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Renormalization of the N N interaction with a chiral two-pion
exchange potential. II. Noncentral phases
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We extend the renormalization of the NN interaction with chiral two-pion exchange potential to the calculation
of noncentral partial wave phase shifts with total angular momentum j � 5. The short distance singularity structure
of the potential, as well as the requirement of orthogonality conditions on the wave functions, determines exactly
the number of undetermined parameters after renormalization.
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I. INTRODUCTION

The original proposal by Weinberg [1,2], which was carried
out for the first time by Ray, Ordoñez, and van Kolck [3],
of making model-independent predictions for NN scattering
using chiral perturbation theory (ChPT) has been followed
by a wealth of works [4–28] (for a review, see, e.g., Ref.
[29]). The renormalized potential as given in Refs. [3–5] in
configuration space is expanded taking m2/16π2f 2 and m/M

as small parameters (m and M are the pion and nucleon masses,
respectively, and f is the pion weak decay constant), with mr

fixed. In this counting for the potential and in a given partial
wave (coupled) channel with good total angular momentum,
the reduced potential can schematically be written as

U (r) = Mm

{
m2

f 2
W (0)(mr) + m4

f 4
W (2)(mr)

+ m4

f 4

m

M
W (3)(mr) + · · ·

}
, (1)

where W (n) are known dimensionless functions which are
everywhere finite except for the origin and depend on the
axial coupling constant. W (3) depends also on three additional
low-energy constants, c̄1 = c1M, c̄3 = c3M , and c̄4 = c4M ,
which have been determined from πN -scattering ChPT studies
in a number of works [30–33].

At the level of approximation of Eq. (1), these potentials
are local and energy independent and become singular at
the origin. Thus, nonperturbative renormalization methods
must be applied to give a precise meaning to the scattering
amplitude [34] (for a comprehensive review in the one channel
case, see, e.g., Ref. [35], and see Ref. [36] for a modern
perspective). Several methods have been proposed to study
the Leading Order (LO) term in Eq. (1) for central [37–41]
and noncentral [42] waves. Recently [41,43], we showed how
a renormalization program can be carried out for the NN

interaction for the one-pion exchange (OPE) and chiral two-
pion exchange (TPE) potentials in the central 1S0 and 3S1-3D1

waves and its implications for the deuteron and pion-deuteron
scattering [44]. In the present work, we extend our analysis
to all remaining partial waves with j � 5 for both the OPE
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and chiral TPE potentials. As we showed in Refs. [41,43],
the short distance behavior of the chiral NN potential, Eq.
(1), determines exactly how many counterterms are needed
to generate renormalized and finite, i.e., cutoff independent,
phase shifts. These counterterms can be determined by fixing
some low-energy parameters while the cutoff is removed. It
has been assumed that dimensional power counting in the
counterterms can be made independently of the short distance
singularity of the potential. This yields conflicts between naive
dimensional power counting and renormalization, which have
been reported recently even for low partial waves [42]. So,
one is led to two alternatives: either keep the power counting
and a finite cutoff or remove the cutoff at the expense of
modifying the power counting of the short distance interaction.
The finite cutoff route has been explored in great detail in the
past [5–10]. In this paper, we explore further the possibility
of taking the alternative suggested by renormalization and the
tight constraints imposed by finiteness. The analysis becomes
rather transparent in coordinate space, where the counterterms
can be mapped into boundary conditions [39,40,45] at the
origin. In practice, renormalization may be carried out in
several ways. In coordinate space, it seems natural to exploit
the locality of the long distance (renormalized) potentials
and then to renormalize the full scattering problem. In the
present work, we adhere to this two-step renormalization,
which has the additional advantage of making it possible
to determine a priori and based on simple analytical ar-
guments the existence of the renormalized limit and how
many independent renormalization conditions (counterterms)
are compatible with this limit. In this regard, let us recall
that the main advantage of renormalization is that identical
finite and unique results should be obtained regardless of the
method of calculation (coordinate or momentum space) and
regularization provided the same input physical data are used
to eliminate the divergencies. In particular, we also expect
independence of the way in which the limit is taken.

The origin of the conflict can be traced back to the
question of whether for a given energy-independent local
potential, such as Eq. (1), one can assume any short distance
physics regardless of the form of the long range potential.
Renormalization group invariance, however, requires that any
physical parameter sit on a renormalization trajectory and
that the corresponding evolution on the renormalization scale
be dictated by the form of the long distance potential at
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all distances. The precise trajectory is uniquely fixed by a
renormalization condition at very long distances. Thus, the
separation between the short and long distance contributions is
not only scale dependent but also potential dependent [39,40].
Renormalization conditions are physical and do not exhibit
this dependence. Finiteness of the scattering amplitude and
orthogonality of scattering (and eventually bound state) wave
functions impose very tight constraints on the allowed number
of counterterms and their possible scale dependence [41,43].
The discussion becomes rather straightforward in coordinate
space and in terms of boundary conditions for ordinary
differential equations. In addition, unlike momentum space
treatments, a very natural hierarchy of the renormalization
problem takes place in configuration space [41,43]. More
specifically, orthogonality of different energy solutions re-
quires an energy-independent boundary condition on the wave
function for the long distance local and energy-independent
potentials, as is the case for Eq. (1) valid to Next to Next
to Leading Order (NNLO), so that in all cases, the effective
range and higher order threshold parameters cannot be taken
as independent input parameters.1

The results found in Refs. [41,43] can be concisely
summarized as follows in the one channel case. For a regular
potential, i.e., one diverging less strongly than the inverse
square potential, r2|U (r)| < ∞, one may choose between the
regular and irregular solutions. In the first case, the scattering
length is predicted; while in the second case, the scattering
length becomes an input of the calculation. Singular potentials
at the origin, i.e., fulfilling r2|U (r)| → ∞, do not allow this
choice. If the potential is repulsive, the scattering length
depends on the potential; while for an attractive potential, the
scattering length must be chosen as an independent parameter.
In the coupled channel situation, one must look at the strongest
singularity of the potential eigenvalues at the origin and apply
the single channel results.

In our formulation of the NN renormalization problem,
threshold parameters play an essential role. Unfortunately,
scattering threshold parameters for higher partial waves other
than the S waves have never been considered in the context
of chiral potentials [5–10]. Instead, some calculations adjust
their counterterms to fit the phase shifts in the region above
threshold to the Nijmegen database [46,47]. In a recent work,
we filled the gap by carrying out a complete determination
of these threshold parameters for the Reid93 and NijmII
potentials [48]. In light of this new information, it is quite
possible that the good fits in the intermediate-energy region
imply a somewhat less accurate description in the threshold
region. This issue will become relevant in the description of
some partial waves.

The paper is organized as follows. In Sec. II, we review the
formalism for coupled channel scattering in the presence of
singular potentials at the origin. For completeness, we list the
potentials in Appendix A. Based on the short distance behavior
of those potentials (see Appendix B) and the requirement

1Actually, the potential in Eq. (1) contains distributional contribu-
tions, which strictly speaking are zero for any finite distance. See the
discussion in our previous work [43].

of orthogonality, we determine the number of independent
parameters for any partial wave with j � 5. In Sec. III, we
present our results for the phase shifts. Specifically, we make a
thorough analysis of cutoff dependence in all partial waves, for
both for the OPE and the chiral TPE potentials. We also discuss
the perturbative nature of peripheral waves within the present
nonperturbative approach. Finally, in Sec. IV we present our
conclusions.

II. FORMALISM

We solve the coupled channel Schrödinger equation for
relative motion, which in compact notation reads

−u′′(r) +
[

U(r) + l2

r2

]
u(r) = k2u(r), (2)

where U(r) = 2µnpV(r) is the coupled channel matrix reduced
potential, with µnp = MpMn/(Mp + Mn), which is the re-
duced proton-neutron mass. For j > 0, it can be written as

U0j (r) = U
0j

jj ,

U1j (r) =


U

1j

j−1,j−1(r) 0 U
1j

j−1,j+1(r)

0 U
1j

jj (r) 0

U
1j

j−1,j+1(r) 0 U
1j

j+1,j+1(r)


 . (3)

In Eq. (2), l2 = diag[l1(l1 + 1), . . . , lN (lN + 1)] is the orbital
angular momentum, u(r) the reduced matrix wave function,
k the c.m. momentum, and j the total angular momentum. In
our case, N = 1 for the spin singlet channel with l = j, and
N = 3 for the spin triplet channel with l1 = j − 1, l2 = j, and
l3 = j + 1. The potentials used in this paper were obtained in
Refs. [3–5] in coordinate space and are listed in Appendix A
for completeness.

