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Screening effects in superfluid nuclear and neutron matter within Brueckner theory
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Effects of medium polarization are studied for 1S0 pairing in neutron and nuclear matter. The screening
potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of
nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi
surface. All medium effects are calculated based on the Brueckner theory. The 1S0 gap is determined from the
generalized gap equation. The self-energy corrections always lead to a quenching of the gap, which is enhanced
by the screening effect of the pairing potential in neutron matter, whereas it is almost completely compensated
by the antiscreening effect in nuclear matter.

DOI: 10.1103/PhysRevC.74.064301 PACS number(s): 21.65.+f, 26.60.+c, 21.30.Fe

I. INTRODUCTION

A satisfactory description of superfluidity in nuclear matter
has not yet been achieved despite almost 50 years of research
have elapsed since the first application of the BCS theory to
nuclear systems [1]. Somewhat at variance with the electron
pairing in superconductors the pairing in nuclear systems
results from the interplay between the direct action of the
bare nuclear force and the action induced by the medium
polarization. The attractive components of the bare nuclear
interaction have led to the investigation of several pairing
configurations, e.g., neutron-neutron or proton-proton pairing
in the 1S0 channel in neutron stars [2] disregarding possible
repulsive effect exerted by screening of the force via the
medium. A pairing suppression has in fact been found by
most calculations of pairing in neutron matter (see Ref. [3]
and references therein). On the contrary, other pairing con-
figurations have not yet been explored since the repulsive
components of the direct nuclear interaction cannot support
the formation of Cooper pairs. But there are strong indications
that, in a nuclear rather than neutron matter environment, the
medium polarization of the interaction can favor the formation
of Cooper pairs similar to the lattice vibrations in ordinary
superconductors. These indications come both from nuclear
matter calculations and from finite nuclei. In nuclear matter
the medium enhancement of neutron-neutron 1S0 pairing is to
be traced back to the proton particle-hole excitations [4], and
in finite nuclei to the surface vibrations [5].

Another distinctive feature of the nuclear environment is
the presence of strong short range correlations that induce two
effects relevant for the pairing: one is the depletion of the Fermi
surface, which is experimentally supported by measurements
of electron scattering on 208Pb [6], the other one is the strong
mass renormalization caused by short-range particle-particle
correlations [7].

The two effect conspire against the pairing formation: The
depletion of the Fermi sea reduces the phase space available for
particle-particle virtual transitions around the Fermi surface,
the mass renormalization enhances the dispersive effect of the
mean field [8].

Therefore a complete microscopic treatment of the very
subtle pairing problem requires vertex and self-energy cor-
rections to be treated and to be considered on the same
footing. In a previous paper [4] we made a study of these
in-medium effects under several simplifying assumptions.
First came the approximation to replace the Born term of the
pair interaction in the S = 0, T = 1 channel by the Gogny
force [9]. Though in that channel the Gogny force is not
dissimilar to the action of the bare force (see Ref. [10]), it
shows a little too much attraction for momenta characterizing
saturation. The first improvement in the present work is then
the use of a realistic two-body force (V18 [11], see below)
in the Born term. Secondly we will use as vertices in the
induced interaction a force which is based on a more modern
G-matrix calculation [12] as this was the case for the Gogny
force [9]. Thirdly we corrected an unfortunate phase error
which slipped into the evaluation of the induced force at
least for the symmetric nuclear matter case in the S = 0, T =
1 channel what gave raise to a too strong antiscreening
effect. With these corrections and improvements we now
get reasonable renormalization effects of the pairing force
and we calculate the corresponding gaps as a function of

density in pure neutron matter as well as in symmetric nuclear
matter.

