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Coulomb force effects in low-energy α-deuteron scattering
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The α-proton Coulomb interaction is included in the description of α-deuteron scattering using the screening
and renormalization approach in the framework of momentum-space three-particle equations. The technical
reliability of the method is demonstrated. Large Coulomb-force effects are found.
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I. INTRODUCTION

The application of exact Faddeev three-body theory to
the understanding of nuclear reactions that are dominated,
at low energies, by three-body degrees of freedom has been
shadowed in the past by the difficulty in dealing with the
long-range Coulomb interaction between charged particles.
Up to now this difficulty has been overcome by the use
of approximate theoretical methods, namely, the continuum-
discretized coupled-channel (CDCC) method [1], which
was proposed initially to deal with deuteron scattering on
a heavier nuclei, but that is now widely used to analyze
data resulting from the reactions involving halo nuclei. Given
the progress achieved recently in the description of proton-
deuteron (pd) elastic scattering and breakup using exact
three-body equations [2–4], we are now able to include
the Coulomb interaction in three-body nuclear reactions
involving two charged particles. Before we apply the present
method to the description of direct nuclear reactions that
are dominated by three-body degrees of freedom, we show
here the results for alpha-deuteron (αd) scattering which at
low energies is one of simplest effective three-body nuclear
reactions.

The αd scattering has been studied extensively in the
past, both experimentally and theoretically [5–12]. Although
αd is a six-nucleon system, at low energies, to a good
approximation, the α particle may be considered a spin zero
structureless boson, and thereby the theoretical description
of αd scattering may be reduced to a three-body problem
made up of one α and two nucleons (N ). Then, the most
serious difficulty is the treatment of the long-range Coulomb
interaction, which in the previous calculations was either
completely neglected or taken into account only approx-
imately. Using the method developed in Refs. [2–4] we
are now able to include the Coulomb interaction also for
αd scattering, quantitatively evaluate its importance, and
with greater confidence ascertain the quality of αN force
models.

Section II shortly recalls the technical apparatus underlying
the calculations. Section III presents characteristic results.
Section IV gives our conclusions.

*Electronic address: deltuva@cii.fc.ul.pt

II. TREATMENT OF THE COULOMB INTERACTION
USING THE SCREENING AND RENORMALIZATION

APPROACH

Our treatment of the Coulomb interaction is based on the
idea of screening and renormalization proposed in Ref. [13]
for two-particle scattering and extended in Refs. [2,3,14,15] to
three-particle scattering where only two particles are charged.
The Coulomb potential is screened, standard scattering theory
is applicable, and the renormalization procedure is applied
to recover the unscreened limit. The success of the method
depends on the choice of the screened Coulomb potential

wR(r) = w(r) e−(r/R)n . (1)

We prefer to work with a sharper screening than the Yukawa
screening (n = 1) of Ref. [15]. We want to ensure that the
screened Coulomb potential wR(r) approximates well the true
Coulomb one w(r) for distances r smaller than the screening
radius R and simultaneously vanishes rapidly for r > R,
providing a comparatively fast convergence of the partial-wave
expansion. In contrast, the sharp cutoff (n → ∞) yields
an unpleasant oscillatory behavior in the momentum-space
representation, leading to convergence problems. In Refs. [2,3]
we found the values 3 � n � 6 to provide a sufficiently smooth,
but at the same time a sufficiently rapid screening around
r = R; n = 4 is our choice also in the present paper.

We solve Alt-Grassberger-Sandhas (AGS) three-particle
scattering equations [16] in momentum space

U
(R)
βα (Z) = δ̄βαG−1

0 (Z) +
∑

σ

δ̄βσ T (R)
σ (Z)G0(Z)U (R)

σα (Z), (2a)

U
(R)
0α (Z) = G−1

0 (Z) +
∑

σ

T (R)
σ (Z)G0(Z)U (R)

σα (Z), (2b)

with δ̄βα = 1 − δβα,G0(Z) being the free resolvent, T (R)
σ (Z)

the two-particle transition matrix derived from nuclear plus
screened Coulomb potentials, and U

(R)
βα (Z) and U

(R)
0α (Z) the

three-particle transition operators for elastic/rearrangement
and breakup scattering; their dependence on the screening
radius R is notationally indicated. On-shell matrix elements of
the operators (2) between two- and- three-body channel states
|φα(qi)ναi

〉 and |φ0(pf qf )ν0f
〉 with discrete quantum numbers

νσj
, Jacobi momenta pj and qj , energy Ei , and Z = Ei + i0,

do not have a R → ∞ limit. However, as demonstrated in
Refs. [2,3,14], the three-particle amplitudes can be decom-
posed into long-range and Coulomb-distorted short-range
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parts, where the quantities diverging in that limit are of two-
body nature, i.e., the on-shell transition matrix T c.m.

