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Scalar �N and �� interaction in a chiral unitary approach
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We study the central part of the �N and �� potential by considering the correlated and uncorrelated two-meson
exchange in addition to the ω exchange contribution. The correlated two-meson exchange is evaluated within a
chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential,
which also produces an attraction in the intermediate-distance region. The uncorrelated two-meson exchange
produces a sizable attraction in all cases that is counterbalanced by the ω exchange contribution.
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I. INTRODUCTION

The scalar isoscalar potential plays an important role in the
nucleon-nucleon (NN) interaction, providing an intermediate-
range attraction in all channels that is demanded by the data. In
models of the NN interaction using one-boson exchange (OBE)
this part of the interaction was accounted for by allowing the
exchange of a “σ” particle in papers as early as Ref. [1]. The
exchange of a scalar particle has been a constant in other OBE
models [2]. In some models a broad ε(760) was advocated
[3,4], and this has been used later on in more recent models
[5,6]. The Particle Data Group [7] refers to the lightest scalar
meson as f0(600) or σ . The nature of this particle, and even
its mere existence, has been a source of controversy [8], but
in recent years a strong convergence toward the idea that the
σ is not a genuine meson state made up from a constituent qq̄

pair has been witnessed [9,10]. This idea has obtained further
support from unitarized chiral perturbation theory, where the
σ appears as a dynamically generated resonance from the ππ

interaction [11–19]. Other models that start from a seed of
qq̄, but couple this state to meson-meson components in a
unitary approach, converge to the same idea by showing that
the meson cloud is essential in building up the low-lying scalar
resonances [20–22].

The picture of the σ as a dynamically generated resonance
called for a new interpretation of the σ exchange in the
NN interaction and this work was performed in [23]. In
this work the traditional σ exchange was substituted by the
exchange of two interacting mesons within the chiral unitary
framework of [13], and an intermediate attraction was found
together with a repulsion at short distances, which makes
the picture qualitatively different from the ordinary, always
attractive, σ exchange. The exchange of two interacting pions,
although nonperturbative, was considered in [24] and shown
to reproduce well the NN peripheral partial waves with L > 2.
A recent work studying the isoscalar contact NN interactions
retakes the unitarization of the ππ amplitude in the two-pion
exchange using the Omnes representation [25].

The work of [23] was complemented in [26], where in
addition to the interacting two-pion exchange, the contribution
of the uncorrelated two-pion exchange and the repulsive
contribution of the ω exchange were considered, leading
altogether to a good reproduction of the empirical scalar
isoscalar interaction of [27,28].

In this work we extend these ideas to the strange sector,
evaluating the scalar �N and �� interaction.

Empirical evaluations of the YN scalar-isoscalar interaction
are done in several works, allowing the exchange of a scalar
meson and making fits to data. As already quoted, the
Nijmegen group makes use of the exchange of a heavy scalar
meson and there are different fits available in the literature
[5,6,29,30]. A recent work of the group shows an interesting
feature—the improvement of the results by using a form factor
incorporating a zero [31], which leads to qualitative features
of the scalar meson exchange similar to those obtained in [23].
The exchange of various scalar mesons is also considered
in [32] as well as correlated two-pion exchange, which
however is treated phenomenologically. Another approach to
the problem is the chiral quark model in which the π and a
σ are allowed to be exchanged between constituent quarks
[33,34]. Along the same line, in the works of Refs. [35,36]
a SU(3) nonet of scalar mesons is exchanged between the
quarks.

The closest work to our approach is the theoretical work
of [37], following along the lines of the Jülich model [38,
39], where the uncorrelated and correlated two-pion exchange
are considered explicitly. The approach to the correlated two-
pion (and two-kaon) exchange is done rather differently by
evaluating theoretically the BB̄ → ππ,KK̄ amplitudes and
then using unitarity and dispersion relations to relate these
amplitudes to the correlated two-meson exchange contribution
to the BB → BB interaction. Our approach evaluates directly
the correlated two-pion exchange by explicitly using the chiral
unitary approach to deal with the pion-pion interaction and
using appropriate triangle diagrams to account for the coupling
of the two pions to the baryons. The success of this approach
in providing the scalar-isoscalar NN interaction yields solid
ground for extending these ideas to the case of the �N and
�� interaction, which we present in this work.

II. CORRELATED TWO-MESON EXCHANGE BETWEEN
BARYONS

We follow closely Ref. [23] and consider the correlated two-
meson exchange between baryons. To evaluate these diagrams
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we use the lowest order chiral Lagrangians

L2 = 1

6f 2
π

Tr[�∂µ��∂µ� − ��∂µ�∂µ�]

+ 1

12f 2
π

Tr[M�4], (1)

LB = D + F√
2fπ

Tr[B̄γ5γ
µ∂µ�B] + D − F√

2fπ

Tr[B̄γ5γ
µB∂µ�],

(2)

where � and B are the standard SU(3) matrices for the
octets of pseudoscalar mesons and baryons, respectively
[40–46]. The mass matrix of the mesons octet is defined
by M ≡ diag(m2

π ,m2
π , 2m2

K − m2
π ). From there, one obtains

the different pion-pion (or KK) lowest order amplitudes,
which can be found in [13], and the MBB vertices, which
for convenience we show in the appendix.