In detail the paper is organized as follows. In Sec. II
the generalized gap equation is reviewed along with the
approximations on the pairing potential and self-energy, which
lead to the determination of the energy gap. In Sec. III the
screening interaction is discussed in the RPA limit, and then
the summation of bubble diagrams and the resummation of
dressed bubble diagrams both using the Landau parameters
are derived. In Sec. IV the results are presented: first,
for the separate contributions of particle-hole (ph) scalar,
vector and isovector excitations in neutron matter and nuclear
matter; second, the solution of the gap equation for 1S0

pairing with a discussion of the effects of the selfenergy
corrections and medium polarization potential. Section V is
devoted to the comparison with other calculations and to the
conclusions.
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FIG. 1. Pairing interaction with screening in the RPA approxi-
mation. The short-dashed line represents the bare interaction, long-
dashed lines the G-matrix, the wiggly line the ph residual interaction
resummed to all orders. All vertices are to be understood as anti-
symmetrised matrix elements. The notations are: k = (�k, σ, τ ), k̄ =
(−�k,−σ, τ ).

II. GENERALIZED GAP EQUATION

The spectrum of a superfluid homogeneous Fermi system
is derived from the generalized gap equation [13–15]:

�k(ω) =
∑
k′

∫
dω′

2πi
Vk,k′ (ω,ω′)Fk′(ω′), (1)

where V is the sum of all irreducible NN interaction terms
and Fk(ω) is the anomalous propagator. The class of diagrams
selected for the present calculation is plotted in Fig. 1.

In nuclear matter V can be approximated by the bare
interaction V0 [diagram (a)], which is responsible of the
formation of Cooper pairs, and the class of bubble insertions,
which play the role of screening. In turn, the screening
interaction V1 can be split into two parts: the one-bubble term
[diagram (b)] containing only the mixed configuration with
particle-particle (pp) plus ph excitations, the multibubble term
also containing all insertions of pure ph interaction vertices
[diagram (c)]. The splitting is a convenient way to point out
that mixed vertices and pure ph vertices have to be treated
on different footing, as discussed in Ref. [4]. The first bubble
diagram can also be seen as the lowest order correction to the
Born term. As discussed afterwards, the vertex insertions in
diagrams (b) and (c) are described by a Brueckner G-matrix.

Within the Brueckner theory of nuclear matter, the single
particle (sp) energy spectrum of the non superfluid state is
derived from the hole-line expansion of the mass operator.
The BHF approximation, extended to include depletion of the
Fermi surface due to the strong ground state correlations, gives
an important quenching of the pairing gap and hence it cannot
be neglected. The pp correlations on the pairing interaction
are embodied in the gap equation itself [1]. Consistently, the
interaction vertices in the screening term should be described
in terms of the G-matrix. In addition, the latter must be dressed
according to the Babu-Brown theory of the induced interaction
[16,17] to avoid the low density instability problem of nuclear
matter, as discussed later. Since the exact resummation of the
bubble series (Bethe-Salpeter equation) with G-matrix is a
prohibitive task, the ph vertex insertions can be conveniently
evaluated in the Landau limit, and eventually replaced by the
Landau parameters.

The effects of the self-energy corrections have intensely
been studied; in particular the depletion of the Fermi surface
is expected to hinder the virtual transitions around the Fermi

surface and thus its effect is to weaken the pairing correlations.
It is of particular interest to understand to what extent the
resulting quenching of pairing gap is compensated by in
medium vertex corrections that in nuclear matter are strongly
attractive. On the other hand, in the case of neutron matter
self-energy effects enhance quenching due to screening at
variance with the predictions of recent Monte Carlo many
body calculations [18].

Going beyond the pure BHF approximation, the main
dispersive corrections arise from energy dependence of the
self-energy, as shown in previous papers. The correction to the
non superfluid propagator Gk(ω) is simply a renormalization
factor of its pole part. This factor, named Z-factor, is

Z−1 = 1 −
[
∂�k(ω)

∂ω

]
ω=ωk

, (2)

which measures the discontinuity of the occupation probability
around the Fermi energy. Correspondingly, the abnormal
propagator appearing in the gap equation [Eq. (1)],

Fk(ω) = �k(ω)

G−1
k (ω)G−1

k (−ω) + �2
k(ω)