A. Long distance behavior

At long distances, we assume the usual asymptotic normal-
ization condition

u(r) → ĥ(−)(r) − ĥ(+)(r)S, (4)

with S the coupled channel unitary S matrix. The correspond-
ing outgoing and ingoing free spherical waves are given by

ĥ(±)(r) = diag(ĥ±
l1

(kr), . . . , ĥ±
lN

(kr)), (5)

with ĥ±
l (x) the reduced Hankel functions of order l,

ĥ±
l (x) = xH±

l+1/2(x)[ĥ±
0 (x) = e±ix], and they satisfy the free

Schrödinger’s equation for a free particle.
For the spin singlet state s = 0, one has l = j , and hence

the state is uncoupled, that is,

S
0j

jj = exp
(
2iδ

0j

j

)
, (6)

whereas for the spin triplet state s = 1, one has the uncoupled
l = j state, that is,

S
1j

jj = exp
(
2iδ

1j

j

)
, (7)

and the two channel coupled l, l′ = j ± 1 states for which we
use Stapp-Ypsilantis-Metropolis (SYM or nuclear bar) [49]
parametrization
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S1j =
(

S
1j

j−1j−1 S
1j

j−1j+1

S
1j

j+1j−1 S
1j

j+1j+1

)
=

(
cos (2ε̄j ) exp

(
2iδ̄

1j

j−1

)
i sin (2ε̄j ) exp

[
i
(
δ̄

1j

j−1 + δ̄
1j

j+1

)]
i sin (2ε̄j ) exp

[
i
(
δ̄

1j

j−1 + δ̄
1j

j+1

)]
cos (2ε̄j ) exp

(
2iδ̄

1j

j+1

)
)

In the discussion of low-energy properties, we also use the
Blatt-Biedenharn (BB or eigenphase) parametrization [50]
defined by

S1j =
(

cos εj −sin εj

sin εj cos εj

) (
(exp

(
2iδ

1j

j−1

)
0

0 exp
(
2iδ

1j

j+1

)
)

×
(

cos εj sin εj

−sin εj cos εj .

)
. (8)

The relation between the BB and SYM phase shifts is

δ̄
1j

j+1 + δ̄
1j

j−1 = δ
1j

j+1 + δ
1j

j−1, (9)

sin
(
δ̄

1j

j−1 − δ̄
1j

j+1

)
= tan(2ε̄j )

tan(2εj )
. (10)

In the present paper, zero-energy scattering parameters play
an essential role since they are often used (see below) as input
parameters of the calculation of phase shifts. Due to unitarity
of the S matrix in the low-energy limit, k → 0, we have

(S − 1)l′,l = −2iαl′,lk
l′+l+1 + · · · , (11)

with αl′l the (Hermitian) scattering length matrix.2 The
threshold behavior acquires its simplest form in the SYM
representation

δ
0j

j → −α
0j

j k2j+1, (12)

δ
1j

j → −α
1j

j k2j+1, (13)

δ̄
1j

j−1 → −ᾱ
1j

j−1k
2j−1, (14)

δ̄
1j

j+1 → −ᾱ
1j

j+1k
2j+3, (15)

ε̄j → −ᾱ
1j

j k2j+1. (16)

In the BB form, one has similar behaviors for the δ’s, but εj

behaves as k2j instead of k2j+1, that is,

δ
1j

j−1 → −ᾱ
1j

j−1 k2j−1, (17)

δ
1j

j+1 → −

ᾱ

1j

j+1 −
(
ᾱ

1j

j

)2

ᾱ
1j

j−1


 k2j+3, (18)

εj → ᾱ
1j

j

ᾱ
1j

j−1

k2j . (19)

2For non-S-wave scattering, the dimension of αl,l′ is fml+l′+1 which
is not a length. For simplicity, though, we will call them scattering
lengths.

B. Short distance behavior

The form of the wave function at the origin is uniquely
determined by the form of the potential at short distances (see,
e.g., Refs. [34,35] for the case of one channel and Refs. [41,43]
for coupled channels). For the chiral NN potential, Eq. (1),
one has

ULO(r) → MC3,LO

r3
,

UNLO(r) → MC5,NLO

r5
,

UNNLO(r) → MC6,NNLO

r6
, (20)

where LO includes the first term in Eq. (1), NLO the first two
terms, and so on. Note that higher order potentials become
increasingly singular at the origin. For a potential diverging at
the origin as an inverse power law, one has

U(r) → MCn

rn
, (21)

with Cn a matrix of generalized van der Waals coefficients and
n > 2 an integer. One diagonalizes the matrix Cn by a constant
unitary transformation G, yielding

MCn = G diag
(±Rn−2

1 , . . . ,±Rn−2
N

)
G−1, (22)

with Ri constants with length dimension. The plus sign
corresponds to the case with a positive eigenvalue (repulsive)
and the minus sign to the case with a negative eigenvalue
(attractive). Then, at short distances, one has the solutions

u(r) → G


 u1,±(r)

· · ·
uN,±(r)


 , (23)

where for the attractive and repulsive cases, one has

ui,−(r) → Ci,−

(
r

Ri

)n/4

sin

[
2

n − 2

(
Ri

r

) n
2 −1

+ ϕi

]
, (24)

ui,+(r) → Ci,+

(
r

Ri

)n/4

exp

[
− 2

n − 2

(
Ri

r

) n
2 −1

]
, (25)

respectively. This behavior of the wave functions near the
origin is valid regardless of the energy, provided the distances
are small enough.3 Here, ϕi are arbitrary short distance phases
which in general depend on the energy. There are as many

3In fact, the next correction to the near-the-origin wave func-
tions, which is energy dependent, is suppressed by a relative
(kR)2(r/R)n/2+1 power with respect to the main term, so it is
negligible in the r → 0 limit.
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short distance phases as there are short distance attractive
eigenpotentials. Orthogonality of the wave functions at the
origin yields the relation

N∑
i=1

[uk,i
∗u′

p,i − u′
k,i

∗
up,i]|r=0 =

A∑
i=1

cos(ϕi(k) − ϕi(p)),

(26)

where A � N is the number of short distance attractive
eigenpotentials.

The simplest choice for fixing relative phases for a positive-
energy scattering state is to take the zero-energy state p = 0 as
a reference state and the zero-energy short distance phase. In
the particular case in which only one eigenvalue is negative, the
short distance phase is energy independent. This may happen
both in the singlet as well as in the triplet channels with
j = l. The short distance phase is then fixed by reproducing
the scattering length in the singlet channel and one of the three
scattering lengths in the triplet channel. In the case having two
negative, i.e., attractive, eigenvalues (this can only happen in
triplet channels), there are two undetermined short distance
phases which can be fixed by using the corresponding three
scattering lengths. The case of two positive, i.e., repulsive,
eigenvalues does not allow one to fix any scattering length.
The case with two different signs for the eigenvalues fixes
only one scattering length. Note that in this construction and
for two coupled channels, there is no intermediate situation in
which the solution is specified by just two scattering lengths;
one has only zero, one, or three.

Although our arguments are entirely based on analytical
calculations, our conclusions agree with the findings in
Ref. [42] for the OPE case. There, counterterms beyond those
dictated by Weinberg’s power counting are included in the
3P0,

3P2-3F2, and 3D2 waves to ensure renormalizability on
numerical grounds. As we will see below, our renormalized
phase shifts for the special OPE case reproduce essentially
their results, although our TPE nonperturbatively renormalized
amplitudes go beyond these results.

Another issue is that of the establishment of a theoretically
compelling and mathematically consistent power counting
which also provides phenomenological success. This has been
the goal of much of the EFT activity in recent years. Despite
the fact that our OPE is mathematically identical to the one in
Ref. [42], where a strong emphasis on power counting has been
made, our motivation is slightly different. Actually, these au-
thors argue that a consistent scheme for TPE might be achieved
within a perturbative framework, using the nonperturbative
OPE distorted amplitudes as the leading order approximation.
This is theoretically appealing, and the issue was thoroughly
discussed within the coordinate space approach in our previous
paper on the central waves [43]. There, we pointed out that
with enough counterterms, such a program could be pursued,
although orthogonality was violated and results did not exhibit
a clear improvement over the fully iterated potentials. The
reason was the appearance of nonanalytical dependences
on the would-be dimensional power counting parameter, a
situation that had not been foreseen in the standard EFT setup.
This suggests that the discussion on power counting and the
systematics of EFT is not yet over. Therefore, as we did

in our previous work, we focus more on establishing long
range model-independent correlations, leaving the possible
establishment of a satisfactory power counting for future
studies.

