(�r)

− b′
3

[
α(α − 1)

3
ρα−2(�r)

∑
s2

ρ2
s2

(�r)

+ 2α

3
ρα−1(�r)(ρs(�r) + ρs1 (�r))

+ δss1

2

3
ρα(�r)

]
− δss1δsp

1

3

(
2

π

)1/3

× [ρp(�r)]−2/3} δ(�r − �r1) + δss1δsp

e2

|�r − �r1| ,
(45)

δ2E

δτs1 (�r1)δρs(�r)
= [b1 − b′

1δss1 ]δ(�r − �r1), (46)

δ2E

δ��s1 (�r1)δρs(�r)
= [b4 + b′

4δss1 ] �∇�r1δ(�r − �r1), (47)

δ2E

δρs1 (�r1)δ��s(�r)
= −[b4 + b′

4δss1 ] �∇�r1δ(�r − �r1) (48)
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for time-even densities and

δ2E

δjs1,m(�r1)δjs,n(�r)
= 2[−b1 + b′

1δss1 ]δmnδ(�r1 − �r), (49)

δ2E

δσs1,m(�r1)δjs,n(�r)
= −[b4 + b′

4δss1 ]εmnl∇�r1, lδ(�r1 − �r) (50)

for time-odd densities. The last two terms in Eq. (45) represent
the exchange and direct Coulomb contributions. Further, the
indices m and n in Eqs. (49) and (50) run over the three
basis spatial directions of the chosen representation (in our
case the cylindrical coordinate system) and εmnl is the totally
antisymmetric tensor associated with the vector product.

C. Presentation via matrix elements

The responses in Eqs. (20) and (23) are expressed in terms
of the averaged commutators

〈[Â, B̂]〉 with γ A
T = −γ B

T , (51)

where | 〉 is the quasiparticle vacuum. Calculation of these
values can be considerably simplified if expressing them
through the matrix elements of the operators Â and B̂.

To be specific, we associate the operator Â with a time-
even operator Q̂ or a time-odd operator P̂ , which have real or
imaginary matrix elements, respectively. Then

〈[Q̂sk, B̂s]〉 = 4i
∑
ph∈s

〈ph|Q̂sk〉�〈ph|B̂s〉, (52a)

〈[P̂sk, B̂s]〉 = −4
∑
ph∈s

〈ph|P̂sk〉�〈ph|B̂s〉, (52b)

where both p and h run over all single-particle states and �
and � mean the imaginary and real parts of the values to the
right. The pairing factors are included in the single-particle
matrix elements.

Then elements of the inverse strength matrices are real and
read

κ−1
s ′k′,sk = −i

〈[
P̂s ′k′ , X̂s ′

sk

]〉 = 4i
∑
ph∈s ′

〈ph|P̂s ′k′ 〉 �〈
ph

∣∣X̂s ′
sk

〉
,

(53a)

η−1
s ′k′,sk = −i〈[Q̂k′ , Ŷk〉 = 4

∑
ph∈s ′

〈ph|Q̂s ′k′ 〉 �〈
ph

∣∣Ŷ s ′
sk

]〉
. (53b)

The responses entering X̂ and Ŷ in Eq. (20) are also real and
read

Rα
X,sk = i

〈[
P̂sk, Ĵ

α
s

]〉 = −4i
∑
ph∈s

〈ph|P̂sk〉 �〈
ph

∣∣Ĵ α
s

〉
, (54a)

Rα
Y,sk = i

〈[
Q̂sk, Ĵ

α
s

]〉 = −4
∑
ph∈s

〈ph|Q̂sk〉 �〈
ph

∣∣Ĵ α
s

〉
, (54b)

where 〈ph|Ĵ α
s |〉 are transition densities.

