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Photonuclear sum rules and the tetrahedral configuration of 4He
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Three well-known photonuclear sum rules (SR), i.e., the Thomas-Reiche-Kuhn, the bremsstrahlungs and
the polarizability SR are calculated for 4He with the realistic nucleon-nucleon potential Argonne V18 and the
three-nucleon force Urbana IX. The relation between these sum rules and the corresponding energy weighted
integrals of the cross section is discussed. Two additional equivalences for the bremsstrahlungs SR are given,
which connect it to the proton-neutron and neutron-neutron distances. Using them, together with our result for
the bremsstrahlungs SR, we find a deviation from the tetrahedral symmetry of the spatial configuration of 4He.
The possibility to access this deviation experimentally is discussed.
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Photonuclear sum rules (SR) are related to moments of
different order of the photonuclear cross section and reflect im-
portant electromagnetic properties of nuclei [1,2]. In fact they
can often be expressed in terms of simple ground-state proper-
ties in a model-independent or quasi-model-independent way.
Well-known examples are the Thomas-Reiche-Kuhn (TRK)
sum rule [3], which gives information about the importance of
exchange effects in nuclear dynamics via the so-called TRK
enhancement factor κTRK, the bremsstrahlungs sum rule (BSR)
[4–7], which is connected to the nuclear charge radius and to
the mean distance between protons [8], and the polarizability
sum rule (PSR) [9], related to the electric nuclear polarizability.
These SR are all assuming that the dominant contribution
to the cross section comes from unretarded electric dipole
(E1UR) transitions. Two- and three-body studies [10,11]
indeed confirm that other contributions are much smaller.
Much discussed is also the Gerasimov-Drell-Hearn (GDH)
sum rule [12], which is related to the nuclear anomalous
magnetic moment.

In this work we consider the TRK, BSR, and PSR of 4He
within a realistic nuclear potential model consisting of two-
and three-body forces (AV18 and UIX [13,14]). (The GDH
sum rule is trivial for 4He: it vanishes, because the 4He total
angular momentum is equal to zero.) We also investigate
the related moments by integrating explicitly the properly
weighted total photoabsorption cross section, which we have
calculated for the same potential model [15]. The aim of this
study is to show that in some cases sum rules can allow
access experimentally to two-body properties of the nuclear
ground state, like the proton-proton, neutron-neutron, and
proton-neutron distances. In the case of 4He this allows us
to test the validity of the configuration tetrahedral symmetry
of this nucleus and at the same time to “measure” the amount of
symmetry breaking. This work aims also to provide a guideline

*On leave of absence from the Department of Physics, University
of Trento, I-38050 Povo (Trento) Italy.

for experiments, where only lower bounds for the SR can be
determined, as well as to give an idea of the reliability of the
SR approach to heavier systems, where the direct theoretical
determination of the cross section, and therefore its integration,
is presently out of reach. The advantage to perform this kind
of study in 4He, compared to analogous ones in the two- [16]
and three-body systems [17], is that 4He is a rather dense and
compact nucleus, resembling heavier systems more closely.
Only now that realistic theoretical results for the photonuclear
cross section are available such a study is possible and one can
put the extrapolation of the results to heavier systems on safer
grounds.

We start by recalling the formalism of the photonuclear
SR. The various moments of the photonuclear cross section
are defined as

mn(ω̄) ≡
∫ ω̄

ωth

dω ωn σ E1UR
γ (ω), (1)

where ω is the photon energy and ωth and ω̄ indicate
threshold energy and upper integration limit, respectively. With
σ E1UR

γ (ω) we indicate the unretarded dipole cross section given
by

σ E1UR
γ (ω) = GωR(ω), (2)

where G = 4π2α/3 with α denoting the fine structure constant
and the nucleus total spin, respectively. The response function
R(ω) is given by

R(ω) =
∑

n

|〈n|D|0〉|2 δ(ω − En + E0), (3)

where |0/n〉 and E0/n are the nuclear ground-/excited-state
wave functions and energies, respectively, and D is the
unretarded dipole operator D = ∑A

i=1 riτ
3
i /2, where A is the

number of nucleons and τ 3
i and ri are the third component of

the isospin operator and the coordinate of the ith particle in
the center-of-mass frame, respectively.