αR (Z) derived
from the screened Coulomb potential between spectator and
the center of mass (c.m.) of the bound pair, the corresponding
wave function, and the screened Coulomb wave function
for the relative motion of two charged particles in the final
state. Those quantities, renormalized according to Ref. [13],
in the R → ∞ limit converge to the two-body Coulomb
scattering amplitude 〈φα(qf )ναf

|T c.m.
αC |φα(qi)ναi

〉 (in general,
as a distribution) and to the corresponding Coulomb wave
functions, respectively, thereby yielding the three-particle
scattering amplitudes in the proper Coulomb limit

〈φβ(qf )νβf
|Uβα|φα(qi)ναi

〉
= δβα〈φα(qf )ναf

|T c.m.
αC |φα(qi)ναi

〉

+ lim
R→∞

{
Z− 1

2
βR (qf )〈φβ(qf )νβf

|[U (R)
βα (Ei + i0)

− δβαT c.m.
αR (Ei + i0)

]|φα(qi)ναi
〉Z− 1

2
αR (qi)

}
, (3a)

〈φ0(pf qf )ν0f
|U0α|φα(qi)ναi

〉

= lim
R→∞

{
z
− 1

2
R (pf )〈φ0(pf qf )ν0f

|

×U
(R)
0α (Ei + i0)|φα(qi)ναi

〉Z− 1
2

αR (qi)
}
. (3b)

The renormalization factors ZαR(qj ) and zR(pf ) are diverging
phase factors given in Refs. [2,3,13,14]. The R → ∞ limit
in Eqs. (3) has to be calculated numerically, but due to
the short-range nature of the corresponding operators it is
reached with sufficient accuracy at rather modest R if the
form of the screened Coulomb potential has been chosen
successfully as discussed above. More details on the practical
implementation of the screening and renormalization approach
are given in Refs. [2–4]. Compared to the pd calculations
an additional difficulty is the presence of the αN P -wave
transition matrix T (R)

σ (Z) poles in the complex energy plane
close to the real axis. This requires special treatment of
those partial waves in the numerical solution of Eqs. (2),
i.e., the pole factor of T (R)

σ (Z) is separated when interpolating
T (R)

σ (Z)G0(Z)U (R)
σα (Z) and the subtraction technique is used

for integration.

III. RESULTS

There exist in the literature several parametrizations of
the αN potential. Most of them support deeply bound
αN state in S-wave that is not observed experimentally,
since it is forbidden by the Pauli principle. To account for
the Pauli principle that forbidden state |b〉 (or some state close
to it) has to be projected out or moved to a large positive
energy �, replacing the potential v by v′ = v + |b〉�〈b|. As
demonstrated in Ref. [17], the latter method in the � → ∞
limit is equivalent to the first one. Alternatively, one may use
repulsive αN potential in the S-wave. In order to estimate
the model dependence, in the calculations of this paper we
use three different parametrizations for the nuclear part of

the αN potential, that in the following will be called αN -I,
αN -II, and αN -III. The potential αN -I is taken from Ref. [18].
It is of Woods-Saxon form with central and spin-orbit parts
and supports a bound-state in S-wave that is moved to a large
positive energy �; we found that for � � 1000 MeV the results
are practically independent of �. The potential αN -II is taken
from Ref. [18] as well and differs from αN -I only in S-wave
where it is repulsive and local, but, nevertheless, nearly phase
equivalent to αN -I. The third potential αN -III, taken from
Ref. [10], is represented as a sum of Gaussians with the
strong repulsive rank-1 separable term in S-wave that moves
the harmonic oscillator ground state which is close to the
Pauli-forbidden state to � = 1000 MeV. The potentials fit the
low energy experimental αN phase shifts quite well, although
αN -III is more attractive in P -waves than the other two. All
potentials are charge symmetric and act in partial waves with
orbital angular momentum L � 2. For the neutron-proton (np)
interaction we use the charge dependent (CD) Bonn potential
[19] and include partial waves with total angular momentum
I � 2 plus 3D3. It was checked that those quite low partial
waves are sufficient for convergence. In contrast, the screened
Coulomb potential is of longer range and therefore, depending
on the screening radius R, requires partial waves up to L � 11.
Those high partial waves are included exactly as described
in Ref. [4]. We note that the αp Coulomb potential at short
distances is taken as the one of a uniformly charged sphere,
i.e., w(r) = 2αe[3 − (r/RI )2]/(2RI ) for r < RI = 1.5 fm,