C. Regularization methods

In principle, one can implement the short distance behavior
of the wave functions, Eq. (25), if one goes to sufficiently small
distances or if the short distance behavior of the the wave
function is improved [41]. Computationally, the implemen-
tation of short distance regulators is mostly straightforward.
The attractive or repulsive nature of the potentials at short
distances requires different choices of regulators [41,43]. For
a one-channel repulsive singular potential, we use the regulator

u′
k(a)

uk(a)
= l + 1

a
. (27)

This condition ensures orthogonality of wave functions with
different energy. For the attractive singular case, we integrate
in from infinity at zero energy down to a given boundary
radius a, impose orthogonality at the boundary by matching
logarithmic derivatives

u′
k(a)

uk(a)
= u′

0(a)

u0(a)
, (28)

and then integrate out at finite energy. In the coupled channel
case, we extend the method by applying the one channel
regularization to the short distance eigenfunctions, Eq. (23).

D. Fixing of parameters and renormalization conditions

Fixing the short distance phases requires some renormal-
ization conditions. As we have said, an appealing choice is
to impose this condition at zero energy. The way to proceed
in practice is quite straightforward though tedious given the
large number (27) of partial waves considered in this work.
In the singlet channel case and for an attractive short distance
singularity, one starts at zero energy and integrates in from
large distances of ∼15 fm with a given scattering length until
a short boundary radius of ∼0.1 fm. At finite energy, one
integrates out, matching the wave function to the zero-energy
solution at the short distance boundary generating a phase
shift from a given prescribed scattering length. Of course,
in this method, one has to check for cutoff independence
(taking r = 0.1–0.2 fm proves to be enough). For the coupled
channel case, one proceeds along similar lines; the procedure
has been described in great detail in our previous works [41,43]
for the j = 1 channel. The method relies heavily on the
superposition principle of boundary conditions, and we use
here the extension of that method to higher partial waves. One
advantage of our approach is that we rarely have to make a fit to
the data; any phase shift has by construction the right threshold
behavior when the potential at short distances is attractive. For
the repulsive potential case, the scattering length is predicted
entirely from the potential. In any case, discrepancies with the
data can be attributed to the potential.
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TABLE I. Sets of chiral coefficients considered in this work.

Set Source c1(GeV−1) c3(GeV−1) c4(GeV−1)

I πN [31] −0.81 −4.69 3.40
II NN [5] −0.76 −5.08 4.70
III NN [7] −0.81 −3.40 3.40
IV NN [8] −0.81 −3.20 5.40

Inspection of Table I illustrates the situation for the LO,
NLO, and NNLO approximations to the potential. We show
the scattering lengths in all partial waves as determined
in our previous work [48] together with the corresponding
eigenvalues for the leading short distance coefficients in the
LO (OPE), NLO, and NNLO approximations to the potential.
In the NNLO, one must also specify the values of the chiral
constants c1, c3, and c4. We use for definiteness the values
of Ref. [8], since, as we saw in Ref. [43], they provide a
reasonable description of deuteron properties.

E. Details on the numerical procedure

The integration of the coupled differential equations re-
quires some care, particularly in the vicinity of the short
distance singularities. In the case of attractive singularities,
because of the increasing oscillations, the wave function has
to be sampled with great detail at a rate similar to the size
of the oscillations. For the repulsive case, one must stop
at sufficiently large distances because of the exponential
suppression of the wave function. Another important condition
has to do with preservation of in and out reversibility of
the integration. This last requirement guarantees that for
attractive channels, where the scattering length is supplied
as an input parameter, the threshold behavior of the phase shift
is consistent with that given scattering length.

Another problem one has to face for high partial waves is
related to the practical influence of the scattering length on
the calculated phase shifts. In principle, and for an attractive
singular potential, the scattering length needs to be specified.
For the one channel case, this is done by integrating in the
zero-energy large distance solution, valid for r � 2/mπ ,

u(r) → r−l − rl+1

αl

. (29)

The long distance irregular solution dominates, unless αl is
anomalously large, i.e., αl(mπ/2)(2l+1) � 1, so that when
integrating in, much of the regular solution will be lost
and the result will be rather insensitive to the value of αl

provided it is of normal size. This fact becomes relevant in the
numerical calculations if the long distance cutoff is taken to
be exceedingly large. To avoid this situation we take typically
Rmax = 15 fm for large l.

III. RESULTS FOR PHASE SHIFTS

A. Numerical parameters

For our numerical calculations, we take fπ = 92.4 MeV,
m = 138.03 MeV, 2µnp = M = MpMn/(Mp + Mn) =
938.918 MeV, and gA = 1.29 in the OPE piece to account for

the Goldberger-Treimann discrepancy, and gA = 1.26 in the
TPE piece of the potential. The corresponding pion nucleon
coupling constant takes, then, the value gπNN = 13.083
(i.e., gA = 1.29) according to the Nijmegen phase-shift
analysis of NN scattering [51]. The values of the coefficients
c1, c3, and c4 used in this paper can be looked up in
Table II for completeness. The potentials in configuration
space used in this paper are exactly those provided in Refs.
[3–5] but disregarding relativistic corrections, M/E → 1.4

The potentials are listed in Appendix A for completeness.
The short distance van der Waals coefficients for all channels
studied in the present work are presented in Appendix B.
The output of such a channel-by-channel analysis is briefly
summarized in Table II, where we indicate which scattering
lengths are used as input parameters according to the
discussion given in Sec. II. Low-energy parameters for
the high quality potentials [46,47] have been obtained in
Ref. [48]. We will use the NijmII values, but to give an idea
of the expected lower uncertainties on those parameters, we

4As mentioned in our previous work [43] these effects are tiny for the
deuteron. For central waves they are about 0.2◦ at the maximum c.m.
momentum p = 400 MeV. This trend is general also for peripheral
waves.

TABLE II. Number of independent parameters for different
orders of approximation of the potential. Scattering lengths are in
fml+l′+1 and are taken from NijmII and Reid93 potentials [47] in
Ref. [48]. We use the (SYM-nuclear bar) convention, Eq. (16).

Wave α NijmII (Reid93) LO NLO NNLO

1S0 −23.727( −23.735) Input Input Input
3P0 −2.468( −2.469) Input – Input
1P1 2.797(2.736) – – –
3P1 1.529(1.530) – Input Input
3S1 5.418(5.422) Input – Input
3D1 6.505(6.453) – – Input
E1 1.647(1.645) – – Input
1D2 −1.389( −1.377) – Input Input
3D2 −7.405( −7.411) Input Input Input
3P2 −0.2844( −0.2892) Input Input –
3F2 −0.9763( −0.9698) – – –
E2 1.609(1.600) – – –
1F3 8.383(8.365) – – –
3F3 2.703(2.686) – Input Input
3D3 −0.1449( −0.1770) Input – Input
3G3 4.880(4.874) – – Input
E3 −9.695( −9.683) – – Input
1G4 −3.229( −3.210) – Input Input
3G4 −19.17( −19.14) Input Input Input
3F4 −0.01045( −0.01053) Input Input –
3H4 −1.250( −1.240) – – –
E4 3.609(3.586) – – –
1H5 28.61(28.57) – – –
3H5 6.128(6.082) – Input Input
3G5 −0.0090( −0.010) Input – Input
3I5 10.68(10.66) – – Input
E5 −31.34(−31.29) – – Input
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FIG. 1. Dependence of the 3S1-3D1 channel (SYM-nuclear bar) phase shifts for the NNLO TPE potential on the reference state used to
orthogonalize the scattering state compared with the corresponding phases of the database of Refs. [46,47]. Label TPE(0) means the zero-energy
reference state with α0 = 5.418 fm, α02 = 1.647 fm3, and α2 = 6.505 fm5. Label TPE(B) stands for the deuteron bound reference state with the
experimental binding energy, asymptotic D/S ratio, together with α0 = 5.418 fm (corresponding to α02 = 1.67 fm3 and α2 = 6.6 fm5 [43].)