The isoscalar amplitudes, which contain only the s wave,
have been obtained by employing Lagrangian L2 in [14]. The
lowest order, tree-level amplitudes of meson-meson scattering
can be written as

t (I=0,L)
ππ→ππ = − 1

f 2
π

(
s − m2

π

2

)
+ 1

3f 2
π

∑
i

(
p2

i − m2
i

)
, (3)

t
(I=0,L)
KK→KK

= − 3s

4f 2
π

+ 1

4f 2
π

∑
i

(
p2

i − m2
i

)
, (4)

t
(I=0,L)
ππ→KK

= −
√

3s

4f 2
π

+ 1

4
√

3f 2
π

∑
i

(
p2

i − m2
i

)
, (5)

where the superscript L stands for the leading-order amplitude
of meson-meson scattering and we have employed the conve-
nient unitary normalization and the isospin phase convention
(|π+〉 = −|1, 1〉, |K−〉 = −|1/2,−1/2〉):

|ππ, (I = 0)〉 = − 1√
6
|π0π0 + π+π− + π−π+〉, (6)

|KK(I = 0)〉 = − 1√
2
|K0K

0 + K+K−〉. (7)

In Eqs. (3)–(5) we have separated the lowest order interaction
into a part, which provides the on-shell contribution, and
another term [the one with (p2

i − m2
i )], which contributes only

for off-shell mesons.
As shown in [14,23,26], the off-shell part of the meson-

meson amplitudes does not contribute to our calculation. In
fact, for the meson-meson loops, this contribution is absorbed
into the physical mass and the coupling. As for the coupling
to the baryons, there is a cancelation of the off-shell part of
the meson-meson amplitude in Eqs. (3)–(5) with the diagrams
of the type of Fig. 1. This fact is valid not only for the NN

FIG. 1. Set of diagrams that cancel the of-shell part of the
correlated two-meson exchange contribution.

(a) (b) (c)

FIG. 2. Diagrams explicitly showing the momentum assignment.
In our calculation we take the static limit for the initial baryons.

case but also for the YN and YY cases. Thus, hereafter, we only
consider the on-shell part of the meson-meson amplitude.

This on-shell treatment enables us to separate the on-shell
meson-meson amplitude from the triangle loop integration that
couples the mesons to the baryons. Thus we can define the
correlated two-meson potential as

V Cor
B1B2

(q) =
ππ,KK∑

ij

Nij	
i
B1

t
(I=0,L)
i→j 	

j

B2
, (8)

where 	 indicates the triangle loop contribution of the two-
meson potential for baryon Bk and Nij is a factor from
the isospin summation (Nππ,ππ = 6, Nππ,KK = NKK,ππ =
2
√

3, and NKK,KK = 2). For concreteness, the 	 function
in the correlated two-pion potential for the NN channel is
given by

	
(ππ)
N =

(
D + F

2fπ

)2

V
(ππ)
NN (q), (9)

where V
(m1m2)
B ′B (q) is the vertex function with intermediate

baryon B ′ which is already evaluated in [23] and given in
a generalized form as

V
(m1m2)
B ′B (q) =

∫
d3p

(2π )3

MB ′

EB ′ ( �p)

( �p + �q) · �p
2ω1ω2(ω1 + ω2)

× ω1 + ω2 + EB ′ ( �p) − MB

(ω1 + EB ′ ( �p) − MB)(ω2 + EB ′ ( �p) − MB)
,

(10)

with

EB ′( �p) =
√

�p2 + M2
B ′ , ω1 =

√
µ2

1 + �p2,
(11)

ω2 =
√

µ2
2 + ( �p + �q)2.

This is calculated with the variables corresponding to Fig. 2(a)
and where, as in [23], we have used the initial momentum at
rest. We introduce a static form factor to regularize the triangle
loop function. The form factor employed in this calcula-
tion is

F ( �p)F ( �p + �q) = �2

�2 + �p2

�2

�2 + ( �p + �q)2
, (12)

where the cutoff is chosen as � = 1.0 GeV.
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FIG. 3. Diagrams of scalar-isoscalar �N processes involving tππ→ππ .

A. Lowest order contribution in the isoscalar exchange in the
�N → �N interaction

For this case the potential generated by the correlated two-
pion diagrams shown in Fig. 3 is given by

V ππ→ππ = 6

[(
D√
3fπ

)2

V
(ππ)

� (q)

]
t (I=0,L)
ππ→ππ

×
[(

D + F

2fπ

)2

V
(ππ)
NN (q)

]
, (13)

where V
(ππ)

� (q) is the vertex function defined in Eq. (10) with

the same form factor. Furthermore, as described in Sec. II C,
we substitute t (I=0,L)

ππ→ππ by the full unitarized amplitude. From
now on we consider directly the full meson-meson amplitudes
in all cases.