, (3)

is renormalized by a factor Z2. For a static interaction the
gap function is also independent of energy and the energy
integration can be performed analytically. Since the analytical
structure of the abnormal propagator is not modified, the gap
equation takes the same form as in the pure BCS case. One
easily obtains

�k = −1

2

∫
d3�k′Vk,k′

ZkZk′�k′√
(εk′ − εF )2 + �2

k′

, (4)

where εF is the Fermi energy and εk is the on-shell self-energy.
The preceding gap equation is equivalent to the BCS version
except for the Z2 factor which is modeling the effect of the
interaction around the Fermi surface. Since the value of the
Z-factor, though depending on the ground state correlations, is
always less than unity in the vicinity of the Fermi surface,
inevitably the energy gap will turn out quenched in this
respect. Our predictions of the gap in nuclear and neutron
matter presented in this paper rely on the solution of the latter
equation.

III. SCREENING INTERACTION

A. One-bubble screening interaction

In a previous work the calculation of the screening
interaction was simplified by using the Gogny force, which
in fact reproduces most of the properties of a G-matrix. In the
present calculation we adopt the G-matrix itself and we try to
reduce its complexity with reasonable approximations. For the
sake of application to the pairing in the 1S0 channel we select
the two particle state with total spin S = 0 and isospin T = 1.
Then the one-bubble interaction can be written as

〈11̄|V1|1′1̄′〉 = 1

4

∑
2,2′

∑
ST

(−)S(2S + 1)〈12|Gph
ST |1′2′〉A

×〈2′1̄|Gph
ST |21̄′〉A	0(22′), (5)
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FIG. 2. Shrinking of G-matrix in momentum space.

where 1 ≡ (�k1, σ1, τ1) (1′ ≡ (�k1′ , σ1′ , τ1′ )) and 1̄ ≡
(−�k1, σ1, τ1) (1̄′ ≡ (−�k1′ , σ1′ , τ1′ )) are the momenta of
the pair in the entrance (exit) channel. 	 is the static
polarization part. The G-matrix is converted into the ph
sector, as it is required to solve the Bethe-Salpeter equation
and to sum up the bubble series Ṽ2. The standard recoupling
procedure from pp sector to ph sector yields

G
ph
ST =

∑
c

(2Sc + 1)(2Tc + 1)(−1)Sc+Tc

×
{

1
2

1
2 Sc

1
2

1
2 S

}{
1
2

1
2 Tc

1
2

1
2 T

}
GScTc

, (6)

where the brackets are the 6j symbols. The sum runs over
the spin Sc and isospin Tc of the pp channels included in
the calculation. Since the G-matrix incorporates short range
pp correlations, its momentum range is shrunk remarkably
in comparison with the bare interaction, as shown in Fig. 2.
At variance with the bare interaction, the G-matrix cannot
sustain large momentum transfers �q = �k − �k′, that justifies the
approximation to average it around the Fermi surface, in the
limit q = 0. As a consequence the q dependence is only located
in the integral of the polarization part, giving the Lindhard
function∑

�k
	0

�k,�k−�q = N (0)

g

1

2

[
−1 + 1

q

(
1 − q2

4

)
ln

∣∣∣∣1 − q/2

1 + q/2

∣∣∣∣
]

, (7)

where g is the degeneracy parameter.
The two external vertices mixing pp and ph lines shown

in Fig. 1(b) in principle induce unlimited excitations in
momentum space. But, since high momenta transitions are
incorporated into G-matrix used as vertex interaction, the main
contribution of the two-bubble diagram is concentrated in a do-
main as short as 2 fm−1. Elsewhere the remaining contribution
can be neglected with respect to the bare interaction as shown
in Fig. 2.

The problems with the calculation of the ph multi bubble
contribution [diagram (c) in Fig. 1] are the following. First, the

bubble series with G-matrix insertions have to be previously
summed up. But, since the interaction vertices in the ph channel
involve particle excitations around the Fermi surface, they
can be approximated by the Landau parameters. Second, even
replacing the bare interaction vertices by G-matrices, there
appears the low density singularity in the RPA in nuclear
matter (F0 = −1). This problem, discussed in Ref. [3] (see
also references therein) is remedied by dressing the vertex
insertions according to the Babu-Brown induced interaction
theory [16].