We actually deal with axially symmetric systems. The
modes then can be sorted into channels with a given angular-
momentum projection µ to the symmetry axis z. For even-even
nuclei µ takes integer values. The explicit expressions for the
responses in cylindrical coordinates (see definition of these

coordinates in Appendix B) then read

�jY,sk(�r) = i〈[Q̂sk, �̂j s]〉
= (�eρj

ρ

Y,sk(ρ, z) + �ezj
z
Y,sk(ρ, z)

)
cos µθ

+ �eθ j
θ
Y,sk(ρ, z) sin µθ, (55)

�sY,sk(�r) = i〈[Q̂sk, �̂ss]〉
= (�eρs

ρ

Y,sk(ρ, z) + �ezs
z
Y,sk(ρ, z)

)
sin µθ

+ �eθ s
θ
Y,sk(ρ, z) cos µθ, (56)

ρX,sk(�r) = i〈[P̂sk, ρ̂s]〉 = ρX,sk(ρ, z) cos µθ, (57)

τX,sk(�r) = i〈[P̂sk, τ̂s]〉 = τX,sk(ρ, z) cos µθ, (58)

��X,sk(�r) = i〈[P̂sk, �̂�s]〉
= (�eρ�ρ

X,sk(ρ, z) + �ez�z
X,sk(ρ, z)

)
cos µθ

+ �eθ�θ
X,sk(ρ, z) sin µθ, (59)

where {ρ, z}-depending response components are real. All
the dependence on the spatial coordinates follows from the
transition densities entering the responses.

The response components involving sin µθ obviously van-
ish for modes with µ = 0.

Explicit expressions in cylindrical coordinates for strength
matrices, responses, transition densities, matrix elements,
Coulomb contributions, and other SRPA values can be found
in Ref. [23]. It is to be noted that the present calculations
do not yet include the Coulomb contribution to the residual
interaction. This introduces the uncertainty reaching up to
∼0.4 MeV in an average peak position [43]. Such effect is
safely below the precision of the present investigation.

IV. CHOICE OF INITIAL OPERATORS

As was mentioned in Sec. II E, SRPA starts with the choice
of appropriate generating operators Q̂sk; see the sequence of
the model steps in Eq. (38). The SRPA formalism itself does
not provide these operators. At the same time, their proper
choice is crucial to get good convergence of the separable
expansion (2) with a minimal number of separable terms. The
choice should be simple and universal in the sense that it
can be applied equally well to different modes and excitation
channels.

We propose a choice inspired by physical arguments. The
main idea is that the generating operators should explore
different spatial regions of the nucleus, the surface as well as
the interior. The leading scaling generator should have the form
of the applied external field in the long-wave approximation,
which is most sensitive to the surface of the system. Since
nuclear collective motion dominates in the surface region,
already this generator should provide a good description. Next,
generators should be localized more in the interior to describe
an interplay of surface and volume vibrations. For Eλ giant
resonances in spherical nuclei, we used a set of generators
with the radial dependencies in the form of power and Bessel
functions [19]. In the present study for deformed nuclei, we
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implement, for the sake of simplicity, only generators with the
power radial dependence

Q̂k(�r) = rλ+2(k−1)(Yλµ(�) + h.c.). (60)

The separable operators X̂k and Ŷk with k = 1 are mainly
localized at the nuclear surface while the operators with
k > 1 are allowed to touch, at least partly, the nuclear interior.
This simple set seems to be a good compromise for the first
calculations of the giant resonances. Our analysis shows that
already two first operators with k = 1, 2 suffice for a spectral
resolution of 2 MeV, as discussed below. In the next studies
we plan to enlarge the list of the input generators so as to
cover properly the nuclear interior and to take into account
the coupling of the modes with different λ, induced by the
deformation.

V. RESULTS AND DISCUSSION

A. Aims and details of calculations

The main aim of the present calculations is to demonstrate
the ability of SRPA to describe multipole giant resonances
(GR) in deformed nuclei and to explore the dependence of
the resonance strength distributions on the nuclear matter
properties and some terms of the Skyrme functional. The
isovector giant dipole resonance (GDR) and isoscalar giant
quadrupole resonance (GQR) in the axially deformed nuclei
154Sm, 238U, and 254No are considered. We employ a represen-
tative set of Skyrme forces, SkT6 [33], SkM∗ [34], SLy6 [35],
and SkI3 [36], with different features (isoscalar and isovector
effective masses, asymmetry energy, etc.). These forces are
widely used for the description of ground state properties and
dynamics of atomic nuclei [1] including deformed ones. As is
seen from Table I, the forces span a variety of nuclear matter
properties while all correctly reproducing experimental values
of the quadrupole moments in 154Sm and 238U.