also list the Reid93 values. Probably the real uncertainties
are much larger since the actual value of these low-energy
parameters will depend upon which long range physics is
included in the high quality potentials where explicit TPE
effects have not been included, as we do in the present work.5

B. The deuteron channel revisited

Before starting a full discussion of all partial waves, it
is interesting to first reanalyze the 3S1-3D1 channel already
studied in our previous work on the deuteron [41,43]. There,
we used the orthogonality to the deuteron bound state. The
scattering lengths α02 = 1.67 fm3 and α2 = 6.6 fm5 were
deduced from the experimental deuteron binding energy, the
asymptotic D/S ratio, and the S-wave scattering length α0.
These values turned out to be a bit off the values deduced
from the NijmII and Reid93 potentials [45] (see Table II).
Nevertheless, the intermediate-energy region turned out to be

5This will generate slight inconsistencies in the TPE results of
Sec. III D3 which will be amended by a small modification of the
threshold parameters, yet larger than the discrepancies between the
threshold parameters for NijmII and Reid93 potentials obtained in
Ref. [48].

better described than the low-energy behavior suggested. In
the present work, we choose instead to build scattering states
which are orthogonal to the zero-energy states, so deuteron
properties can be deduced, as done in Table III. In Fig. 1, we
show the results when either the zero-energy or the deuteron
bound state is used as the reference state. One obvious lesson
from this comparison is that phase shifts, particularly the E1

channel, may be better described in the intermediate-energy
region if the deuteron is used as a reference state, despite the
fact that the threshold behavior is a bit off. This is maybe
explained by the observation that α02 and α2 encode higher
energy information about the system than α0 or γ ,6 so the
latter parameters are more suited to obtaining an effective
description of the system. This feature will become evident in
other partial waves.

C. Cutoff dependence

In Figs. 2–7, we show the results of our calculation for all
partial waves with j � 5 as a function of the nucleon laboratory

6It should be note that α02 and α2 are related to the behavior of the
scattering amplitude at order k2 and k4, respectively, relative to α0.

TABLE III. Deuteron properties for the OPE and TPE potentials. OPE(0) refers to the deuteron computed by orthogonality to the zero-energy
scattering states, fixing α0 to its experimental value; in OPE(B), the computation is made by fixing γ to its experimental value, constructing
the corresponding bound state. Similarly, TPE(0) refers to the deuteron computed by orthogonality to zero-energy states, fixing α0 to its
experimental value and α02 and α2 to their Nijmegen II values; in TPE(B), the computation is made by fixing γ, η, and α0 to their experimental
values. The errors quoted in OPE(0) correspond to the uncertainty in the value of the scattering length; in OPE(B), the errors correspond to
changing the cutoff in the 0.1–0.2 fm range. Errors quoted in both TPE computations reflect the uncertainty in only the nonpotential parameters
γ, η, and α0. We take set IV [8] for the LEC’s in the TPE calculation. Experimental values can be traced from Ref. [52].

Set γ (fm−1) η AS (fm−1/2) rm (fm) Qd (fm2) PD(%) α0 (fm) α02(fm3) α2(fm5)

OPE(0) 0.2274(4) 0.02564(4) 0.8568(10) 1.964(3) 0.2796(3) 7.208(12) Input 1.754(7) 6.770(7)
OPE(B) Input 0.02633 0.8681(1) 1.9351(5) 0.2762(1) 7.31(1) 5.335(1) 1.673(1) 6.693(1)
TPE(0) 0.2322(3) 0.02531(9) 0.8891(4) 1.968(3) 0.2723(3) 7.24(13) Input NijmII NijmII
TPE(B) Input Input 0.884(4) 1.967(6) 0.276(3) 8(1) Input 1.67(4) 6.6(4)
NijmII 0.231605 0.02521 0.8845 1.9675 0.2707 5.635 5.418 1.647 6.505
Reid93 0.231605 0.02514 0.8845 1.9686 0.2703 5.699 5.422 1.645 6.453
Exp. 0.231605 0.0256(4) 0.8846(9) 1.971(6) 0.2859(3) – 5.419(7) – –
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FIG. 2. np (SYM-nuclear bar) phase shifts for the total angular momentum j = 0. OPE (left) and chiral TPE (middle) as a function of the
cutoff radius RS for fixed laboratory energies, ELAB = 10, 50, 100 MeV. OPE and chiral TPE (right) renormalized (i.e., RS → 0) phase shifts
as a function of ELAB compared with the Nijmegen partial wave analysis [46,47].

energy. For definiteness, we use the chiral constants c1, c3,
and c4 of Ref. [8] (set IV), which already provided a good
description of deuteron properties after renormalization [43] at
NNLO. This choice allows a more straightforward comparison
with the N3LO calculation of Ref. [8] with finite cutoffs. Unless
otherwise stated, the needed low-energy parameters for these
figures are always taken to be those of Ref. [48] for the NijmII
potential (see Table II).

To test the stability of the phase shifts against changes in
the short distance cutoff parameter RS , we show in Figs. 2–7
(similar to the OPE study in momentum space of Ref. [42])
the cutoff dependence for fixed values of the laboratory energy
for both the OPE and TPE potentials. This is done in the
range 0.15 � RS � 1.5 fm. If we identify this short distance
cutoff with the sharp momentum cutoff � = π/2RS [45],
the smallest boundary radius, ∼0.15 fm, corresponds to a
maximum cutoff � ∼ 2 GeV. This is much larger than the
cutoffs used in Refs. [5–10] but comparable to the exponential
cutoff used in Ref. [42] for the renormalization of the
OPE potential.7 Note that the limit RS → 0 may be taken
independently for any different channel.

7There, a cutoff has been introduced according to the rule in the
potential V (k′, k) → exp(−k′4/�4)V (k′k) exp(−k4/�4), and coun-
terterms have been added. To get an order of magnitude of the
equivalent sharp cutoff �̃, we estimate the linear divergence at zero
energy in the contact theory,

�̃ =
∫ ∞

0
exp(−2q4/�2)dq = 	( 5

4 )

2
1
4

� = 0.762�,

and using �̃ = π/2RS [45], we get � = 1/(0.48RS).

The evolution of the increasingly oscillating wave function
in the attractive case can be identified with the cycles
(improperly called limit cycles, see footnote 5 in Ref. [40])
described in Refs. [36,38,40,45] by looking at suitable
logarithmic combinations of the wave functions. The cycles
documented in Ref. [42] in momentum space can be mapped
into the coordinate space cycles by relating the coordinate and
momentum space cutoffs.

Generally speaking, the inclusion of chiral TPE effects
generates smoother limits than those in the OPE results,
as one would expect. We checked that for short distance
repulsive (eigen)channels, results are not very sensitive to
the choice of the regulator for small values of RS . As we
also see from the figures, the convergence depends both on
the partial wave as well as on the energy. As expected,
the needed value of the short distance cutoff RS for which
stability is achieved is rather high for peripheral waves,
RS ∼ 1/mπ . Another feature of the calculation is the stability
plateau observed for a number of partial waves. This trend
has also been noted in previous works with finite cutoffs
[11] where sequential cutoff windows appear. In coordinate
space, this is originated by the almost self-similar pattern
of the short distance oscillations of the wave function,
which suggests a sequential and faster convergence modulo
cycles [40].

Let us remark at this point that the existence of an
RS → 0 limit does not necessarily mean a plateaulike

approach to it. This is the case, for example, of the 1S0

wave, which for OPE shows a linear dependence on the cutoff
because of the mild 1/r singularity of the potential, generating
a linearlike behavior which corresponds to the ratio of regular
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FIG. 3. Same as Fig. 2, but for j = 1.
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FIG. 4. Same as Fig. 2, but for j = 2.
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FIG. 5. Same as Fig. 2, but for j = 3.
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FIG. 6. Same as Fig. 2, but for j = 4.
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FIG. 7. Same as Fig. 2, but for j = 5.

064004-12



RENORMALIZATION OF . . . . II. NONCENTRAL PHASES PHYSICAL REVIEW C 74, 064004 (2006)

(∼r) and irregular (∼1) solutions at the origin.8 A similar
behavior can be found on other singlet waves in which the
OPE potential also behaves as 1/r , but is highly attenuated by
the influence of the centrifugal barrier.