Assuming that σ E1UR
γ (ω) converges to zero faster than

ω−n−1 and applying the closure property of the eigenstates
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of the Hamiltonian H , one has the following SR for n =
0,−1,−2:

	TRK ≡ m0(∞) = G
2

〈0| [D, [H, D]] |0〉 (4)

	BSR ≡ m−1(∞) = G 〈0|D · D|0〉 (5)

	PSR ≡ m−2(∞) = G
∑

n

(En − E0)−1|〈n|D|0〉|2 . (6)

Working out the expressions in Eqs. (4)–(6), one finds
that those moments are related to interesting properties of the
system under consideration. In fact the TRK sum rule is also
given by the well-known relation [3]

	TRK = G 3NZ

2mA
(1 + κTRK), (7)

where N and Z are the neutron and proton numbers, respec-
tively, m is the nucleon mass, and κTRK is the so-called TRK
enhancement factor defined as

κTRK ≡ mA

3NZ
〈0|[D, [V, D]]|0〉 . (8)

From this expression it is evident that κTRK embodies the
exchange effects of the nuclear potential V [the double
commutator in Eq. (8) vanishes for systems like atoms, where
no exchange effects are present].

In the literature one finds a few interesting equivalences for
the bremsstrahlungs sum rule. Rewriting the dipole operator as
D = (NZ/A)RPN , where RPN denotes the distance between
the proton and neutron centers of mass, one has [5]

	BSR = G
(

NZ

A

)2

〈0|R2
PN |0〉 . (9)

In Ref. [6] Foldy demonstrated that

	BSR = G NZ

A − 1

〈
r2
p

〉
, (10)

where 〈r2
p〉 is the mean square (m.s.) point proton radius

〈
r2
p

〉 ≡ 1

Z
〈0|

Z∑
i=1

r2
i |0〉. (11)

However, this relation is valid only under the assumption
that the ground-state wave function is symmetric in the space
coordinates of the nucleons.

In Ref. [7] it was found that, in the framework of the
oscillator shell model, one has

	BSR = G
(
Z2

〈
r2
p〉 − Z2

〈
r ′2
p

〉)
, (12)

where 〈r ′2
p 〉 is the m.s. distance of protons with respect to the

proton center of mass RP

〈
r ′2
p

〉 ≡ 1

Z
〈0|

Z∑
i=1

(ri − RP )2|0〉 . (13)

Later, in Ref. [8], it was shown that the validity of Eq. (12)
is not limited to the oscillator shell model, but it is a model-
independent relation, which can also be written as

	BSR = G
[
Z2

〈
r2
p

〉 − Z(Z − 1)

2

〈
r2
pp

〉]
, (14)

where 〈r2
pp〉 is the m.s. proton-proton distance

〈
r2
pp

〉 ≡ 1

Z(Z − 1)

〈
0|

Z∑
i,j=1

(ri − rj )2|0〉
. (15)

For the BSR two additional relations exist that are easy to
prove but that, to our knowledge, have not been considered in
the literature, i.e.,

	BSR = G
[
N2〈r2

n

〉 − N (N − 1)

2

〈
r2
nn

〉]
(16)

and

	BSR = GNZ

2

(〈
r2
pn

〉 − 〈
r2
p

〉 − 〈
r2
n

〉)
, (17)

where 〈r2
n〉 is the m.s. point neutron radius and 〈r2

αβ〉 are the
m.s. nucleon-nucleon (NN) distances, i.e.,

〈
r2
nn

〉 ≡ 1

N (N − 1)
〈0|

N∑
i,j=1

(ri − rj )2|0〉, (18)

〈
r2
pn

〉 ≡ 1

NZ
〈0|

Z∑
i=1

N∑
j=1

(ri − rj )2|0〉. (19)

It is interesting to note that (i) because Eq. (9) is invariant under
the exchange of protons with neutrons, Eq. (16) represents the
obvious corresponding expression for neutrons of Eq. (14),
and (ii) Eqs. (14), (16), and (17), as well as Eq. (12), express
	BSR via the one-body quantity 〈r2

α〉 and various two-body
quantities. Finally, regarding the polarizability sum rule, one
has

	PSR = 2π2αD, (20)

where αD denotes the nuclear polarizability in the E1UR
approximation.

In this work we calculate moments and sum rules in
different ways. On the one hand, we obtain the moments by
integrating our recent result for the 4He total photoabsorption
cross section [15]. This is an ab initio calculation where
we use the AV18 NN potential and the UIX three-nucleon
force. The results have been obtained by the Lorentz integral
transform (LIT) method [18]. The necessary equations have
been solved via hyperspherical harmonics expansions (EIHH
approach [19,20]). On the other hand, we obtain the SR in a
more direct way, as explained in the following.