The calculations use a cylindrical coordinate-space grid
with a spacing of 0.7 fm. Pairing is treated at the BCS level and
is frozen in the dynamical calculations. The collective response
for the GDR (λ = 1) and GQR (λ = 2) is computed with two
input operators (60) at k = 1 and 2. Both GR are calculated in
terms of the energy-weighted (L = 1) strength function (36)

TABLE I. Nuclear matter and deformation properties for the
Skyrme forces under consideration. The table represents the isoscalar
effective mass m∗

0/m, symmetry energy asym, sum rule enhancement
factor κ , isovector effective mass m∗

1/m = 1/(1 + κ), and quadrupole
moments Q2 in 154Sm, 238U, and 254No. Experimental values of
the quadrupole moment in 154Sm and 238U are 6.6 and 11.1 b,
respectively [44].

Forces m∗
0/m asym (MeV) κ m∗

1/m Q2 [b]

154Sm 238U 254No

SkT6 1.00 30.0 0.001 1.00 6.8 11.1 13.7
SkM∗ 0.79 30.0 0.531 0.65 6.8 11.1 14.0
SLy6 0.69 32.0 0.250 0.80 6.8 11.0 13.7
SkI3 0.58 34.8 0.246 0.80 6.8 11.0 13.7

with the averaging parameter � = 2 MeV (as most suitable
for the comparison with the experiment). The factorization of
the residual interaction and the strength function technique
dramatically reduce the computational effort. For example, by
using a PC with CPU Pentium 4 (3.0 GHz) we need about
25 min for the complete calculations of the GDR in 238U,
including 1 min for computation of the strength function itself.

The isovector GDR and isoscalar GQR are calculated with
the effective charges eeff

p = N/A, eeff
n = −Z/A, and eeff

p =
eeff
n = 1, respectively. The isoscalar dipole spurious mode is

located at 2–3 MeV. The deviation from the desirable zero
energy is caused by several reasons. First, we have neglected in
the present study the contribution from the Coulomb residual
interaction. The second (more important) reason is that the
nucleus is treated in a finite coordinate box, which artificially
binds the center of mass. Larger numerical boxes could help
here but at quickly increasing computational cost. In any case,
it suffices for our present purposes that the center-of-mass
mode lies at a low energy and thus is safely separated from the
GDR.

We use a large configuration space including the single-
particle spectrum from the bottom of the potential well
up to ∼ +16 MeV. This results in 7000–10000 dipole and
11000–17000 quadrupole two-quasiparticle configurations in
the energy interval 0–100 MeV. The relevant energy-weighted
sum rules are exhausted by 85%–95%. Such a basis is certainly
enough for the present aims.

B. Discussion of results

Results of the calculations are presented in Figs. 1–3.
The first two figures compare the calculated GDR and GQR
with the available photoabsorption [45,46] and (α, α′) [47]
experimental data. It is seen that all four Skyrme forces provide
in general an appropriate agreement with the experiment. So,
SRPA indeed can give a robust treatment of the multipole GR
and, what is important, does this with minimal computational
effort.

To illustrate the accuracy of the method, we give for 254No
the strength functions calculated with one (k = 1) and two
(k = 1, 2) input operators. It is seen that both cases are about
equal for the GQR with its simple one-bump structure. At the
same time, the second operator considerably changes the gross
structure of the more complicated GDR. We have checked that
inclusion of more operators (k � 3) does not result in further
significant modification of the GDR. So, the approximation of
two input operators seems to be reasonable, at least for the
present study at a resolution of 2 MeV.

