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Comment on “Test of the modified BCS model at finite temperature”
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The results and conclusions by Ponomarev and Vdovin [Phys. Rev. C 72, 034309 (2005)] are inadequate to
judge the applicability of the modified BCS because they were obtained either in the temperature region, where
the use of zero-temperature single-particle spectra is no longer justified, or in too limited configuration spaces.
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The modified BCS theory (MBCS) was proposed and
developed in Refs. [1–3] as a microscopic approach to take
into account fluctuations of quasiparticle numbers, which
the BCS theory neglects. The use of the MBCS in nuclei
at finite temperature T washes out the sharp superfluid-
normal phase transition. This agrees with the predictions
by the macroscopic theory [4], the exact solutions [5], and
experimental data [6]. The authors of Ref. [7] claimed that the
MBCS is thermodynamically inconsistent and its applicability
is far below the temperature where the conventional BCS gap
collapses. The present Comment points out the shortcomings
of Ref. [7]. We concentrate only on the major issues without
repeating minor arguments already discussed in Refs. [2,3] or
inconsistent comparisons in Fig. 9 and Ref. [11] of Ref. [7]
(see Ref. [8]).

(i) The application of the statistical formalism in finite
nuclei requires that T should be small compared to the
major-shell spacings (∼5 MeV for 120Sn). In this case zero-T
single-particle energies can be extended to T �= 0. As a matter
of fact, the T -dependent Hartree-Fock (HF) calculations for
heavy nuclei in [9] have shown that already at T � 4 MeV
the effect of T on single-particle energies cannot be neglected.
We carried out a test calculation of the neutron pairing gap
for 120Sn, where, to qualitatively mimic the compression of
the single-particle spectrum at high T as in Ref. [9], the
neutron energies are ε′

j = εj (1 + γ T 2) with γ = −1.2 × 10−4

if |j 〉 � |1g9/2〉. For |j 〉 above |1g9/2〉, we took γ equal to
0.49 × 10−3 and −0.7 × 10−3 for negative and positive εj ,
respectively. The obtained MBCS gap has a smooth and
positive T dependence similar to the solid line in Fig. 7 of
Ref. [1] with a flat tail of around 0.2 MeV from T = 5 MeV up
to T = 7 MeV. For the limited spectrum used in the calculations
of Ni isotopes [2], the major-shell spacing between (28–50)
and (50–82) shells is about 3.6 MeV, so the region of valid
temperature is T � 3.6 MeV. Hence, the strange behaviors
in the results obtained at large T for 120Sn and Ni isotopes
in [7] occurred because the zero-T spectra were extended to
too high T . Moreover, the configuration spaces used for Ni
isotopes are too small for the MBCS to be applied at large T .
The same situation takes place within the picket-fence model
(PFM) analyzed below.

(ii) The virtue of the PFM is that it can be solved exactly in
principle at T = 0. However, at T �= 0 the exact solutions of a

system with pure pairing do not represent a fully thermalized
system. As a result, temperatures defined in different ways
do not agree [10]. The limitation of the configuration space
with � = 10 causes a decrease of the heat capacity C at TM >

1.2 MeV (Schottky anomaly) [3] (See Fig. 4 (c) of Ref. [7]).
Therefore, the region of T > 1.2 MeV, generally speaking, is
thermodynamically unphysical. The most crucial point here,
however, is that such limited space deteriorates the criterion
of applicability of the MBCS (See Sec. IV. A. 1 of Ref. [3]),
which in fact requires that the line shapes of the quasiparticle-
number fluctuations δNj ≡ √