The LIT, an integral transform with a Lorentzian kernel, is
defined as follows:

L(ε, �) =
∫

dω
R(ω)

(ω − ε)2 + �2
. (21)

One way to evaluate the LIT is by using the Lanczos technique
as described in Ref. [21]. In fact the LIT can be re-expressed
as

L(ε, �) = 1

�
〈0|D · D|0〉 Im

{
〈φ0| 1

z − H
|φ0〉

}
(22)

with z = E0 + ε + i� and

|φ0〉 = D|0〉√〈0|D · D|0〉 . (23)

061001-2



RAPID COMMUNICATIONS

PHOTONUCLEAR SUM RULES AND THE TETRAHEDRAL . . . PHYSICAL REVIEW C 74, 061001(R) (2006)

It is evident that the LIT depends on the matrix element

x00(z) = 〈φ0| 1

z − H
|φ0〉, (24)

which can be expressed [22] as a continued fraction containing
the Lanczos coefficients

ai = 〈φi |H |φi〉, bi = ‖bi |φi〉‖, (25)

where the φi form the Lanczos orthonormal basis {|φi〉, i =
0, . . . , n}. Therefore the implementation of the Lanczos
algorithm leads to L(ε, �) (for details see Ref. [21]). Although
the inversion of the LIT [23] gives access to R(ω), and thus
to the moments of Eq. (1), the normalization of the Lanczos
“pivot” |LP〉 = D|0〉 and the Lanczos coefficients allow us to
obtain the SR of Eqs. (4)–(6). In fact one has:

	PSR = G x00(E0), (26)

	BSR = G 〈LP|LP〉, (27)

	TRK = (a0 − E0) 	BSR. (28)

We use an HH basis, therefore the ground state |0〉, the Lanczos
“pivot” |LP〉, and the Lanczos coefficients an are given in terms
of HH expansions. Although for the ground state the expansion
is characterized by an even hyperspherical grand-angular
quantum number K and total isospin T = 0, |LP〉 has to be
expanded on {K ′ = K + 1, T = 1} states (we neglect the
AV18 isospin mixing, which is very small, as shown for
the 4He ground state in Ref. [24]). The rate of convergence of
the various SR results from Eqs. (26)–(28) is given in Table I
as a function of the hyperspherical grand-angular quantum
number K . One observes sufficiently good convergence pat-
terns for 	TRK and 	BSR. For the latter we have performed an
additional test of the convergence, calculating 	BSR directly as
mean value of the operator D · D on the ground state [Eq. (5)].
In this way the expansion of |LP〉 on {K ′ = K + 1, T = 1}
states is avoided. We obtain practically identical results.

From Table I one sees that the convergence of 	PSR is
slower when the three-nucleon force (3NF) is included. In
Ref. [15] a related problem was found for the cross section
itself. In fact there it was shown that the cross-section peak
slightly shifts toward lower energies with increasing K and
Fig. 3 of Ref. [15] shows that such a shift leaves the area under
the peak almost inaltered. Therefore one would indeed expect
that the sum rule 	PSR, which has the strongest inverse energy

TABLE I. Convergence in K of the SR for AV18+UIX potentials.
The converged AV18 results are also shown.

K 	PSR 	BSR 	TRK

10−2 (mb MeV−1) (mb) 102 (mb MeV)

AV18+UIX
8 6.230 2.398 1.430
10 6.277 2.396 1.448
12 6.331 2.394 1.451
14 6.382 2.401 1.458
16 6.434 2.406 1.460
18 6.473 2.410 1.462

AV18
7.681 2.696 1.383

TABLE II. Convergence in the upper integration limit ω̄ of the
various moments defined in Eq. (1).

ω̄ m−2(ω̄) m−1(ω̄) m0(ω̄)
(MeV) 10−2 (mb MeV−1) (mb) 102 (mb MeV)

AV18+UIX
135 6.55 2.27 .944
300 6.55 2.37 1.14

weighting, is more sensitive to such a shift than the other two
SR. In Ref. [15] an extrapolated cross section σK→ ∞

γ was
obtained from a Padè approximation. We have used this to
determine from Eq. (1) the various moments for ω̄ = 300 and
135 MeV. These results are listed in Table II.