B. Landau parameters from the BHF approximation

The microscopic basis of the ph effective interaction can
be set in terms of the energy functional of symmetric nuclear
matter

N (0)fστ,σ ′τ ′(�k, �k′) = δ2E

δnστ (�k)δnσ ′τ ′( �k′)
= F + F ′(τ · τ ′) + G(σ · σ ′)

+G′(σ · σ ′)(τ · τ ′), (8)

where the density of states N (0) is introduced to make the
Landau parameters F,F ′,G, and G′ dimensionless. In BHF
[7] approximation the energy functional is given by

E =
∑

k

h̄2k2

2m
+ 1

2

∑
k1,k2

〈k1, k2|G(ω)|k1, k2〉A, (9)

where the subscript A means that the matrix element of
the G-matrix is antisymmetrized. The index k stands for
�k, σ and τ , momentum, spin and isospin, respectively. The
G-matrix is understood to be calculated on the energy shell:
ω = εk1 + εk2 . The single particle energies are determined
iteratively along with the G-matrix within the Brueckner
self-consistent scheme. One can determine the Landau pa-
rameters from the microscopic Brueckner theory in the BHF
approximation, performing the double variational derivative,
Eq. (8), of the energy per particle, Eq. (9). So doing, a
number of contributions are generated that can be calculated
one by one [19] in some approximation due to the complex
structure of G-matrix. A simple and powerful way to calculate
the Landau parameters is to suitably fit the BHF energy
and the corresponding sp spectrum with a functional of the
occupation numbers and then to perform the double derivative.
A Skyrme-like functional has proved to reproduce accurately
the equation of state (EoS) of symmetric as well as spin
and isospin asymmetric nuclear matter [20]. Therefore we
determine the Landau parameters in that way. A limitation of
this procedure is that only a few partial wave components can
be calculated, but for the purpose of the present investigation
we only need the zero order Landau parameters. The latter
are plotted in Fig. 3 as a function of the Fermi momentum.
As expected F0 exhibits the well known instability below
the saturation point, which makes the RPA series difficult
to handle. As in previous papers [4,21] this drawback can
be overcome by the induced interaction theory of Babu and
Brown [16]. As a matter of fact that instability should disappear
if one includes correlations in very diluted nuclear matter.
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FIG. 3. Landau parameters of pure neutron matter and nuclear
matter.

Leaving aside a description of this theory (see Refs. [17,22]),
we schematically write down the equation defining the ph
induced interaction as follows:

Vph = Vd + VRPA(Vph). (10)

The first term (direct term) is the BHF ph residual interaction,
which, in the first order, is represented by the G-matrix. The
second one (induced term) is the RPA bubble summation, in
which the vertex insertions are given by Vph itself instead of the
direct term. The solution of the latter equation is quite simple
if we replace the true Vd projection in the ph channel (ST) with
the corresponding Landau parameter, since the way we extract
the Landau parameters the direct term contains not only the
effect of the G-matrix but also the rearrangement diagrams
[22]. The numerical results are depicted in Fig. 3. The salient
feature of the induced interaction is that the renormalization of
F0 prevents any singular behavior to occur below the saturation
density. Otherwise the values do not differ from the Gogny
interaction except for the high density behavior where the
effect of the three body force makes F0 much more repulsive
than the Gogny force [4].

Therefore we dressed the residual interaction first with the
short range correlations (G-matrix instead of bare interaction)
and then by the renormalized long range correlations Vph

replacing the G-matrix in the RPA series. Since the calculation
of the induced interaction with the G-matrix is a quite complex
job, we have simplified the problem replacing the G-matrix
with the Landau parameters. The way we determine the Landau
parameters, the approximation turns out to be better than
starting from the G-matrix itself.