The figures also show the unperturbed strengths, i.e., the
mere two-quasiparticle (2qp) distributions without the residual
interaction. Comparison of these strengths with the fully
coupled collective strengths (solid curves) displays the col-
lective E1 and E2 shifts. As a trivial fact, we observe the
proper right shift for the isovector GDR and the left shift
for the isoscalar GQR. What is more interesting, the shifts
for both resonances (including isovector DGR) depend on the
isoscalar effective mass m∗

0/m. To explain this, one should
remember that the smaller the m∗

0/m, the more stretched
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FIG. 1. The isovector GDR in 154Sm, 238U, and 254No calculated
with the Skyrme forces SkT6, SkM∗, SLy6, and SkI3. The plots
depict the collective strength calculated with two (solid curve) and one
(dotted curve for 254No) input operators, the unperturbed quasiparticle
strength (dashed curve), and the photoabsorption experimental data
[45,46] (bold curve consisting of triangles) for 238U and 254No.

the single-particle spectrum [1] (see also relevant examples
in [48]). And indeed the E1 and E2 unperturbed strengths in

FIG. 2. The same as in Fig. 1 but for isoscalar GQR and (α, α′)
experimental data [47] (triangles) for 154Sm.

the figures exhibit a systematic shift to higher energy while
moving from SkT6 to SkI3 (for E1 the shift is essentially
weaker than for E2 [49]). Simultaneously, we have the cor-
responding evolution of the collective energy shifts. Namely,
they decrease for GDR and increase for GQR (with the excep-
tion of GDR for SkT6). All these trends lead to a remarkable
net result: strong variations of the unperturbed strengths and
collective shifts with m∗

0/m considerably compensate each
other so that the final GDR and GQR energies become much
less sensitive to different Skyrme forces and approach the
experimental values.

The remaining energy differences of order ∼1 MeV show
some other, sometimes known, trends for the GR.

First, we see a systematic (with the exception of SkT6)
downshift of the calculated GDR with increasing symmetry
energy asym. This, at first glance, surprising result complies
with the experience of the systematic studies in spherical
nuclei [50]. The case of SkT6 looks to be the exception to this
simple rule. It has the same asymmetry energy as SkM∗ (see
Table I) but a lower GDR resonance peak. This happens
because the density dependence dasym/dρ is abnormally low
here (for reasons whose discussion goes beyond the scope of
the present article). In addition to the trend with asym, Fig. 1
also hints a connection of the GDR energy with the sum rule
enhancement factor κ and the related value of the isovector
effective mass m∗

1/m. Namely, the smaller the effective mass
(larger the κ), the higher the GDR. The trends and connections
mentioned above should, however, be considered with a bit
of care. Indeed, the variation of asym between the different
Skyrme forces in Table I is rather small and probably not
enough to demonstrate a strong and unambiguous trend.
Moreover, a complicated dependence of GDR on different
isovector factors can spoil and entangle the concrete trends. In
any case, analysis of the DGR trends deserves more systematic
study that is now in reach with the efficient SRPA technique.

Instead, the evolution of isoscalar GQR is more clear and
systematic. We see a steady upshift of the GQR peak from
SkT6∗ to SkI3, which complies with the known dependence
on the isoscalar effective mass m∗

0/m [51]; namely, the lower
the effective mass, the higher the GQR. This trend has a simple
explanation. As discussed previously, the low m∗

0/m results in
stretching the single-particle spectrum and thus in the upshift
of the 2qp quadrupole strength. In the GQR case, the opposite
dependence of the collective shift is not enough to compensate
the strong 2qp upshift and hence we obtain the trend. Note
that in our calculations SkT6 with m∗

0/m = 1 yields the best
agreement for the GQR. This confirms to some extend the
findings [51] for 208Pb that a good reproduction of the GQR
requires a large effective mass.