We also include the exchange of KK in the approach. The
diagrams to take into account are shown in Fig. 4. By using the
couplings in the appendix, we evaluate the potential generated
by the correlated KK contributions in a similar way as before,
obtaining

V KK→KK = 2	KK
� t

(I=0,L)
KK→KK

	KK
N , (14)

with the triangle kaon-loop contribution given by

	
(KK)
� =

(
D + 3F

2
√

3fπ

)2

V
(KK)
N� (q) +

(
3F − D

2
√

3fπ

)2

V
(KK)
�� (q),

(15)

	
(KK)
N = 3

2

(
D − F

2
√

3fπ

)2

V
(KK)

N (q) + 1

2

(
D + 3F

2
√

3fπ

)2

V
(KK)
�N (q).

(16)
The factors in front of the parentheses for 	

(KK)
N come from

the I = 0 projection of the kaon couplings.
Now one must consider the mixed terms for vertices with

π or K that involve the ππ → KK transition amplitude. The
diagrams to consider are shown in Fig. 5. The potential in this
case is given by

V ππ→KK = 2
√

3	ππ
� t

(I=0,L)
ππ→KK

	KK
N + 2

√
3	KK

� t
(I=0,L)
KK→ππ

	ππ
N ,

(17)

with the triangle meson-loop contribution shown before.

FIG. 4. Diagrams involving tKK→KK .

B. Contribution of �,�∗, and �∗ intermediate states

Next we wish to include the contribution of the intermediate
	,
∗, and �∗ states. In the block of diagrams of Fig. 3 we
can introduce 
∗ in the left triangular vertex, or 	 in the right
triangular vertex, or both.

The coupling of the decuplet to the octet of mesons and
baryons is given by

LDec =
√

2

fπ

C
1∼3∑

a,b,c,d,e

εabc
((

T̄ade�
d
bB

e
c

)�S · (−�q)

+ (
B̄c

e�
b
dTade

)�S† · �q)
(18)

for an outgoing meson with momentum q. The C is determined
from the 	Nπ coupling constant. T is the decuplet baryon
field shown in the appendix. This Lagrangian gives rise to
couplings of the type

γMBB ′
f ∗

πN	

mπ

�S · �q (19)

for outgoing mesons of momentum �q. The γMBB ′ coefficients
can be found in the appendix. We use f ∗

πN	 = 2.12fπNN to
obtain the correct width of the 	(1232) resonance.

Altogether, the contribution involving the ππ → ππ am-
plitude is given by

V (ππ→ππ)

= 6t (I=0,L)
ππ→ππ

[(
D√
3fπ

)2

V
(ππ)

� (q) + 2

3

(
f ∗

πN	√
2mπ

)2

V
(ππ)

∗N (q)

]

×
[(

D + F

2fπ

)2

V
(ππ)
N� (q) + 4

9

(
f ∗

πN	

mπ

)2

V
(ππ)
	N (q)

]
,

(20)

where the factor 2/3 comes from the difference of spin and
the extra 2/3 in front of V

(ππ)
	N from the change of isospin.

This equation shows how the triangle loop contribution is
modified by the excited baryon in the intermediate state.

π

π

π

π

π

π

FIG. 5. Diagrams involving tππ→KK .
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π

π
π

π

Κ

FIG. 6. Uncorrelated two-pion and two-kaon diagrams.

Thus, the modified triangle loop contribution can be written as

	̃
(ππ)
� = 	

(ππ)
� + 2

3

(
f ∗

πN	√
2mπ

)2

V
(ππ)

∗N (q), (21)

	̃
(ππ)
N = 	

(ππ)
N + 4

9

(
f ∗

πN	

mπ

)2

V
(ππ)
	N (q). (22)

In the same way we take into account the contributions
of 
∗, �∗ in the KK triangle contribution by means of the
couplings of the appendix, and the results are given by

	̃
(KK)
� = 	

(KK)
� + 2

3

(
f ∗

πN	√
2mπ

)2

V KK̄
�∗ (q), (23)

	̃
(KK)
N = 	

(KK)
N + 2

3

(
f ∗

πN	√
6mπ

)2

V KK̄

∗ (q). (24)

Therefore the total leading-order potential generated by the
correlated two-meson contribution with the excited baryons in
the intermediate states is given by substitution of the 	 to the
	̃ as

V Cor
�N (q) =

ππ,KK∑
i,j

Nij 	̃
i
�t

(I=0,L)
i→j 	̃

j

N . (25)

C. Unitarization of the amplitudes

Here we follow Ref. [13] and iterate the meson-meson
potential to infinite order by using a Lippmann-Schwinger-
type equation in coupled ππ and KK channels. As shown
in [13,14], the Lippmann-Schwinger equation can be reduced
under the on-shell factorization to the algebraic relation