For 	TRK one sees that the SR is not yet exhausted at
300 MeV. In fact more than 20% of the strength is still
missing. At pion threshold, one has only about 2/3 of 	TRK.
As discussed in Ref. [25] for the triton case, the rather strong
contribution from higher energies seems to be connected to the
strong short-range repulsion of the AV18 potential. As to the
TRK enhancement factor we obtain κTRK = 1.31 for AV18 and
1.44 for AV18+UIX. These numbers are somewhat larger than
older results obtained either with a variational wave function
and AV14+UVII potential (κTRK = 1.29 [26]) or with more
approximated wave functions and various soft and hard core
NN potentials (κTRK = 0.9 − 1.30 [27–29]).

For 	BSR, as expected, the contribution at high energy is
much smaller than for 	TRK, in fact at ω̄ = 300 MeV we find
a missing sum rule strength of less than 2% only. For 	PSR the
strength beyond 300 MeV is even more negligible. Actually
in this case the explicit integration leads to an even higher
result than the sum rule evaluation of Eq. (27). The seeming
contradiction is explained by the already-discussed fact that
	PSR is not yet convergent, and for the explicit integration
the extrapolated cross section of Ref. [15]) is used. Indeed,
integrating the K = 18 cross section we obtain a value of
6.46 mb, which is consistent with the corresponding sum rule
result of 6.47 mb, within the numerical error of the calculation.

For the AV18+UIX force the value of the polarizability
αD that we deduce from the extrapolated 	PSR is 0.0655 fm3.
The AV18 result, which already shows a good convergence for
K = 16, is 0.0768 fm3. This means that the 3NF reduces the
polarizability by 15%. It would be very interesting to measure
this nuclear polarizability by Compton scattering, as a test of
the importance of the three-body force on such a classical
low-energy observable. We find that 	PSR is the SR that is
affected most by the 3NF. In fact 	BSR is reduced by only 10%
and one has an opposite effect on 	TRK with a 5% increase.
The quenching or enhancement of SR due to the 3NF is the
reflection of its effects on the cross section, i.e., a decrease of
the peak and an increase of the tail. Altogether one can say that
the 3NF appears to make the nucleus stiffer with respect to the
application of a static electric field, i.e., it leads to a reduction
of the dipole transition strengths at low energies and thus to a
lower polarizability and bremsstrahlungs weighted sum rule.
However, the high-energy strength is increased, presumably
by increased short-range correlations, resulting in an enhanced
TRK sum rule.
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Here we add a few words about the very old question,
already discussed in Ref. [4], of the “existence” of the SR
[finiteness of mn(ω̄) for ω̄ → ∞], which is connected to the
high-energy falloff of the E1UR cross section. Because we
find a rather good consistency between the SR and the moment
values, we can state with a rather high degree of confidence that
	TRK (and consequently the other two SR) “exist.” Therefore
we can try to extract some information about the high-energy
behavior of the cross section and hence about the “existence”
of SR with higher n. With an ω−p ansatz for the falloff of the
cross section above pion threshold, and requiring that 	TRK

is 146 mb MeV (see Table I), one gets a rather weak energy
falloff, i.e., p 	 1.5. This value is also consistent with 	BSR.
In fact, adding such a tail contribution to m−1(135) one gets
	BSR = 2.39 mb, to be compared with 2.41 mb in Table I. The
value of p might be somewhat different for other potentials,
but probably it will not change much. Therefore we can rather
safely conclude that higher-order SR do not exist for realistic
nuclear potential models.

Finally we return to discuss the BSR, because it presents a
very interesting aspect. As already mentioned 	BSR contains
information about one- and two-body densities via 〈r2

α〉 and
〈r2

αβ〉, respectively. This means that a measurement of 	BSR

and the knowledge of the experimental m.s. radius allow us to
determine 〈r2

αβ〉 via Eqs. (14), (16), and (17). In this way one
gets information about the internal configuration of 4He as it
is explained in the following.

In his derivation of Eq. (10), Foldy assumed a totally
symmetric 4He spatial wave function, which corresponds
to a configuration where the four nucleons are located at
the four vertices of a tetrahedron. For such a configuration
one has 〈r2

p〉 = 〈r2
n〉 = 〈r2〉 and 〈r2

pp〉 = 〈r2
nn〉 = 〈r2

np〉 with
QT ≡ 〈r2

αβ〉/〈r2〉 = 8/3. Foldy’s assumption is a very good
approximation for 4He, but other spatial symmetries (mixed
symmetry, antisymmetric) are also possible. What can be
learned from our 	BSR result with respect to this question?
For 4He, which is a T = 0 system one can safely assume
that 〈r2