C. Bubble series

The vertex insertions dressing the bubbles must be treated
on different footing than the external ones [diagram (c) of
Fig. 1]. To sum up the RPA bubble series with the G-

matrix requires to solve the Bethe-Salpeter equation, that is
a prohibitive task. Using the Landau parameters corresponds
to the Landau limit (zero momentum-energy transfer around
the Fermi surface), which is a quite reasonable approximation
for not too large values of KF . In this case the RPA summation
of the ph interaction turns out to be algebraic and, expressed
in term of the dressed bubble, it is written as

	(q)ST = 	0(q)

1 + 	0(q)LST

, (11)

where LST are the Landau parameters, whose components are
commonly denoted by: L00 = F,L01 = F ′,L10 = G,L11 =
G′. In this expression we clearly see how the induced inter-
action prevents any divergence to occur since |	L| � |L| � 1.
Replacing in Eq. (5) the bare bubble 	0 with the dressed bubble
	 we get the full screening interaction used in the calculation.

IV. RESULTS

The G-matrix is generated from a self-consistent BHF
calculation with the continuous choice [7]. The Argonne V18
two-body force [11] is adopted as the input bare interaction
plus a microscopic model for the three-body force based
on meson exchange with intermediate excitation of nucleon
resonances (Delta, Roper, and nucleon-antinucleon) [23]. The
calculation also provides the self-energy from which we
extract the sp spectrum and the Z-factors. Based on the same
framework is also the Skyrme-like fit of the BHF energy
functional used to calculate the Landau parameters [20].

A. Screening interaction

In this paper we only focus on the 1S0 pairing interaction
in the two extreme situations of pure neutron matter and
symmetric nuclear matter. We keep for a further investigation
the consideration of asymmetric nuclear matter with the
purpose of studying the transition from the screening regime in
pure neutron matter to the antiscreening regime in symmetric
nuclear matter.

Let us start with neutron matter. In this case the screening
interaction can be decomposed in two terms: S = 0 density
fluctuation and S = 1 spin density fluctuation. The two modes
have opposite effect: the former one is attractive, the latter is
repulsive. From Eq. (5), we can write

V1 = 1
2	(q)0G

ph
0 G

ph
0 − 3

2	(q)1G
ph
1 G

ph
1 . (12)

The factor 3 is due to the multiplicity of the spin mode. For
the following discussion we should notice that 	 is negative.
In turn, each G-matrix can be expressed as a superposition of
G-matrices, projected onto two particle states [see Eq. (6)],

G
ph
0 = 1

2 (−G0 − 3G1), (13)

G
ph
1 = 1

2 (G0 − G1). (14)

Since G0 is attractive and G1 is repulsive, assuming their
magnitude to be comparable, we get G0 ≈ G1 [24] and the
multiplicity plays the main role in establishing the dominance
of the spin density mode over the density mode. In the latter
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FIG. 4. Individual components of the ph residual interaction.

calculation G0 and G1 are only roughly comparable, as it
can bee seen in Fig. 4, nevertheless the conclusion is still
valid. A quenching of 1S0 pairing in neutron matter is to be
expected, a result established long ago [25] and confirmed by
many calculations in various approximations (see Ref. [3] and
references therein).

In nuclear matter the situation could be quite different since
the isospin fluctuations also come into play. The screening
interaction now is split according to Eq. (5) as follows:

V1 = 1
4

(
	(q)00G

ph
00G

ph
00 + 	(q)01G

ph
01G

ph
01

)
− 3

4

(
	(q)10G

ph
10G

ph
10 + 	(q)11G

ph
11G

ph
11

)
.