Finally, let us note that in some channels, the phase shifts
exhibit a very strong dependence on the regulator.9

D. Renormalized phase shifts

1. LO (OPE)

In Figs. 2–7 we also compare the OPE (LO), the NNLO
TPE, and the Nijmegen phase-shift analysis [46,47]. As
noted in Table II, in some cases with attractive singular
potentials, some scattering lengths must be specified in order to
determine the phase shifts; but for repulsive singular potentials,
the scattering lengths and hence the phase shifts are fully
determined from the potential. In the coupled channel case,
where only one parameter should be fixed, we have chosen,
as indicated in Table II, to take the scattering length of the
corresponding partial wave with the lower orbital angular
momentum. As we see from Figs. 2–7, OPE does a relatively
good job for the phases when compared to the NijmII results,
up to a reasonable energy. This calculation extends our
previous results [41] using the same regularization for the
singlet 1S0 and triplet 3S1-3D1 channels.

The LO results corresponding to static OPE potentials have
also been obtained recently in momentum space by a solution
of the Lippmann-Schwinger equation in Ref. [42] for j � 3.
These authors see that in the limit � → ∞ (in practice, � =
4 GeV), it is always possible to adjust a counterterm in such
a way that the phase shifts are cutoff independent. They also
find that the needed counterterm does not correspond to the
expectations based on Weinberg’s dimensional power counting
argument, so one is forced to promote counterterms which are
of higher order in Weinberg’s counting to make the theory
free of short distance ambiguities. This proposal not only fits
quite naturally into our analysis of short distance boundary
conditions, but also can be anticipated by just looking at
the short distance behavior of the potential. In general, we
reproduce their results for the phase shifts using our boundary
condition regularization (our shortest distance cutoff is typi-
cally a = 0.1 fm for OPE). This is precisely one of the points
of renormalization; different regularization methods should

8Anyway, the lack of a clear plateau in this wave becomes
obvious in the coordinate space treatment. Assuming the relationship
� ∼ 1/(0.48RS) for a Gaussian cutoff (see footnote 7) between
the momentum and coordinate space cutoffs, a linear dependence
of the phase shifts on the RS coordinate cutoff would map into a
1/� dependence in momentum space, which might be regarded as
a plateau in a sufficiently thin cutoff window. Note that going from
Rs = 0.2 fm to Rs = 0.1 fm corresponds equivalently to double the
momentum space cutoff from ∼2 to ∼4 GeV.

9The jump in the evolution of the OPE potential in the 3D3 channel
around RS = 0.3 fm (Fig. 5) resembles a coupled channel resonance,
corresponding to tunneling across the centrifugal barrier into the short
distance attractive singularity.

yield identical results when the regulator is removed provided
the same renormalization conditions are imposed. Note that
in our case, whenever a scattering length must be provided
we exactly construct the phase shift so as to reproduce the
threshold behavior of the Nijmegen phases [46,47] by exactly
fixing the scattering length (the renormalization condition).
This requires solving the zero-energy problem by integrating in
with the given scattering length and matching at short distances
the finite-energy problem to finally determine the phase shift
by integrating out. In this approach, we never make a fit. In
the approach of Ref. [42], counterterms are adjusted to fit the
phases in the region around threshold. Although this is in spirit
the same renormalization condition to fix the counterterms, we
expect some numerical discrepancies, because the threshold
parameters in Ref. [42] may be slightly different than ours.

2. NLO (TPE)

Regarding NLO, we do not show the results because they
fail completely to describe the data in the triplet 3S1-3D1

channel. The problem we found already [43] in the triplet
3S1-3D1 channel persists in other channels; the short distance
behavior of the NLO potential corresponds to 1/r5 repulsive
eigenpotentials. This feature explains the relatively small
maximal cutoffs allowed in NLO calculations in momentum
space. As stressed in our previous work, there are at least
two scenarios in which the problem may be overcome. One
possibility appeals to the role of the 
 resonance and the
fact that its contribution to c3 and c4 scales as the inverse
of the N
 splitting 
 ∼ 2mπ as found in Refs. [3,13,53].
In the 
 counting, the c3 and c4 contributions to the NNLO
deltaless potential become actually NLO contributions, and the
short distance behavior becomes a 1/r6 attractive singularity.
The second scenario has to do with the influence of relativity
beyond a truncated heavy baryon expansion, since according
to Refs. [25–27] one has a relativistic 1/r7 van der Waals short
distance behavior with attractive-repulsive eigenpotentials,
meaning that as in the OPE case one has one free parameter.
Calculations taking into account these effects in all partial
waves are currently underway [54].

3. NNLO (chiral-TPE)

We turn now to the NNLO calculation which contains
the chiral constants c1, c3, and c4 (see, e.g., Table I) and for
definiteness we will use mainly set IV [8] in our analysis.10

Results for the TPE renormalized phase shifts are presented in
Figs. 2–7. Some expected features do indeed occur. Peripheral
waves are slightly modified by going from OPE to the chiral
TPE potential. On the other hand, low partial waves are also
improved in the low-energy region. For instance, the 1S0

phase has an attractive singular interaction, requiring fixing the

10The NNLO potential contains parameters which are relating πN

and NN data in some intricate way. We are using parameter set IV [8]
because it nicely reproduces the deuteron properties. One could, of
course, improve on this by a large-scale fit to the data.
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scattering length. The difference in the curves is mainly related
to the difference in the effective range, which improves when
going from OPE to TPE [43]. This is a rather general feature;
the error at low energies is controlled by the low-energy
threshold parameters such as the effective range. If one looks
at the 3P0 channel, we see that there is improvement but not as
dramatic as in the 1S0 channel.

As we have said, in singular repulsive channels, which at
NNLO correspond to the 1P1,

1F3, and 1H5 singlet states and to
the 3P2-3F2 and 3F4-3H4 triplet states, the phase shift and the
scattering length are entirely determined by the potential. So,
these phases are a good place in which to study the influence of
different values for the chiral constants c1, c3, and c4, presented
in Table I. In Fig. 8, we show this dependence for these special
partial waves. As we see, the 1P1 phase exhibits a strong
dependence on the parameter set, while 1F3 and 1H5 are less
sensitive to this particular choice. The strong dependence in
the 1P1 channel suggests that this may be an ideal place in
which to fit the chiral constants, since the scattering lengths
are fixed. We will not attempt such a determination of the
chiral constants here because that would require realistic error
estimates of the phase shifts.

If we restrict ourselves to the spin singlet channels, we
see that there is very good agreement for higher peripheral
waves, 1H5,

1G4, and 1F3. This is expected from perturbative
calculations. Note, however, that unlike perturbation theory,

we fix by construction the scattering lengths for the cases of
singular and attractive potentials. Some intermediate waves,
such as 1D2, for which potential is singular attractive, are badly
reproduced despite the fact that the threshold behavior is in
theory reproduced, since we use the corresponding scattering
length as input. Actually, for these waves the TPE result seems
to worsen the OPE prediction. Presumably this is an indication
of either the inadequacy of the (NijmII) scattering lengths used
as input for NNLO or the importance of N3LO contributions.
Let us note that the NijmII potential does not incorporate
explicit TPE effects in their long range part. In fact, if we
take a slightly different scattering length, α2 = −1.666 fm5,
instead of the values deduced in Ref. [48] (α2 = −1.389 fm5)
for the NijmII potential, a rather good agreement with the
Nijmegen analysis is obtained for the 1D2 phase shift (see
similar results for 3P0 and 3P1 waves in Fig. 9). Although
the small difference between the fitted and experimental values
for the scattering length could also be explained by N3LO
corrections, suggesting that they are not large, a definite
conclusion cannot be drawn in the absence of a large-scale fit.11

11This also applies to the nonstatic OPE corrections which account
for about 0.1◦ at ELAB = 200 MeV. The effect can be mocked up by
even tinier readjustments of both the scattering lengths and the chiral
couplings c1, c3, and c4 than deduced from inaccuracies in the NijmII
potentials.
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These general trends are confirmed in the triplet channels,
where in high partial waves there is an overall improvement
when going from OPE to TPE. In some cases, as in the
3D2, ε2,

3P2, and 3F2, the improvement is rather satisfactory
all over the energy range. However, the theory has notorious
problems in the 3P1 and ε1 and to a lesser extent in the 3D3 and
E1 channels if one insists on keeping the scattering lengths of
the NijmII potential. As before, small changes in the scattering
lengths allow for an overall improved description, as can
be deduced from Fig. 8 in some particular cases (see also
Fig 1). This suggests that higher orders in the potential may be
needed. This fact was pointed out in our previous work on
the central phases, where the NNLO potential almost
made the effective range, although there was a statistically
significant discrepancy to the experimental number, which
called for the inclusion of N3LO terms. This may possibly
happen also in some higher partial waves, and it would be
interesting to see whether improved long distance potentials
might account for the observed discrepancies to phase shifts
provided the scattering lengths are kept to their physical
values.