T = [1 − V G]−1 V, (26)

where V ≡ t used in the former Eqs. (3)–(5), and G is the

meson-meson loop function. The G function is given by

G(s) =
∫ qmax

0

q2dq

(2π )2

ω1 + ω2

ω1ω2[s − (ω1 + ω2)2 + iε]
, (27)

where ωi =
√

�q2 + m2
i . It is regularized with a cutoff scheme,

which is different from the expression used in the previous
paper [23]. One advantage of the usage of a cutoff is that it does
not produce undesirable poles as mentioned in [23]. For the
region of interest to us, one can use both cutoff or dimensional
regularization to evaluate G. Some caveats about the use at
unreasonably low negative values of s are discussed in [23],
which set restrictions on the results at very short distances.

We have also included the ηη channel but their effect is
small and can be approximately reabsorbed in the ππ,KK

channels by redefining qmax [16]. We obtain good results for the
ππ phase shift up to 1.2 GeV by using the ππ,KK channels
and qmax = 1.0 GeV.

The final expression for the correlated two-meson �N

scalar potential is given by summing the expressions in Eq.
(25) and substituting ti by the unitarized amplitude Ti .

III. UNCORRELATED TWO-MESON EXCHANGE

We consider both the direct and crossed diagrams of the
uncorrelated two-pion and two-kaon exchange contributions
shown in Fig. 6. We follow here the procedure of [26] and use
the variables of the diagrams as shown in Figs. 2(b) and 2(c).

After performing analytically the p0 integration we obtain
the uncorrelated two-meson potential in terms of the integrals

V
(i,m1m2)
B1B2

(q) = −
∫

d3p

(2π )3

M1

E1

M2

E2

(
p2 − q2

4

)2

Ri(·),
(28)

where M1 and M2 are the intermediate baryon masses, i stands
for the direct (D) or crossed (C) terms, and

RD(·) = (ω1 + ω2)((E′
1 + E′

2)2 + 2ω1ω2) + (ω2
1 + 3ω1ω2 + ω2

2 + E′
1E

′
2)(E′

1 + E′
2)

2ω1ω2(ω1 + ω2)(E′
1 + E′

2)(ω1 + E′
1)(ω1 + E′

2)(ω2 + E′
1)(ω2 + E′

2)
, (29)

RC(·)
= (ω1 + ω2)(E′

1 + E′
2) + ω2

1 + ω1ω2 + ω2
2 + E′

1E
′
2

2ω1ω2(ω1 + ω2)(ω1 + E′
1)(ω1 + E′

2)(ω2 + E′
1)(ω2 + E′

2)
,

(30)

with E′
i = Ei − p0

I . It is worth mentioning that, if we
compare to results without coupling constants, the crossed

contribution is much smaller than the box-type contribution.
Furthermore, both V D and V C are largely suppressed by
the mass of the exchanged meson. As a result of this
rough estimation, we expect that the uncorrelated two-kaon
contribution is much smaller than the uncorrelated two-pion
contribution.

By taking the coupling of the vertices in the different
diagrams into account we get the contribution to the �N
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potential by considering the contribution of the 	,
∗, �∗
in the intermediate states as

v
(D,ππ)
�N = 3

(
D√
3fπ

)2 (
D + F

2fπ

)2

V
(D,ππ)

N (q)

+ 2

(
D + F

2fπ

)2 (
f ∗

πN	√
2mπ

)2

V
(D,ππ)

∗N (q)

+4

3

(
D√
3fπ

)2 (
f ∗

πN	

mπ

)2

V
(D,ππ)

	 (q)

+ 8

9

(
f ∗

πN	√
2mπ

)2 (
f ∗

πN	

mπ

)2

V
(D,ππ)

∗	 (q),

(31)

v
(C,ππ)
�N = 3

(
D√
3fπ

)2 (
D + F

2fπ

)2

V
(C,ππ)

N (q)

+ 2

(
f ∗

πN	√
2mπ

)2 (
D + F

2fπ

)2

V
(C,ππ)

∗N (q)

+4

3

(
D√
3fπ

)2 (
f ∗

πN	

mπ

)2

V
(C,ππ)

	 (q)

+ 8

9

(
f ∗

πN	√
2mπ

)2 (
f ∗

πN	

mπ

)2

V
(C,ππ)

∗	 (q),

where we write explicitly the left and right baryon in the
diagrams and the couple of mesons exchanged.