The various contributions are plotted in Fig. 4 in terms of pp
states, the individual ph contributions are expressed as

G
ph
00 = 1

4 (G00 + 3G10 + 3G01 + 9G11), (15)

G
ph
10 = 1

4 (−G00 − 3G10 + G01 + 3G11), (16)

G
ph
01 = 1

4 (−G00 − 3G10 + G01 + 3G11), (17)

G
ph
11 = 1

4 (G00 − G10 − G01 + G11). (18)

In nuclear matter the pp G-matrix elements are dominated
by the deuteron channel (3SD1 coupled pp channel), which is
very attractive and therefore it reinforces the density mode and
weakens the spin mode. In other words, the main isospin effect
is to reverse the role of the medium, i.e., antiscreening instead
of screening. In previous papers this effect has been discussed
in terms of proton-proton ph screening against neutron-neutron
ph screening in the neutron-neutron 1S0 channel [26]. The
latter gives repulsion the former attraction. At variance with
Ref. [24] the proton-proton ph screening is stronger than
neutron-neutron ph screening. This effect is to be traced back to
stronger in medium renormalization of the force in the T = 0
channel than in the T = 1 one. Antiscreening is the overall
effect.

In Fig. 5 we plot the full pairing interaction in the three
approximations used in the calculation of the energy gap. In
nuclear matter, as we discussed before, the screening effects
in fact reinforce the attractive strength of the bare interaction.
The main effect appears already at the one bubble level. The
deviation from the bare interaction increases at lower density.
At kF = 0.6 fm−1 the enhancement is from −13 MeV fm3 to
−27 MeVfm3. This is a huge variation which could entail a

0.4 0.8 1.2
-40

-30

-20

-10

0

10

20

30

V
 (

M
eV

 fm
3  )

K
F
 (fm-1)

 bare force
 one-bubble
 full screening

Nuclear Matter

0.4 0.8 1.2

Neutron Matter

FIG. 5. Pairing interaction.

large increase of the gap because it is exponentially depending
on the interaction. But at such a density the pair correlations
are rather weak and thus we do not expect any large increase
of the gap. In the density domain of the maximum gap the
enhancement is much smaller and again we do not expect
any dramatic change in the gap magnitude as an effect of the
antiscreening. In Ref. [4], an improper coupling of the ph states
in the mixed representation prevented the cancellation among
different ph excitations to occur with the effect of producing a
more pronounced antiscreening.

In neutron matter the situation is the other way round. The
screening is repulsive, and small in the full RPA calculation,
but still enough to produce a sizable quenching of the
pairing gap. These predictions confirm at least at qualitative
level the corresponding results obtained with the Gogny
force [4].

B. Pairing gap

The present calculation is focused on the 1S0 neutron-
neutron (or proton-proton) pairing. One can distinguish the
bare interaction which is responsible for the pairing between
the two particles in the 1S0 state, from the screening inter-
action induced by the surrounding particles. Therefore the
interaction, projected onto the 1S0 channel, can be cast as
follows:

〈k|V|k′〉 =
∫

d�

4π
[V0(�k, �k′) + V1(|�k − �k′|)]. (19)

As bare force we use Argonne V 18, the same as for
calculating the G-matrix and the self-energy. The BCS energy
gap in the 1S0 channel is practically independent of the adopted
bare force, since in fact all realistic interactions reproduce the
phase shifts of free NN scattering.

We solved the gap equation in the form of Eq. (4). In
order to disentangle the screening effects from the self-energy
corrections, we first assume Z = 1 and free sp spectrum. The
results are plotted in Fig. 6 (upper left panel). In neutron matter
the screening effect is small and just reduces the gap by 10%
in the peak region. At variance with previous calculations
existing in the literature [3] the full RPA screening is much
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less effective than the one bubble approximation because of
the stronger renormalization of the spin fluctuations vs the
density fluctuations in the induced interaction. However this
finding confirms the preceding predictions with Gogny force
(see Fig. 8 of Ref. [4]).

In nuclear matter, due to the antiscreening effect we
discussed earlier, the magnitude of the gap variation is the
other way around and much more sizeable: the gap rises up
from 3 to 5 MeV for Fermi momentum kF = 0.8 fm−1. This is
displayed in Fig. 6 (lower left panel).