As we have shown (see Fig. 8), small changes in the
scattering lengths indeed allow a better description of the
phases in the intermediate-energy region. On the other hand,
we would expect our description to become increasingly better
for lower energies. This situation is a bit disconcerting. Given
the similarity between the scattering lengths computed in
Ref. [48] for the NijmII and Reid93 potentials, it seems
unlikely that potential models yield a completely off value for
the α’s in noncentral waves, but one must admit that errors will
in general be larger than suggested by the difference between
these two potential values, as already argued above. If one
takes into account the fact that both potentials include similar
long range physics, this means that the true error could be
larger due to systematic uncertainties in their short range part
(non-OPE).

Nevertheless, let us mention that current calculations in-
volving chiral potentials not only ignore this possible disagree-
ment at threshold but also in fact modify the corresponding
scattering lengths since the counterterms are determined by
a fit to the phase shifts in the region above threshold with
no obvious control on the low-energy parameters (see, e.g.,
Ref. [42]). The arguments above do not prove that taking
slightly different scattering lengths than those suggested by
the high quality potentials is a legitimate operation, but at
least they show that no more assumptions are made. From this
viewpoint, it might be profitable to study the impact on those
calculations of either imposing exact threshold behavior or,
alternatively, evaluating the threshold parameters themselves.

E. Remarks on the perturbative nature of peripheral waves

The numerical coincidence of our nonperturbative calcu-
lations with perturbation theory expectations [4,24], although
quite natural on physical grounds, deserves some explanation
on the basis of the formalism and the relevance of short distance
singularities. Indeed, the attractive character of the singular
NNLO potentials at the origin implies a nontrivial boundary
condition of the form of Eq. (24), which cannot be reproduced

to any given order in perturbation theory, at least without the
inclusion of extra counterterms in the perturbative expansion, a
point which will be further discussed at the end of this section.
This point was previously illustrated in Ref. [36] for s waves
and also in our previous work on the renormalization of the
OPE [41] by comparing the exact deuteron wave functions
with the perturbative ones. There, one observes that the first-
order perturbative calculation provides finite results, but the
expansion at second order produces divergent results because
of the short distance nonnormalizable D-wave component.
Thus, observables cannot, strictly speaking, be analytical
functions of the coupling (for the purpose of discussion we
could visualize the problem by thinking of singularities of
the sort g2 + g4 log g2). This does not mean that for the
physical range of couplings the nonanalytical contribution is
necessarily large numerically. For instance, in the deuteron
channel, the residual nonanalytical higher order terms happens
to be numerically sizable even for a weakly bound deuteron.

Based on the results of Ref. [41], there is no reason to
expect that higher partial waves will not exhibit this failure
of perturbation theory at some finite order. Nevertheless, the
perturbative short distance behavior of higher partial waves
tames the singularity because of the kinematic rl suppression.
This is a perturbative long distance feature in which the
centrifugal barrier dominates. The point is that this short
distance behavior is not invariant order by order in strict
perturbation theory for a singular potential, and, actually, one
finds a short distance enhancement of the wave function even
in perturbation theory. So, one expects that the perturbation
theory on a singular potential will diverge at some finite order
also for high partial waves. In Appendix C, we show that
this is indeed the case; for a singular potential diverging like
1/rn(n > 2) and a partial wave with angular momentum l, the
perturbative expansion diverges at kth order in perturbation
theory, provided k > (2l + 1)/(n − 2). This estimate provides
the order at which, if desired, a long distance perturbation
theory on boundary conditions might be applied as discussed
previously for the deuteron channel [41]. Using the techniques
developed in Ref. [43] to make perturbation theory on distorted
OPE central waves, it would be interesting to see, as claimed
by the renormalization arguments put forward by Birse on the
OPE [55], whether such an expansion is indeed possible.

Having established that perturbation theory will diverge at
some finite order, we would now like to understand why it
still can accurately represent the full nonperturbative solutions
obtained numerically. The reason can be found in the very
efficient way in which the short distance singularity of the
potential makes short distances inessential in the wave function
for the regular nonperturbative solution. For high angular
momenta and attractive singular potentials, the wave function
senses the singularity after tunneling through the barrier, an
exponentially suppressed effect. In perturbation theory, the
effect is just substituted by the core provided by the centrifugal
barrier.

IV. CONCLUSIONS

In the present paper, we have analyzed the renormalization
of noncentral waves for NN scattering for the OPE and
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chiral TPE potentials. This calculation extends our previous
studies on central phases and the deuteron for OPE and TPE
potentials presented in Refs. [41,43], respectively. As already
stressed in those works, the requirement of finiteness of the
scattering amplitude as well as the orthogonality of wave
functions impose tight constraints on the allowed structure
of counterterms for a given potential. Using the standard
Weinberg counting for the potential, the counterterm structure
is deduced and does not generally coincide with the naive
expectations. In some cases, counterterms which are higher
order in the Weinberg counting must be allowed [41,42],
whereas in some other cases allowed counterterms must be
excluded [43]. Finite cutoff calculations based on the Weinberg
counting allow one to introduce counterterms which are
usually readjusted to globally fit the data but are forbidden by
finiteness and orthogonality, in renormalized calculations. The
success of the original counting relies heavily on keeping the
cutoff finite, while at the same time, it is usually emphasized
that low-energy physics does not depend crucially on short
distance details. As we have argued, these two facts are
mutually contradicting; the standard Weinberg counting is
incompatible with exact renormalization, i.e., removing the
cutoff, as was suggested in Ref. [56] within a perturbative setup
and shown in Ref. [42] nonperturbatively, at least in the heavy
baryon expansion and when only nucleons and pions are taken
into account. This feature changes when relativistic effects
and 
 degrees of freedom are taken into account, showing
that perhaps renormalization, i.e., the independence on short
distance details, may be a strong condition on admissible
potentials. In this regard, we find that, as one would expect,
the cutoff dependence is milder for the chiral TPE potential
than for the OPE potential. This suggests that higher order
corrections become even more cutoff independent. Indeed, the
finite cutoff N3LO calculations of Ref. [11] do exhibit this
feature in spite of the strong cutoff dependence observed at
lower orders.

Using this modified Weinberg counting, the quality of the
agreement and improvement depends on the particular partial
wave. High partial peripheral waves, when treated nonpertur-
batively reproduce the data fairly well, and deviations from
OPE to TPE are small, as one would expect in a perturbative
treatment. Nevertheless, we have also shown that regardless
of the orbital angular momentum, there is always a limit
to the order in perturbation theory for which finite results
are obtained. The divergence is related to an indiscriminate
use of the perturbative expansion and not to an intrinsic
deficiency in the definition of the scattering amplitude. Thus,
also for peripheral waves, the phase shifts are perturbatively
renormalizable with an increasing number of counterterms,
whereas they are nonperturbatively renormalizable with a
finite number of counterterms. This result extends a similar
observation for the deuteron [40,41]. Nevertheless, we have
also argued as to why convergent perturbative calculations
to finite order are useful and may even provide accurate
descriptions when compared with nonperturbative results.