Similarly, for the KK diagrams we calculate the uncorre-
lated two-kaon potential as

v
(D,KK)
�N = 3

(
D + 3F

2
√

3fπ

)2 (
D − F

2fπ

)2

V
(D,KK)
N
 (q)

+ 1

3

(
D + 3F

2
√

3fπ

)2 (
f ∗

πN	

mπ

)2

V
(D,KK)
N
∗ (q),

v
(C,KK)
�N = 3

(
3F − D

2
√

3fπ

)2 (
D − F

2fπ

)2

V
(C,KK)
�
 (q)

+ 2

(
f ∗

πN	√
2mπ

)2 (
D − F

2fπ

)2

V
(C,KK)
�∗
 (q)

+2

(
3F − D

2
√

3fπ

)2 (
f ∗

πN	√
6mπ

)2

V
(C,KK)
�
∗ (q)

+ 4

3

(
f ∗

πN	√
2mπ

)2 (
f ∗

πN	√
6mπ

)2

V
(C,KK)
�∗
∗ (q)

+
(

3F − D

2
√

3fπ

)2 (
3F + D

2
√

3fπ

)2

V
(C,KK)
�� (q)

+ 2

3

(
f ∗

πN	√
2mπ

)2 (
3F + D

2
√

3fπ

)2

V
(C,KK)
�∗� (q). (32)

π

π
π

π

Κ Κ

FIG. 7. Set of the uncorrelated two-meson exchange diagrams for
the �� interaction.

In this case the KK crossed diagrams have more variety
than for the ππ case, but the potential does not change as
much because the contribution of V (C,KK) is quite small, as
previously explained.

IV. THE ω EXCHANGE CONTRIBUTION

Here we take into account the ω exchange potential, which
is known to be one of main sources of short-range repulsion of
the baryon-baryon interaction. The ω exchange potential for
�N in momentum space is given by

V ω
�N (q) = gω��gωNN

q2 + m2
ω

(
�2

ω − m2
ω

�2
ω + q2

)2

, (33)

where we choose gωNN = 13 and �ω = 1.4 GeV [26]. The
ideal mixing for ω and φ leads to the relation gω�� = 2

3gωNN ,
which is deduced from the quark contents of the hadrons. For
simplicity we assume the same form factor for both the ωNN

and ω�� vertices.

V. THE ISOSCALAR EXCHANGE IN THE ��

INTERACTION

We easily extend this method to the �� interaction. For
this we simply replace the triangle contribution of the nucleon
by that of the � in Eq. (25):

V Cor
�� (q) =

ππ,KK∑
i,j

Nij 	̃
i
�t

(I=0,L)
i→j 	̃

j

�, (34)

where all contributions are as shown before.
The uncorrelated two-meson exchange potential is given by

v
(D,ππ)
�� = 3

(
D√
3fπ

)4

V
(D,ππ)


 (q)

+ 3

(
f ∗

πN	√
2mπ

)2 (
D√
3fπ

)2

V
(D,ππ)

∗
 (q)

+ 3

(
D√
3fπ

)2 (
f ∗

πN	√
2mπ

)2

V
(D,ππ)


∗ (q)

+ 3

(
f ∗

πN	√
2mπ

)4

V
(D,ππ)

∗
∗ (q),
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v
(C,ππ)
�� = 3

(
D√
3fπ

)4

V
(C,ππ)


 (q)

+ 3

(
f ∗

πN	√
2mπ

)2 (
D√
3fπ

)2

V
(C,ππ)

∗
 (q)

+ 3

(
D√
3fπ

)2 (
f ∗

πN	√
2mπ

)2

V
(C,ππ)


∗ (q)

+ 3

(
f ∗

πN	√
2mπ

)4

V
(C,ππ)

∗
∗ (q).

(35)

The two-kaon exchange is given by

v
(D,KK)
�� = 2

(
3F − D

2
√

3fπ

)2 (
D + 3F

2
√

3fπ

)2

V
(D,KK)
�N (q)

+ 2

(
f ∗

πN	√
2mπ

)2 (
D + 3F

2
√

3fπ

)2

V
(D,KK)
�∗N (q)

+ 2

(
D + 3F

2
√

3fπ

)2 (
3F − D

2
√

3fπ

)2

V
(D,KK)
N� (q)

+ 2

(
D + 3F

2
√

3fπ

)2 (
f ∗

πN	√
2mπ

)2

V
(D,KK)
N�∗ (q),

(36)

v
(C,KK)
�� = 2

(
3F − D

2
√

3fπ

)4

V
(C,KK)
�� (q)

+ 2

(
f ∗

πN	√
2mπ

)2 (
3F − D

2
√

3fπ

)2

V
(C,KK)
�∗� (q)

+ 2

(
3F − D

2
√

3fπ

)2 (
f ∗

πN	√
2mπ

)2

V
(C,KK)
��∗ (q)

+ 2

(
f ∗

πN	√
2mπ

)4

V
(C,KK)
�∗�∗ (q)

+ 2

(
D + 3F

2
√

3fπ

)4

V
(C,KK)
NN (q).

The ω exchange potential is also considered by substituting
gωNN to gω�� in Eq. (33). The corresponding diagrams are
shown in Fig. 7.

VI. SCALAR π K EXCHANGE IN THE κ CHANNEL

In the interactions of the octet of mesons in the πK

channel one also finds a very broad resonance [14]—the
κ with S = −1, I = 1/2, and JP = 0+, around 800 MeV,
although this identification is somewhat controversial [47–51].
Its exchange is also accounted for in the recent model
of [37].