αe being the fine structure constant.
The internal criterion for the reliability of the screening

and renormalization approach is the convergence of the
observables with the screening radius R employed to calculate
the Coulomb-distorted short-range part of the amplitudes in
Eq. (3); that criterion was found to be absolutely reliable for
pd scattering [20]. Figures 1 and 2 show several examples for
αd elastic scattering and breakup. The breakup kinematical
final-state configurations are characterized in a standard way
by the polar angles of the α-particle and the proton and by
the azimuthal angle between them, (θα, θp, ϕp − ϕα). The
definition of the arclength S along the kinematical curve is
the standard one as in Refs. [8–10]. Even when the Coulomb
effect is large the convergence is impressively fast, e.g., the
screening radius R = 10 fm is practically sufficient for the
elastic αd scattering at 4.81 MeV deuteron laboratory energy
in Fig. 1, while the observables of αd breakup at 15 MeV
α laboratory energy in Fig. 2 require at least R = 15 fm for
convergence. As discussed in Refs. [2,3], the convergence
rate is energy dependent, i.e., larger screening radii are
needed for elastic scattering observables at very low energies
and for the breakup differential cross section in kinematical
situations characterized by very low relative energy of the two
charged particles, i.e., close to the αp final-state interaction
(FSI) regime. Nevertheless, the observed convergence strongly
suggests the reliability of the present Coulomb treatment using
screening and renormalization approach.

As already shown in Figs. 1 and 2 the Coulomb effect
on the observables of low energy αd scattering may be very
strong, indicating that the inclusion of the Coulomb interaction
is necessary for a stringent comparison of the theoretical
results and experimental data. Obviously, we have many more
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FIG. 1. Convergence of the αd elastic scattering observables
with screening radius R. The differential cross section and deuteron
analyzing powers iT11 and T20 at 4.81 MeV deuteron lab energy are
shown as functions of the c.m. scattering angle. Results obtained
with screening radius R = 5 fm (dotted curves), 10 fm (dash-dotted
curves), and 15 fm (solid curves) are compared. Results without
Coulomb (dashed curves) are given as reference for the size of the
Coulomb effect. The calculations were performed with the αN -I
potential.

predictions than it is possible to show. Therefore we make a
selection of the most interesting predictions which illustrate
the message we believe the results tell us. The readers are
welcome to obtain the results for their favorite data from us.

Figure 3 presents our results for the differential cross section
and all deuteron analyzing powers of elastic αd scattering
at 4.81 MeV and 17 MeV deuteron laboratory energy. As
expected, the Coulomb effect is large at lower energy for all
observables in the whole angular regime, while with increasing
energy it becomes smaller. Furthermore, the results depend
strongly on the choice of the αN interaction. The potential
αN -I describes most of the experimental Ed = 4.81 MeV data
quite satisfactorily, whereas the potential αN -II that avoids the
Pauli forbidden state in S-wave by the local repulsion clearly
fails in accounting for the scattering data, especially at Ed =
17 MeV, although the 6Li bound state properties predicted by
both potentials are very similar. The potential αN -III also fails
in accounting for the experimental data at Ed = 4.81 MeV,
but the difference between predictions using αN -I and αN -III
is found to be mostly due to the differences in P -waves. At
Ed = 17 MeV, which is just 3 MeV below 3H + 3He threshold,
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FIG. 2. Convergence of the αd breakup observables with screen-
ing radius R. The differential cross section and deuteron analyzing
power Ayy in selected kinematical configurations at 15 MeV α lab
energy are shown as functions of the arclength S along the kinematical
curve. Results obtained with screening radius R = 10 fm (dotted
curves), 15 fm (dash-dotted curves), and 20 fm (solid curves) are
compared. Results without Coulomb (dashed curves) are given as
reference for the size of the Coulomb effect. The calculations were
performed with the αN -I potential.

there is a qualitative agreement between experimental data and
predictions with αN -I and αN -III, except for deuteron tensor
analyzing powers T20 and T21. Obviously, the treatment of the
α-particle as a structureless boson becomes less reliable with
increasing energy.