Unlike naive expectations, it is not always true that after
renormalization the NNLO TPE phases improve over OPE
ones if one insists on keeping the scattering lengths required
by finiteness to the same physical values as those extracted

[48] from the high quality Nijmegen potentials [47]. This
renormalization condition at zero energy was adopted to
highlight the difference between these potentials [47] and
the chiral NNLO singular potentials [4]. Remarkably, using
zero energy to fix the parameters has never been considered
before within the chiral potentials approach to NN scattering;
thus, some of the problems we find and discuss have not even
been identified so far. Actually, we find that some partial
waves such as 1D2 and 3P1 are particularly sensitive to the
value of the scattering length. In fact, it is found that small
deviations of the scattering lengths at the few percent level
in these partial waves improve dramatically the description in
the intermediate-energy region. The improvement can also
be achieved in other partial waves by suitably tuning the
scattering lengths in all the channels characterized by singular
attractive interactions. This means that the absolute error is
small up to ELAB ∼ 100 MeV. Three-pion exchange effects
should become relevant at about c.m. momentum of k = 3m/2,
which corresponds approximately to this laboratory energy.
The modification corresponds to changing the renormalization
condition to some finite energy or to maximizing the overlap
between the chiral phase shifts and the fitted ones in a given
energy window, very much along the lines pursued in previous
works. However, changing the scattering lengths produces
large relative errors near the threshold. At this point, the
discussion on errors in the phase shifts becomes a crucial
matter, particularly in the low-energy region. In this regard,
it seems likely that the difference in low-energy threshold
parameters determined in Ref. [48] for the Reid93 and NijmII
in all partial waves with j � 5 provides a lower bound for
the true error. Obviously, a meticulous error analysis of these
threshold parameters would be very helpful.

We have also found that some partial waves, with repulsive
singular interactions and where no free scattering lengths
are allowed, are particularly sensitive to the choice of chiral
constants c1, c3, and c4. This suggests that a fit of the chiral
constants to these partial waves may be possible. To do so, a
realistic estimate of the errors of the phase shifts would again
be mandatory. According to our findings on the deuteron for
the chiral TPE potential [43], it is quite likely that, if such an
error estimate were reliably done, theoretical determinations
for deuteron observables with unprecedented precision based
on chiral potentials might be achieved. This issue is currently
under consideration and is left for future research [57].

From a practical viewpoint, there is a potential disadvantage
in requiring exact renormalization for the approximated long
distance chiral potentials, because of the tight constraints
imposed by finiteness on the short distance behavior of the
wave functions. To some extent, although the chiral potentials
are motivated by the effective field theory idea, these additional
conditions remind us also of aspects of renormalization of
fundamental theories. This is not entirely surprising since we
expect the chirally based potentials to resemble the correct long
range NN physics, at least at sufficiently long distances. For
instance, OPE is the leading long distance contribution, while
full TPE would be a subleading part, which is known in an
approximate manner within the current ChPT schemes based
on dimensional power counting. Nevertheless, the essential
difference is that nonperturbative dimensional transmutation,

064004-16



RENORMALIZATION OF . . . . II. NONCENTRAL PHASES PHYSICAL REVIEW C 74, 064004 (2006)

i.e., the generation of dimension-full parameters not encoded
in the potential, occurs because of the singular and attractive
nature of long distance interactions already at the lowest
order approximation consisting of OPE. This nonperturbative
renormalizability is the essential feature that makes this
problem particularly tough and so distinct from the previous
experience of perturbative renormalization on effective field
theories or finite cutoff representations of the problem.

The present work shows not only that the theoretical
requirement of renormalizability can be implemented as a
matter of principle and as a practical way of controlling short
distance ambiguities in the predictions of chiral perturbation
theory for the study of NN scattering, but also that interesting
physical and phenomenological insights are gathered from
such an investigation. We have shown the conditions under
which such a program can successfully be carried out as a
possible alternative and model-independent way of describing
the data by using very indirect, but essential, information
on the implications of chiral symmetry for the NN problem
below the pion production threshold.
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APPENDIX A: POTENTIALS

For completeness, we list here the potentials found in
Ref. [4] and used in this paper. In coordinate space, the general
form of the potential is written as

VNN = VC(r) + �τ1 · �τ2WC(r)

+ [VS(r) + �τ1 · �τ2WS(r)] �σ1 · �σ2

+ [VT (r) + �τ1 · �τ2WT (r)] (3�σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2)

+ [VLS(r) + �τ1 · �τ2WLS(r)] �L · �S. (A1)

For states with good total angular momentum, one obtains

U
0j

jj (r) = M [(VC − 3VS) + τ (WC − 3WS)] , (A2)

U
1j

jj (r) = M[(VC + VS − VLS) + τ (WC + WS − WLS)

+ 2(VT + τWT )], (A3)

U
1j

j−1,j−1 = M[(VC + τWC + VS + τWS) + (j − 1)

× (VLS + τWLS) + 2(j − 1)

2j + 1
(VT + τWT )],

(A4)

U
1j

j−1,j+1 = −6
√

j (j + 1)

2j + 1
M (VT + τWT ) , (A5)

U
1j

j+1,j+1 = M[(VC + τWC + VS + τWS) + 2(j + 2)

× (VLS + τWLS) + 2(j + 2)

2j + 1
(VT + τWT )],

(A6)

with τ = 2T (T + 1) − 3. Remember that Fermi-Dirac statis-
tics requires (−1)L+S+T = −1.

The LO (OPE) potentials read (x = mπr)

WOPE
S = g2m3

48πf 2

e−x

x
, (A7)

WOPE
T = g2m3

48πf 2

e−x

x

(
3 + 3

x
+ 1

x2

)
, (A8)

all others being zero.
The nonvanishing NNLO (TPE) potentials are given by

V TPE
C (r) = 3g2m6

32π2f 4

e−2x

x6

{(
2c1 + 3g2

16M

)
x2(1 + x)2 + g5x5

32M

+
(
c3 + 3g2

16M

)
(6 + 12x + 10x2 + 4x3 + x4)

}
,

WTPE
T (r) = g2m6

48π2f 4

e−2x

x6

{
−

(
c4 + 1

4M

)
(1 + x)(3 + 3x

+x2) + g2

32M

(
36 + 72x + 52x2 + 17x3 + 2x4)},

V TPE
T (r) = g4m5

128π3f 4x4

{
− 12K0(2x) − (15 + 4x2)K1(2x)

+ 3πme−2x

8Mx
(12x−1 + 24 + 20x + 9x2 + 2x3)

}
,

WTPE
C (r) = g4m5

128π3f 4x4

{
[1 + 2g2(5 + 2x2) − g4(23 + 12x2)]

×K1(2x) + x[1 + 10g2 − g4(23 + 4x2)]K0(2x) ,

+ g2mπe−2x

4Mx
[2(3g2 − 2)(6x−1 + 12 + 10x

+ 4x2 + x3)] + g2x(2 + 4x + 2x2 + 3x2)

}
,

V TPE
S (r) = g4m5

32π3f 4

{
3xK0(2x) + (3 + 2x2)K1(2x)

− 3πme−2x

16Mx
(6x−1 + 12 + 11x + 6x2 + 2x3)

}
,

WTPE
S (r) = g2m6

48π2f 4

e−2x

x6

{(
c4 + 1

4M

)
(1 + x)(3 + 3x + 2x2)

− g2

16M
(18 + 36x + 31x2 + 14x3 + 2x4)

}
,

V TPE
LS (r) = − 3g4m6

64π2Mf 4

e−2x

x6
(1 + x)(2 + 2x + x2),

WTPE
LS (r) = g2(g2 − 1)m6

32π2Mf 4

e−2x

x6
(1 + x)2, (A9)

where K0 and K1 are modified Bessel functions. The NLO
terms are obtained by dropping all terms in 1/M and c1, c3,
and c4.
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APPENDIX B: LEADING SINGULARITIES IN THE SHORT
DISTANCE EXPANSION

The determination of the short distance behavior from
the full potentials is straightforward, but it is necessary
to determine the number of independent parameters in
every channel and at any level of approximation. For a
quick reference we list the leading singularity behavior in
Table IV.