Here we follow the same approach as in the former section
and exchange πK in the I = 1/2, l = 0 channel. For this we
consider the diagrams of Fig. 8. By following the same rules
as before we find for the sum of all diagrams the compact

ππ

π

π π

π ππ

π

π

π

π

FIG. 8. Set of diagrams that contribute to the κ channel.

expression

3t
(I=1/2,L)
πK→πK

{
−

(
D + 3F

2
√

3fπ

) (
D + F

2fπ

)
V

(πK)
N (q)

+
(

D√
3fπ

)(
D − F

2fπ

)
V

(πK)

 (q)

}2

, (37)

which, including the contribution of the 
∗ states (since there
are no 	 or �∗ intermediate states now), gives

3t
(I=1/2,L)
πK→πK

{
−

(
D + 3F

2
√

3fπ

) (
D + F

2fπ

)
V

(πK)
N (q)

+
(

D√
3fπ

)(
D − F

2fπ

)
V

(πK)

 (q)

− 2

3

(
f ∗

πN	√
6mπ

) (
f ∗

πN	√
2mπ

)
V

(πK)

∗ (q)

}2

. (38)

The πK → πK amplitude in the I = 1/2 channel can be
obtained from the appendix of [14] and we have

t
(I=1/2,L)
πK→πK

= 1

4f 2
π

(
3u − s − 2m2

π − 2m2
K

)
, (39)

which after projection over l = 0 gives [52]

t
(I=1/2,L)
πK→πK

(l = 0) = 1

4f 2
π

(
−5

2
s + m2

π + m2
K + 3

(
m2

K −m2
π

)2

2s

)
.

(40)

To avoid the singular behavior around s = 0, we take the
SU(3)f limit in the πK amplitude. Then we can obtain the
modified πK → πK amplitude as

t
(I=1/2,L)
πK→πK

(l = 0) = 1

4f 2
π

(
−5

2
s + 2m′2

)
, (41)

where m′ is the average mass of the pion and the kaon. This
amplitude is also unitarized in the same way as before with
only one channel.

Next we calculate the uncorrelated πK diagrams shown
in Fig. 8 by considering the decuplet excitation of the
intermediate baryon. These diagrams give

v
(D,πK)
�N(κ) = −3

(
D + F

2fπ

)(
D + 3F

2
√

3fπ

) (
D√
3fπ

)

×
(

D − F

2fπ

)
V

(D,πK)
N
 (q) + 1√

3

(
D + F

2fπ

)
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×
(

D + 3F

2
√

3fπ

)(
f ∗

πN	

mπ

)2

V
(D,πK)
N
∗ (q),

v
(D,Kπ)
�N(κ) = −3

(
D + F

2fπ

)(
D√
3fπ

) (
D + 3F

2
√

3fπ

)

×
(

D − F

2fπ

)
V

(D,Kπ)

N (q) + 1√

3

(
D + F

2fπ

)

×
(

D + 3F

2
√

3fπ

)(
f ∗

πN	

mπ

)2

V
(D,Kπ)

∗N (q),

v
(C,πK)
�N(κ) = 3

(
D + F

2fπ

)2 (
D + 3F

2
√

3fπ

)2

V
(C,πK)
NN (q),

v
(C,Kπ)
�N(κ) = 3

(
D√
3fπ

)2 (
D − F

2fπ

)2

V
(C,Kπ)


 (q)

− 1√
3

(
D√
3fπ

)(
D − F

2fπ

) (
f ∗

πN	

mπ

)2

V
(C,Kπ)

∗
 (q)

− 1√
3

(
D√
3fπ

) (
D − F

2fπ

) (
f ∗

πN	

mπ

)2

V
(C,Kπ)


∗ (q)

+ 1

9

(
f ∗

πN	

mπ

)4

V
(C,Kπ)

∗
∗ (q), (42)

where we follow this prescription for the meson pair of the
superindex: The first meson corresponds to the upper one in
the direct exchange and to the upper one on the left baryon for
the crossed terms.

VII. RESULTS

A. �N potential in momentum space

Figure 9 shows the �N potential in momentum space.
The correlated two-meson contribution has a peak around
q = 400 MeV. A similar peak in position and magnitude
was found for the NN case in Refs. [23,26,53]. It is worth

discussing this shape because it is impossible to parameterize
it by a single-meson exchange with usual form factors,
such as monopole or Gaussian. This contribution could be
decomposed in, at least, two parts, one a strong repulsive part
and the other a weak attraction. In any case, this contribution is
much smaller than the other ones, so that the main contribution
comes from the uncorrelated two-meson exchange and from
ω exchange. These two potentials have opposite sign, and the
uncorrelated two-meson potential is slightly stronger than the
ω exchange potential in the whole range of q. Thus, the sum
of these two potentials is always negative.

The total potential has positive strength around q =
600 MeV, which is pushed up by the correlated two-meson
potential. The correlated two-meson potential plays a more
important role in this region.