nj (1 − nj ) should be included
symmetrically related to the Fermi level [Fig. 1(f ) of Ref. [3] is
a good example]. The dashed lines in Fig. 1(a) shows that, for
N = 10 particles and � = 10 levels (G = 0.4 MeV), at T close
to 1.78 MeV, where the MBCS breaks down, δNj are strongly
asymmetric and large even for lowest and highest levels. At
the same time, by just adding one more valence level (� = 11)
and keeping the same N = 10 particles, we found that δNj are
rather symmetric related to the Fermi level up to much higher
T [solid lines in Fig. 1(a)]. This restores the balance in the
summation of partial gaps δ�j [3]. As a result the obtained
MBCS gap has no singularity at 0 � T � 4 MeV [Fig. 1(b)].
The total energy and heat capacity obtained within the MBCS
also agree better with the exact results than those given by the
BCS [Fig. 2]. It is worth noticing that, even for such small N ,
adding one valence level increases the excitation energy E∗
by only ∼10% at T = 2 MeV, while at T < 2 MeV the values
of E∗ for � = 10 and 11 are very close to each other.
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FIG. 1. (a) MBCS quasiparticle-number fluctuations δNj within
the PFM versus single-particle energies at several T . Lines connect
discrete values to guide the eyes; numbers at the lines show the values
of T in MeV; (b) BCS and MBCS gaps for N = 10 and � = 11 (G =
0.4 MeV).

0556-2813/2006/74(5)/059801(2) 059801-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.059801


COMMENTS PHYSICAL REVIEW C 74, 059801 (2006)

-25

-20

-15

-10

0 0.5 1 1.5 2 2.5 3 3.5 4

E
  (

M
eV

)

T  (MeV)

2

4

6

8

0 0.5 1 1.5 2 2.5 3

C
T  (MeV)

(a) (b)

FIG. 2. Total energies (a) and heat capacities (b) within the PFM
for (N = 10, � = 11, G = 0.4 MeV) versus T . Dotted, thin-,
and thick-solid lines denote the BCS, MBCS, and exact results,
respectively. A quantity equivalent to the self-energy term −G

∑
j v4

j ,
not included within BCS and MBCS, has been subtracted from the
exact total energy.

We also carried out the calculations for larger particle
numbers N . This eventually increases TM, and also makes
the line shapes of δNj very symmetric at much higher T . For
� = 50 and 100, e.g., we found TM > 5 MeV, and the MBCS
gap has qualitatively the same behavior as that of the solid line
in Fig. 1(b) up to T ∼ 5–6 MeV. However, for large N the exact
solutions of PFM turn out to be impractical as a testing tool
for T �= 0. Since all the exact eigenstates must be included
in the partition function Z, and, since for N = 50, e.g., the
number of zero-seniority states alone already reaches 1014, the
calculation of exact Z becomes practically impossible.

(iii) The principle of compensation of dangerous diagrams
was postulated to define the coefficients uj and vj of the
Bogoliubov canonical transformation. This postulation and the
variational calculation of ∂H ′/∂vj lead to Eq. (19) in Ref. [7]
for the BCS at T = 0. It is justified so long as divergences
can be removed from the perturbation expansion of the
ground-state energy. However, at T �= 0 a T -dependent ground
state does not exist. Instead, one should use the expectation
values over the canonical or grand-canonical ensemble [2,3].
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FIG. 3. bj (a) and cj (b), obtained within BCS for five lowest
levels in the PFM with � = 10 versus T . In (a) the solid and dashed
lines represent bj and quasiparticle energies Ej , respectively. In
(b) the solid, dashed, dotted, and dash-dotted lines correspond to
levels 1–5 in (a), respectively.

Therefore, Eq. (19) of Ref. [7] no longer holds at T �= 0 since
the BCS gap is now defined by Eq. (7) of Ref. [7], instead
of Eq. (3). Figure 3 clearly shows how bj �= Ej and cj �= 0
at T �= 0. This invalidates the critics based on Eq. (19) of
Ref. [7].

In conclusion, the test of Ref. [7] is inadequate to judge the
MBCS applicability because its results were obtained either
in the T region, where the use of zero-T spectra is no longer
valid (for 120Sn and Ni), or within too limited configuration
spaces (the PFM for N = � = 10 or 2 major shells for Ni).
Our calculations with a T -dependent spectrum for 120Sn, and
within extended configuration spaces presented here show that
the MBCS is a good approximation up to high T even for a
system with N = 10 particles.

We thank A. Volya for assistance in the exact solutions of
the PFM.
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