The shape and width of GR in deformed nuclei are mainly
determined by the deformation splitting and the spectral
fragmentation due to interference with energetically close 1ph

states (Landau fragmentation). Following Table I, the different
Skyrme forces provide quite similar quadrupole moments.
Hence they result in close deformation splittings. Instead,
the Landau fragmentation depends sensitively on the spectral
pattern of a model, determined to a large extent by isoscalar
and isovector effective masses. Our samples of forces contain
sufficient variation of both ones. Nonetheless, it turns out that
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the width and shape of the GQR are practically the same for
all the four Skyrme forces.

At the same time, the strongest variation is found for the
GDR whose width and gross structure significantly depend
on the force. It is seen that SkM∗ gives an artificial right
shoulder (especially in 154Sm) and thus an overestimation of
the GDR width. This effect weakens for SLy6 (leading to the
best description of GDR) and vanishes completely for SkI3
(resulting in underestimation of the resonance width). The
appearance of the artificial right shoulder for SkM∗ and SLy6
has already been noted for deformed rare-earth and actinide
nuclei [4] and 208Pb [19]. For the particular Skyrme forces, this
effect seems to be universal. It takes place for GDR in heavy
nuclei, independently of their shape. As is shown in Ref. [52],
the right shoulder is provoked by an excessive collective
shift and further enforced by the presence in the region of
the 2qp bunch composed from the particular high-moment
configurations (π1g9/2 and ν1h11/2 for 154Sm and π1h11/2

and ν1i13/2 for 238U and 254No) [52]. These configurations
represent the intruder l + 1/2 states entering the valence shell
due to the strong spin-orbital splitting. They form a dense 2qp
bunch that is easily excited and thus provides high sensitivity
of the right GDR flank. This feature can be useful for additional
selection of the parameters of Skyrme forces.

It would be very interesting to relate the above results for
the GDR width and profile with the effective masses. Some
possible correlations can immediately be noted. For example,
the evolution of the right shoulder from SkM∗ to SkI3 seems to
correlate with a systematic decrease of m∗

0/m. Moreover, the
largest right shoulder in SkM∗ can be related with the smallest
value of m∗

1/m for this force. These connections, however,
require further confirmation from more extended studies with
an even broader basis of forces. In any case, the results hint
that the properties of the isovector GDR probably depend not
only on the isovector m∗

1/m but also on the isoscalar m∗
0/m.

At first glance, this statement looks surprising. However, we
should take into account that m∗

0/m influences the mean level
spacings ε̄ in the mean field and, hence, can in principle
affect the GDR. The resonance should depend on the ground
state properties which in turn are related to m∗

0/m. It also
worth noting that both m∗

0/m and m∗
1/m are generated by

one and the same term of the Skyrme functional (∼b1, b
′
1)

and so probably are not fully decoupled in the dynamics.
Some nontrivial relations between isoscalar and isovector
parameters are already discussed in literature, e.g., the relation
ε̄m∗

0/m ≈ κm∗
1/m and its connection with asym [53]. And we

see here an interesting field for future investigations.
As a next step, let’s consider contributions of the time-odd

densities to the GDR and GQR. These results are illustrated
in Fig. 3. The calculations show that only the current-current
contribution (49) is essential whereas the contribution (50)
connected with the spin density is negligible. So, in Fig. 3
we display only the effect of the current density. First of all,
it is worth noting that the most significant changes appear
again at the right flank of the resonances. Probably, the high-
moment l + 1/2 configurations mentioned previously play an
important role not only for GDR but also for GQR.

The impact of the time-odd current is different in GDR and
GQR. In the quadrupole resonance, we see the systematic
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FIG. 3. The isovector GDR and isoscalar GQR in 238U calculated
with the Skyrme forces SkT6, SkM∗, SLy6, and SkI3. The strength
is calculated with (solid curve) and without (dashed curve) the
contribution of the time-odd current.

downshift and narrowing of the strength. There is a clear
correlation with the value of the isoscalar effective mass:
the lower the m∗

0/m, the stronger the time-odd effect. After
inclusion of the time-odd coupling, the GQR for different
m∗

0/m become much closer. So, the time-odd contribution
weakens the influence of m∗