We can see the relevance of the two-kaon contribution to this
potential by comparing the left and right panels in Fig. 9. The
two-kaon contribution was studied since one-kaon exchange
is important in the �N interaction. However, the effect of
the two-kaon contribution, which is suppressed because of its
heavy mass, is very small and does not significantly alter the
pionic potential.

B. �N potential in configuration space

The �N potential in configuration space (shown in Fig. 10)
is given by

V (r) = 1

2π2r

∫ ∞

0
q sin(qr)V (q)dq. (43)

In the left panel of this figure, we can see a correlated two-pion
potential similar to the NN case (see Fig. 10 in [23]). This
should be expected since the definition of the potential is quite
similar to the NN case except for the masses of the baryons
and coupling constants. In fact both the NN and �N potentials
generated by the correlated two-pion exchange contribution
pass through zero at r 
 0.9 fm and have a minimum at

 Cor
 UnCor
 Omega
 Total

V
(q

)[
M
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-2

]

q[MeV]

(×10-5)
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-15
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FIG. 9. (Color online) The scalar-isoscalar �N potential in momentum space with exchange of the pion pair (left) and with exchange of
pion and kaon pairs (right).
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FIG. 10. (Color online) The scalar-isoscalar �N potential in configuration space with exchange of the pion pair (left) and with exchange
of pion and kaon pairs (right).

r 
 1.3 fm. This potential is repulsive in the short-range
region but is attractive beyond 1fm. As we have discussed in
Sec. VII A, the strength of the correlated two-meson potential
is much smaller than that of the other contributions.

Figure 10 also shows that the uncorrelated two-meson
generates a strong attraction and the ω produces a repulsion
in the short-range region. The sum of these two potentials
produces a relatively strong attraction around 1fm and leads to
large cancelations in the short-range region. We do not give the
results below 0.5 fm since there the overlap of the baryons and
quark exchange mechanisms can lead to sizable corrections.

Although the attraction in the total potential is mainly
generated by the uncorrelated two-meson potential, part of the
repulsion is generated by the correlated two-meson potential.
This is interesting because the correlated two-meson potential
is considered as a σ meson exchange in other papers and,

there, the interaction would be always attractive (see Eq. (3.19)
of [23]).

Here, again, we can check the effect of the two-kaon
exchange potential by comparing the two panels in Fig. 10.
The two-kaon contribution slightly enhances the magnitude
of both the correlated and uncorrelated two-meson potential,
and it makes the total potential a little deeper than the pionic
potential.

C. The κ exchange �N potential

Figure 11 shows the κ exchange contribution in the �N

potential. The potential in momentum space is shown in the
left panel of Fig. 11. The correlated two-meson contribution
has a shape similar to that of the scalar-isoscalar channel, but
its size is an order of magnitude smaller.
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FIG. 11. (Color online) The �N potential in the κ channel for momentum space and configuration space. In the inset, we change the scale
of the V (r) axis to investigate the behavior of this potential.
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FIG. 12. (Color online) The scalar-isoscalar �� potential in configuration space with exchange of the pion pair (left) and with exchange
of pion and kaon pairs (right).

The uncorrelated two-meson exchange contribution gener-
ates an attraction that is relatively large compared to that of
the correlated two-meson potential.

The right panel of Fig. 11 shows the potential in configu-
ration space. The correlated two-meson contribution produces
a moderate repulsion in the short-range region out to around
1.0 fm. The uncorrelated two-meson potential produces a weak
attraction up to 2.0 fm. Both potentials are of a quite short range
compared to the isoscalar channel. This reflects the heavy mass
of the κ meson.

The total κ channel interaction is weakly attractive and of
quite short range. The strength of the potential is weaker than
the isoscalar potential, being almost one-third that at 1fm.

D. The �� potential

Figure 12 shows the central part of the �� potential. Both
the uncorrelated two-meson and the ω exchange contribution

are weaker than for the �N case, but they still have much
larger magnitude than the correlated two-meson potential.
These potentials drive the medium-range attraction. However,
the ω exchange potential alone is not enough to produce a
repulsion at shorter distances.

We find again that the correlated two-meson potential plays
a dual role in making a repulsive potential in the short-range
region and a small attraction in the long-range region. These
properties are seen both in the left- and right-panel cases. The
striking difference from the �N interaction is the large effect
produced by the two-kaon exchange contribution. Both the
correlated and uncorrelated two-meson potentials are largely
enhanced by the two-kaon exchange diagrams, especially in
the shorter range region. This effect leads to a large reduction
of the short-range repulsion. Consequently, the short-range
repulsion in the �� potential is largely suppressed compared
to the contribution of the two-pion exchange case and therefore
to the NN or �N interaction where the KK exchange effect is
much weaker.

TABLE I. Particle assignment for baryons and mesons.