p〉 = 〈r2〉 = 〈r2
n〉 (isospin mixing is tiny [24]). Using

in Eqs. (14), (16), and (17) the AV18+UIX value of 〈r2〉 =
2.04 fm2 [15] (which coincides with the experimental one [30],
corrected for the proton charge radius) and 	BSR from Table I,
we obtain 〈r2

pp〉 = 〈r2
nn〉 = 5.67 fm2 and 〈r2

pn〉 = 5.34 fm2,
i.e., two values that differ by about 6%. The ratios Qpp(nn) ≡
〈r2

pp(nn)〉/〈r2〉 and Qnp ≡ 〈r2
np〉/〈r2〉 are not much different

from the correspondent value QT of a classical tetrahedral
configuration. We obtain Qpp = 2.78 and Qnp = 2.62 instead
of QT = 2.67. One notices that Qpp(nn) − QT 	 2(Qnp −
QT ). This reflects the different numbers of proton-proton
and neutron-neutron pairs (2) with respect to proton-neutron
pairs (4). Using Eq. (9) one can also derive the distance be-
tween the proton and neutron centers of mass. One has Rpn =
1.58 fm instead of 1.65 fm for the tetrahedral configuration.

Notice that with 〈r2〉 = 2.04 fm2 the “tetrahedral” BSR
would be 2.62 mb, the same value that one obtains using
Eq. (10). This value is 9% larger than our result. The distortions
that we find from our 9% smaller BSR are the consequence
of the different effects of the potential on isospin triplet and
isospin singlet pairs.

We conclude that when considered in its body frame
4He should look like a slightly deformed tetrahedron. Of
course, this statement has to be interpreted in a quantum
mechanical sense, regarding the mean-square values of the
nucleon-nucleon distances on the two-body density. It is clear
that one cannot measure this deformation “directly,” because
it is not a deformation of the one-body charge density (the
4He charge density has only a monopole). However, such a
deformation is accessible experimentally in an indirect way
via the measurements of the charge radius and of 	BSR.

This leads to the question how exactly 	BSR can be
measured in a photonuclear experiment. Two points have
to be addressed: (i) the contributions of E1 retardation and
higher multipoles that are not contained in 	BSR but that
will contribute to the experimental cross section and (ii) the
contribution of the high-energy tail. To this end it is instructive
to consider the results from the three-nucleon photodisin-
tegration. Regarding point (i), additional effects of the E1
retardation and higher multipoles have been calculated in Ref.
[31] for the AV18+UIX potentials in a Faddeev calculation.
Using those results one finds that E1 retardation and higher
multipoles increase m−1(135) by about 1% only. In fact
according to Gerasimov [32] there is a large cancellation of E1
retardation and other multipoles. There is no reason for a larger
effect in 4He. On the contrary, because the leading isovector
magnetic dipole (M1) transition is suppressed in this nucleus
(it is zero for an S wave) one can expect an even smaller
contribution. As to point (ii) considering the falloff of the triton
E1UR cross section around pion threshold from Ref. [31] one
obtains a result very similar to our 4He case, namely p 	 1.5.
However, including the other multipole contributions one gets
a considerably smaller value, namely p 	 1.1. This is no
contradiction with the small increase of 1% for 	BSR, because
the inverse energy-weighted cross section integrated from 100
to 135 MeV gives only a rather small contribution to the sum
rule. However, one would overestimate 	BSR taking the full
cross section. Thus we suggest that the tail contribution to an
experimental BSR should be estimated using the theoretically
established falloff ω−p with p 	 1.5.

In conclusion, we have studied three well-known pho-
tonuclear sum rules for 4He within a realistic two- and
three-nucleon potential model. Two new equivalences for
the BSR sum rules have allowed us to deduce information
about two-body properties of the nuclear ground state, like the
proton-proton, neutron-neutron, and proton-neutron distances.
In particular we have tested the validity of the configuration
tetrahedral symmetry of this nucleus and have found that
this symmetry is slightly broken. We have suggested an
experimental way to access this symmetry breaking via a
measurement of the BSR that could be performed in one of the
existing or planned low to intermediate energy photonuclear
facility.
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[28] W. Heinze, H. Arenhövel, and G. Horlacher, Phys. Lett. B76,
379 (1978).

[29] M. Gari, H. Hebach, B. Sommer, and J. G. Zabolitzky, Phys.
Rev. Lett. 41, 1288 (1978).

[30] E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978).
[31] J. Golak, R. Skibinski, W. Glöckle, H. Kamada,
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