APPENDIX C: THE DIVERGENCE OF PERTURBATION
THEORY FOR PERIPHERAL WAVES

In this appendix, we show that for a singular, attractive
or repulsive, potential at the origin which diverges like 1/rn,
there is always a finite order in perturbation theory where the
phase shift diverges, regardless of the particular value of the
angular momentum. Let us consider for simplicity the single
channel case. The radial equation can be transformed into the
integral equation

ul(r) = ĵl(kr) +
∫ ∞

0
Gk,l(r, r

′)U (r ′)ul(r
′)dr ′, (C1)

where Gk,l is the Green function given by

kGk,l(r, r
′) = ĵl(kr)ŷl(kr ′)θ (r ′ − r)

+ ĵl(kr ′)ŷl(kr)θ (r − r ′), (C2)

where θ (x) is the Heavyside step function, θ (x) = 1 for x � 0
and θ (x) = 0 for x < 0, and ĵl(x) = xjl(x) and ŷl(x) = xyl(x)
are the regular and singular reduced spherical Bessel functions,
respectively. To regularize the lower limit of integration in
Eq. (C1), one may assume a short distance regulator which
will eventually be removed. The phase shift is given by

tan δl = −1

k

∫ ∞

0
ĵl(kr)U (r)ul(r). (C3)

In perturbation theory, the successive iteration of Eq. (C1)
produces the Born series

tan δl = −1

k

∫ ∞

0
dr

[
ĵl(kr)

]2
U (r)

−1

k

∫ ∞

0
drdr ′ĵl(kr)U (r)U (r ′)Gk,l(r, r

′)jl(kr ′) + · · · .
(C4)

For our purposes of proving the divergence of perturbation
theory, it is sufficient to analyze the low-energy limit. Using
δl → −αlk

2l+1 and using known properties of the Bessel
functions

ĵl(x) → xl+1

(2l + 1)!!
, ŷl(x) → − (2l − 1)!!

xl
, (C5)

Green’s function becomes

−(2l + 1)G0,l(r, r
′) = rl+1

r ′l θ (r ′ − r) + r ′l+1

rl
θ (r − r ′),

(C6)

TABLE IV. Leading short distance singularity of the NN

reduced potentials, U = 2µV , Eq. (1) to LO, NLO, and NNLO for
all channels considered in this work. The signs of the coefficients for
the one channel case (singlet and triplet) or the eigenvalues for the
triplet coupled channel case determine the number of independent
parameters. c̄3 = c3M and c̄4 = Mc4 are the dimensionless chiral
constants.

Wave LO NLO NNLO

1S0 − g2m2M

16πf 2
1
r

(1+10g2−59g4)M
256π3f 4

1
r5

3g2(−4+24c̄3−8c̄4+15g2)
128π2f 4

1
r6

3P0 − g2M

4πf 2
1
r3

(1+10g2+49g4)M
256π3f 4

1
r5

g2(12+72c̄3+40c̄4+g2)
128π2f 4

1
r6

1P1
3g2m2M

16πf 2
1
r

3(−1−10g2+11g4)M
256π3f 4

1
r5

9g2(4+8c̄3+8c̄4−3g2)
128π2f 4

1
r6

3P1
g2M

8πf 2
1
r3

(1+10g2−41g4)M
256π3f 4

1
r5

g2(−2+36c̄3−4c̄4+19g2)
64π2f 4

1
r6

3S1 0 3(−1−10g2+27g4)M
256π3f 4

1
r5 − 3g2(−4−24c̄3+8c̄4+3g2)

128π2f 4
1
r6

3D1
3g2

8f 2π

1
r3

3(−1−10g2+37g4)M
256π3f 4

1
r5

9g2(−1+2c̄3−2c̄4+2g2)
32π2f 4

1
r6

E1 − 3g2

4
√

2f 2π

1
r3 − 15g4M

64
√

2f 4π3
1
r5

−3g2(−4−16c̄4+3g2)
64

√
2π2f 4

1
r6

1D2 − g2m2M

16πf 2
1
r

(1+10g2−59g4)M
256π3f 4

1
r5

3g2(−4+24c̄3−8c̄4+15g2)
128π2f 4

1
r6

3D2 − 3g2M

8πf 2
1
r3

(1+10g2−89g4)M
256π3f 4

1
r5

g2(−4+18c̄3−10c̄4+15g2)
32π2f 4

1
r6

3P2 − g2M

40f 2π

1
r3

(1+10g2−5g4)M
256π3f 4

1
r5

g2(−9+90c̄3+14c̄4+5g2)
160π2f 4

1
r6

3F2 − g2M

10πf 2
1
r3

(1+10g2+13g4)M
256π3f 4

1
r5

g2(76+360c̄3+104c̄4+175g2)
640π2f 4

1
r6

E2
3
√

3
20

√
2πf 2

1
r3 − 9

√
3g4M

64
√

2f 4π3
1
r5

3
√

3g2(−4−16c̄4+15g2)
320

√
2π2f 4

1
r6

1F3
3g2m2M

16πf 2
1
r

3(−1−10g2+11g4)M
256π3f 4

1
r5 − 9g2(−4−8c̄3−8c̄4+3g2)

128π2f 4
1
r6

3F3
g2M

8πf 2
1
r3

(1+10g2−41g4)M
256π3f 4

1
r5

g2(−2+36c̄3−4c̄4+19g2)
64π2f 4

1
r6

3D3 − g2M

28πf 2
1
r3

(7+70g2−17g4)M
1792π3f 4

1
r5 − g2(76−504c̄3−88c̄4+37g2

896π2f 4
1
r6

3G3 − 5g2M

56πf 2
1
r3

(7+70g2+73g4)M
1792π3f 4

1
r5

g2(66+252c̄3+68c̄4+155g2)
448π2f 4

1
r6

E3
3
√

3g2M

28πf 2
1
r3 − 45

√
3g4M

448π3f 4
1
r5

3
√

3g2(−4−16c̄4+15g2)
448π2f 4

1
r6

1G4 − g2m2M

16πf 2
1
r

(1+10g2−59g4)M
256π3f 4

1
r5

3g2(−4+24c̄3−8c̄4+15g2)
128π2f 4

1
r6

3G4 − 3g2M

8πf 2
1
r3

3(−1−10g2+17g4)M
256π3f 4

1
r5

3g2(2+12c̄3+4c̄4+g2)
64π2f 4

1
r6

3F4
3g2M

28πf 2
1
r3

3(−7−70g2+209g4)M
1792π3f 4

1
r5

3g2(76+168c̄3−88c̄4−127g2)
896π2f 4

1
r6

3H4
15g2M

56πf 2
1
r3

3(−7−70g2+239g4)M
1792π3f 4

1
r5

3g2(−66+84c̄3−68c̄4+137g2)
448π2f 4

1
r6

E4 − 9
√

3g2M

28πf 2
1
r3 − 45

√
3g4M

448π3f 4
1
r5 − 9

√
3g2(−4−16c̄4+3g2)

448π2f 4
1
r6

1H5
3g2m2M

16πf 2
1
r

3(−1−10g2+11g4)M
256π3f 4

1
r5

9g2(4+8c̄3+8c̄4−3g2)
128π2f 4

1
r6

3H5
g2M

8πf 2
1
r3

1+10g2−41g4)M
256π3f 4

1
r5

g2(−2+36c̄3−4c̄4+19g2)
64π2f 4

1
r6

3G5
3g2M

22πf 2
1
r3

3(−11−110g2+337g4)M
2816π3f 4

1
r5

3g2(204+264c̄3−152c̄4−373g2)
1408π2f 4

1
r6

3I5
21g2M

88πf 2
1
r

3(−11−110g2+367g4)M
2816π3f 4

1
r5

3g2(−73+66c̄3−50c̄4+151g2)
352π2f 4

1
r6

E5 − 9
√

15g2M

44
√

2πf 2
1
r

− 45
√

15g4M

704
√

2π3f 4
1
r5 − 9

√
15g2(−4−16c̄4+3g2)

704π2f 4
1
r5

and we get

(2l + 1)!!2αl =
∫ ∞

0
drr2l+2U (r) + 2

2l + 1

∫ ∞

0
drr

×
∫ r

0
dr ′(r ′)2l+2U (r)U (r ′) + · · · . (C7)
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Since we only want to analyze the short distance behavior,
we can estimate the convergence of integrals by using the fi-
nite range and singular potential U (r) = (R/r)n/R2θ (a − r).
Thus, we see that in the first Born approximation, the integral
converges for 2l + 1 > n − 2, whereas the second Born
approximation requires 2l + 1 > 2(n − 2). This is obviously a
more stringent condition. In general, at kth order, convergence
at the origin is determined by the integral

∫ ∞

0
dr1r1U (r1)

∫ r1

0
dr2r2U (r2) · · ·

∫ rk−1

0
drkr

2l+2
k U (rk),

(C8)
which is finite only for 2l + 1 > k(n − 2), a condition

violated for sufficiently high k when n > 2. So, for n > 2,
there will always occur a divergent contribution at a given
finite order, even if the Born approximation was finite because
of a high value of the angular momentum l.
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