Decuplet baryons T 111 = 	++ T 112 = 	+√
3

T 122 = 	0√
3

T 222 = 	−

T 113 = 
∗+√
3

T 123 = 
∗0√
6

T 223 = 
∗−√
3

T 133 = �∗0√
3

T 123 = �∗−√
3

T 333 = �−

Octet baryons B1
1̄ = 1√

6
� + 1√

2

0 B1

2̄ = 
+ B1
3̄ = p

B2
1̄ = 
− B2

2̄ = 1√
6
� − 1√

2

0 B2

3̄ = n

B3
1̄ = �− B3

2̄ = �0 B3
3̄ = −

√
2
3 �

Octet mesons �1
1̄ = 1√

6
η + 1√

2
π 0 �1

2̄ = π+ �1
3̄ = K+

�2
1̄ = π− �2

2̄ = 1√
6
η − 1√

2
π 0 �2

3̄ = K0

�3
1̄ = K

−
�3

2̄ = K
0

�3
3̄ = −

√
2
3 η
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TABLE II. The α, β and γ coefficients of meson-baryon
couplings.

p → pπ0 nπ+ �K+ 
0K+ 
+K0

αMBp 1
√

2 − 2√
3

0 0

βMBp 0 0 1√
3

1
√

2

p → 	++π− 	+π0 	0π+ 
∗+K0 
∗0K+

γMBp 1 −
√

2
3 − 1√

3
1√
3

− 1√
6

n → pπ− nπ0 �K0 
0K0 
−K+

αMBn

√
2 −1 − 2√

3
0 0

βMBn 0 0 1√
3

−1
√

2

n → 	+π− 	0π0 	−π+ 
∗0K0 
∗−K+

γMBn
1√
3

−
√

2
3 −1 1√

6
− 1√

3

� → 
+π− 
0π0 
−π+ pK− nK
0

�0K0 �−K+

αMB�
1√
3

1√
3

1√
3

− 2√
3

− 2√
3

1√
3

1√
3

βMB�
1√
3

1√
3

1√
3

1√
3

1√
3

− 2√
3

− 2√
3

� → 
∗+π− 
∗0π0 
∗−π+ �∗0K0 �∗−K+

γMB� − 1√
2

1√
2

1√
2

− 1√
2

1√
2

VIII. CONCLUSIONS

We have evaluated the scalar channel potential between
the � and the nucleon. We have considered the correlated
and uncorrelated two-meson exchange contributions in this
channel in addition to the ω exchange. The correlated two-
meson exchange contribution was calculated by using a chiral
unitary approach, which reproduces very well the experimental
meson-meson phase shift up to 1.2 GeV.

The uncorrelated two-meson exchange contribution pro-
duces a strong attraction, which is similar to the NN case. The
ω exchange contribution comprises a short-range repulsion,
also similar to the NN case, but its strength is two-thirds that of
the NN case owing to the simple counting of nonstrange quarks
in the baryons. These two contributions drive the attractive
potential in the medium-range region and almost cancel each
other at shorter distances.

The correlated two-meson exchange contribution is rela-
tively smaller than the other two contributions. This poten-
tial produces some attraction at medium range and some
strong repulsion in the short-range region. This behavior
is quite similar to the NN case, which has already been
calculated in [23]. The striking effect is the repulsion in

the short-range region where the strong attraction generated
by the uncorrelated two-meson potential is canceled by the
repulsion produced by the ω meson. Thus the correlated
two-meson potential plays an important role for both medium-
range attraction and short-range repulsion in �N and ��

interactions.
We have also checked the contribution of two-kaon ex-

change diagrams. We have found that the two-kaon contribu-
tion is rather weak and it slightly enhances the magnitude of
the potential without changing its main behavior for the �N

potential. Therefore it does not play an important role in the
scalar �N potential. However, it makes a large contribution
to the �� potential, especially in the short-distance region.
It largely enhances both the repulsion in the correlated two-
meson exchange potential and the attraction in the uncorrelated
one. As a result, the total potential in the �� interaction
becomes more attractive than for the �N case and the
short-range repulsion is also reduced.

We have also investigated the πK exchange in the κ channel
for the case of the �N interaction and it shows similar features
to those of the scalar isoscalar potential for a shorter range and
sizably weaker strength.

Finally, we have found that the medium-range attraction
and short-range repulsion largely depend on the flavor of
the baryons. This flavor dependence of the central potential
between baryons could be a clue to understanding certain
properties of nuclear structure and reactions.
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APPENDIX

After a nonrelativistic reduction is performed, the meson-
baryon-baryon interaction with an emitted meson of momen-
tum �q is given by

− itOct =
(

αMBB ′
D + F

2fπ

+ βMBB ′
D − F

2fπ

)
�σ · �q, (A1)

− itDec = γMBB ′
f ∗

πN	

mπ

�S† · �q, (A2)

where the σ and S are spin transition operators for the octet-
octet and the octet-decuplet cases. Here we define the B →
B ′M process with the particle assignment in Table I. The
coefficients α, β and γ are listed in Table II.
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