Figure 4 presents our results for the differential cross
section of αd breakup at 15 MeV α laboratory energy in
various kinematical configurations. The most important
Coulomb effect is the shift of the αp P -wave resonance
position that leads to the corresponding changes in the
structure of the observables. Furthermore, the Coulomb
interaction breaks αn − αp charge symmetry and thereby
allows the coupling to the np isospin triplet waves, in particular
1S0. The predictions without Coulomb fail completely in
accounting for the experimental data, while inclusion of the
Coulomb moves the peaks of the differential cross section
to the right positions, although the height of those peaks is
not always reproduced. There is a strong dependence on the
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FIG. 3. (Color online) The differential cross section and deuteron analyzing powers at 4.81 MeV and 17 MeV deuteron lab energy. Results
including the Coulomb interaction obtained with potentials αN -I (solid curves), αN -II (dotted curves), and αN -III (dash-dotted curves)
are compared. αN -I results without Coulomb (dashed curves) are given as reference for the size of the Coulomb effect. The experimental
4.81-MeV data are from Ref. [7] for the differential cross section and from Ref. [5] for the spin observables, and the 17-MeV data are from
Ref. [6].

employed αN potential, where, like in the elastic scattering,
the potential αN -II provides the worst description of the
data, and the difference between the predictions of αN -I
and αN -III is dominated by the P -waves. The sensitivity
of the results to the choice of a realistic np potential is also

checked and found to be insignificant. When the c.m. energy
increases one finds a larger part of the phase space where
the relative αp energy may be quite different from the one
corresponding to the P -wave resonance and therefore also
the Coulomb effect is less significant as shown in Fig. 5.

064001-4



COULOMB FORCE EFFECTS IN LOW-ENERGY α- . . . PHYSICAL REVIEW C 74, 064001 (2006)

0

100

200

0 5 10 15 20

(8.1o,35.2o,180.0o)

 0

 20

 40

0 5 10 15

d5 σ/
dS

 d
Ω

α 
dΩ

p 
 (

m
b 

M
eV

-1
sr

-2
)

(17.1o,17.1o,180.0o)

 0

 40

 80

0 5 10 15

S  (MeV)

(17.1o,25.2o,180.0o)

 0

 40

 80

0 5 10 15

(17.1o,35.2o,180.0o)

 0

 40

 80

0 5

(17.1o,50.5o,180.0o)

 0

 30

 60

0 5 10

S  (MeV)

(19.1o,14.1o,180.0o 

FIG. 4. (Color online) The differential cross section of the αd breakup at 15 MeV α lab energy in selected kinematical configurations.
Curves as in Fig. 3. The experimental data are from Ref. [8].
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FIG. 5. The differential cross section and deuteron analyzing power Axx of the αd breakup at 12 MeV deuteron lab energy in the
(25◦, 45◦, 180◦) configuration. Results obtained using the potential αN -I with (without) Coulomb are shown as solid (dashed) curves. The
experimental data are from Ref. [9].
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IV. SUMMARY

In this paper we show that the screening and renor-
malization approach for the inclusion of the Coulomb
interaction in the description of three-particle scattering
using momentum-space integral equations, developed in
Refs. [2–4] for pd reactions, can be extended reliably to
αd scattering. This is an important step towards applica-
tion of exact scattering equations for the description of
nuclear reactions within three-body models, where up to now
only approximate treatments like the CDCC method [1] have
been used.

The Coulomb effect on the observables of αd scattering is
studied and is found to be large in elastic scattering at very
low energies and in breakup, where the shift of αp P -wave
resonance position leads to the corresponding shifts of the
differential cross section peaks.

Another important consequence of this work is that it allows
to ascertain with greater confidence the quality of the αN force
models one uses to describe αd observables as well as structure
and reactions of 6Li and 6He. Although at present there
are too large uncertainties in the parametrization of P - and
D-wave interactions that need to be improved, this work
clearly indicates the superiority of the attractive S-wave
potentials supporting a Pauli-forbidden state (that is projected
out or moved to a large positive energy) over the repulsive
S-wave potentials.
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