0/m.
In the dipole resonance, the time-odd shift is not so

systematic. We observe no shift for SkT6, the upshift for
SkM∗, and the downshifts for SLy6 and SkI3. Again one
may note some correlation with effective masses. The specific
SkM∗ case can be connected with very small m∗

1/m for
this force. Moreover, one may note (with the exception of
SkM∗) increasing the time-odd impact with lowering m∗

0/m.
In principle, the correlations between the influence of time-odd
terms and effective masses in both GDR and GQR cases were
more or less expected because the current density enters the
term of the Skyrme functional ∼b1, b

′
1 just responsible for

generation of the effective masses. This explains why the SkT6
case with m∗

0/m = m∗
1/m = 1 (no effective mass effects) does

not demonstrate any time-odd impact.
It is worth noting that the dominant contributions to the

collective response from the principle terms of the Skyrme
functional have different signs and, thus, to a large extent,
compensate each other (this can be easily checked in the
SRPA by estimation of the different contributions to the inverse
strength constants (23). As a result, the smaller contributions
(time-odd, spin-orbital, and Coulomb) become important.

The present study involves three nuclei from different mass
regions and four Skyrme forces with various bulk properties.
We have yet to disentangle more carefully the separate influ-
ences of them. This requires systematic variations of forces
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in a large set of test cases. Because of the computationally
efficient SRPA method, such systematic studies can now be
easily performed.

VI. CONCLUSIONS

A general procedure for the self-consistent factorization
of the residual nuclear interaction is proposed for arbitrary
density- and current-dependent functionals. Following this
procedure, the SRPA method is derived. SRPA dramatically
simplifies the calculations while providing a reliable descrip-
tion of nuclear excitations. The reduction of the computational
effort is especially useful for deformed nuclei. In the present
article, SRPA with Skyrme forces is specified for the descrip-
tion of collective dynamics in axially deformed nuclei.

For the first explorations, SRPA is applied for description
of isovector giant dipole resonances (GDR) and isoscalar giant
quadrupole resonances (GQR) in deformed nuclei from rare-
earth (154Sm), actinide (238U), and superheavy (254No) regions.
Four Skyrme forces (SkT6, SkM∗, SLy6, and SkI3) with
essentially different bulk properties are used. The calculations
show that SRPA can successfully describe multipole giant
resonances. A good agreement with available experimental
data is achieved, especially with SLy6 for GDR. We did not
find any peculiarities of the GR in superheavy nuclei. The
behavior of the resonances in all three mass regions looks
quite similar.

We analyzed dependence of GDR and GQR descriptions
on various Skyrme forces, in particular on the isoscalar and
isovector effective masses and the symmetry energy. The
contribution of the time-odd couplings was also explored.
Some known trends for GDR with asym and GQR with m∗

0/m

were reproduced. Moreover, the close relation between the
time-odd contribution and m∗

0/m was demonstrated for GQR.
The calculations also hint at some interesting (though not
enough systematic) trends for GDR. Altogether, the results
point out correlations between isoscalar and isovector masses
and time-odd contributions. The correlation seem to be natural
because all the items originate from one and the same term of
the Skyrme functional.

The time-odd and effective mass impacts manifest them-
selves mainly at the right flanks of the strength distributions.
The impacts are much stronger and diverse for GDR. More-
over, this resonance exhibits the strong Landau fragmentation.
The GDR gross structure considerably depends on the applied
Skyrme force and the related effective masses. As a result, the
GDR structure can serve as an additional test for selection of
the Skyrme parameters and related nuclear matter values.
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APPENDIX A: DENSITY OPERATORS FOR
SKYRME FUNCTIONAL

In our study the Skyrme forces include time-even (spatial,
kinetic-energy, spin-orbit) and time-odd (current, spin) densi-
ties associated with the hermitian operators

ρ̂s(�r) =
Ns∑
i=1

δ(�ri − �r),

τ̂s(�r) =
Ns∑
i=1

←−∇ δ(�ri − �r) �∇,

�̂�s(�r) =
Ns∑
i=1

δ(�ri − �r) �∇× �̂σ ,

�̂j s(�r) = 1

2

Ns∑
i=1

{ �∇, δ(�ri − �r)},

�̂σ s(�r) =
Ns∑
i=1

δ(�ri − �r) �̂σ .

where �̂σ is the Pauli matrix and Ns is the number of protons
or neutrons.