There are two kinds of self-energy effects: dispersive effect
and Fermi surface depletion. Both are calculated taking into
account the self-energy corrections at the second order of
G-matrix (rearrangement terms). The first one is a correction
to the sp spectrum in the energy denominator. Usually it entails
a reduction of the pairing gap since the effective mass, beyond
BHF approximation, is less than the unity (the effective mass
is the combination of the e-mass and the k-mass [7]). But at
very low density the effective mass is larger than unity [27] and
it reduces the quenching rate of the gap due to the interaction.
This effect can be seen in the low density side of the neutron
gap with �total (upper right panel). Additional strong reduction
is due to the depletion of the Fermi surface which hinders
transitions around the Fermi surface. The maximum gap in a
complete calculation is 1.5–2 MeV at kF ≈ 0.8 fm−1.

In nuclear matter the self-energy effects are much stronger
already at moderately low density, as it has to be expected,
and the peak value shifts down to very low density kF ≈
0.5–0.6 fm−1. The Z-factor plays the major role: it quenches
from 0.84 in neutron matter to 0.68 in nuclear matter at
kF = 0.8 fm−1. But the magnitude is about 0.5 MeV less
than the value with only bare interaction. Therefore we can
conclude that a strong cancellation occurs as soon as vertex
corrections and self energy effects are simultaneously included
in the gap equation. But this happens only in nuclear matter

as an effect of antiscreening. We will come back to this point
below.

V. DISCUSSION AND CONCLUSIONS

In this paper an exhaustive treatment of the 1S0 pairing in
nuclear and neutron matter has been reported. The medium
polarization effects on the interaction and the self-energy
corrections to the mean field, both developed in the framework
of the Brueckner theory, have been included in the solution of
the gap equation.

Within the pure mean field approximation [28] the 1S0 gap
is only affected by the medium via the so called k-mass [8],
either nuclear or neutron matter. So far the medium effects
have not been considered in the case of nuclear matter except
in Ref. [4]. The vertex corrections due to neutron matter all
give a reduction of the pairing, the magnitude depending on
the adopted approximation [3]. The explanation relies on the
competition of the attractive density excitations against the re-
pulsive spin density excitations. The present calculation, based
on G-matrix, also predicts a large quenching in agreement with
almost all previous predictions, but only at the one bubble level.
In the most complete calculation (full RPA) the quenching is
largely reduced in apparent agreement with a recent Monte
Carlo calculation [18]. But the inclusion of self-energy effects
definitely results in a large suppression as expected from
basic properties of a strongly correlated many-body system
(see Introduction).

In the case of nuclear matter the most remarkable result
is the antiscreening effect of the medium polarization. In
fact in nuclear matter isospin modes arise that reverses the
competition between the attractive density modes and the
repulsive spin-density modes due to the presence of isospin
modes. The argument addressed in Ref. [24] that the p-n
(T = 0) interaction is small compared to the n-n (T = 1) is
based on the vacuum scattering T-matrix and does not consider
the strong medium renormalization of G-matrix, which inverts
the strength of the two channels. However the enhancement
of the gap to almost 5 MeV is almost completely suppressed
by the strong correlation effects on the self-energy and it is,
therefore, a very subtle situation. But, even a small variation
of the force strength implies a large variation of the gap. These
effects also push to lower density the peak value of the gap.

Calculations of the pairing gap in a nuclear environment
have been reported in a series of papers for the case of
nuclei [5]. Their main finding is that the induced interaction
arising from the surface vibrations is responsible for large part
of the experimental gap. This result can be considered as the
counterpart for finite nuclei of the antiscreening effect due to
the medium polarization in nuclear matter. But the self-energy
effects completely compensate the gap enhancement and, in
the end, the full medium effect do not change significantly
the gap with bare interaction. This result turns out to be not a
big surprise, since some calculations show that the gap with
Gogny interaction is consistent with the observed gaps in
nuclei [29].

At this point two aspects are worth to be developed
further. The first one is the study of pairing in the transition
from symmetric nuclear matter to neutron matter, i.e. from
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antiscreening to screening regime; the second one is the
investigation of pp channels so far neglected, since there
the bare interaction is repulsive. The pairing could exist as
an induced effect of the environment. Finally it is worth
mentioning the interest of the pairing in the T = 0 channel.
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