The densities read as

J α
s (�r) =

∑
j∈s

v2
j ϕ

∗
j (�r)Ĵ α

s ϕj (�r), (A1)

where Ĵ α
s is the density operator, ϕj (�r) is the wave function

of the single-particle state j , and v2
j is the pairing occupation

weight.

APPENDIX B: WAVE FUNCTION IN
CYLINDRICAL COORDINATES

Cylindrical coordinates ρ, z, θ are defined as

x = ρ cos ϑ, y = ρ sin ϑ, z = z.

Then the single-particle particle wave function and its time
reversal have the form of spinors

ϕj (�r) =

R

(+)
j (ρ, z)eim

(+)
j ϑ

R
(−)
j (ρ, z)eim

(−)
j ϑ


 , (B1)

ϕj (�r) = T̂ ϕj (�r) =

−R

(−)
j (ρ, z)e−im

(−)
j ϑ

R
(+)
j (ρ, z)e−im

(+)
j ϑ


 , (B2)

where Kj is the projection of the complete single-particle
moment onto symmetry z axis of the axial nucleus.
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Expressions for differential operators in cylindrical coordi-
nates are elsewhere (see, e.g., Ref. [54]).

APPENDIX C: PAIRING CONTRIBUTION

The pairing is treated with the Bardin-Coopper-Schriffer
(BCS) method. Then the SRPA values gain the pairing
factors involving coefficients vj and uj of the Bogoliubov
transformation from particles to quasiparticles.

The densities and currents in the Skyrme functional domi-
nate in the particle-hole channel. The pairing density falls into
another channel provided by the two-particle excitations. It
involves a different pairing weight, namely, ujvj , rather than
the v2

j for the standard densities (A1). Specifically the pairing
density reads

χs =
∑
j∈s

uj vj |ϕj |2. (C1)

In the case of pairing, the hermitian one-body operators
with a given time-parity (γ A

T = 1, γ B
T = −1) obtain in the ph

channel the form

Â = 2
∑
ij

〈ij |A〉u(+)
ij (Â†

ij + Âij ), (C2)

B̂ = 2
∑
ij

〈ij |B|〉u(−)
ij (Â†

ij + Âij ), (C3)

where

Â
†
ij = α̂

†
i α̂

†
j̄
, Âij = α̂j̄ α̂i (C4)

are two-quasiparticle operators and

u
(+)
ij = uivj + ujvi, u

(−)
ij = uivj − ujvi (C5)

are the pairing factors. This is the case for time-even operators
Q̂sk and X̂sk and the time-odd operator Ŷsk . The time-odd
operators

P̂sk = i[Ĥ , Q̂sk] = i
{
[ĥ0, Q̂sk] + [

V̂ sep
res , Q̂sk

]}
= i[ĥ0, Q̂sk] − Ŷsk (C6)

have a more complicated form because of the additional term
i[ĥ0, Q̂sk]. Namely, it reads

P̂sk = 2
∑
ijεs

{
i2εiju

(+)
ij 〈ij |Qsk〉 − u

(−)
ij

〈
ij

∣∣Y s
sk

〉} · (Â†
ij − Âij ).

(C7)

The SRPA formalism in Secs. II and III is presented in
a general form equally suitable for cases with and without
pairing. In the case of pairing, the ground and perturbed 1ph

many-body wave functions are replaced by their BCS coun-
terparts, the summation indices p and h run the quasiparticle
states, and the involved values (densities, operators, and matrix
elements) acquire the pairing factors given above.

The pairing is not important for giant resonances con-
sidered in the present study. So, we freeze the pairing in
the dynamics and do not present here the explicit form of
the pairing contribution (pairing vibrations) to the residual
interaction. Some examples of this contribution can be found in
Ref. [23].
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