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Q-value effects on the production of superheavy nuclei
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The formation of superheavy nucleus 270Hs via the 4n evaporation channel of fusion reactions 26Mg + 248Cm,
30Si + 244Pu, 36S + 238U, and 48Ca + 226Ra is studied using a two-parameter Smoluchowski equation. The
evaporation residual cross sections of the reactions 48Ca + 226Ra and 36S + 238U are obviously enhanced because
of their large negative Q values. The enhancement is due to the fact that the excitation energy corresponding to
the maximum yield of the evaporation residue depends on the reaction Q value, and the maximum cross section
sensitively depends on the increment of this excitation energy relative to the effective threshold energy of which
the channel for fission after 4n emission opens.
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For sufficiently heavy systems, automatic fusion will not
take place, because the overall length of the saddle-point
shape shrinks inside the contact configuration of the colliding
nuclei [1]. Hence after contact and the formation of a heavy
composite mononucleus, the system finds itself outside the
saddle-point barrier, and diffusing over the barrier is necessary
for the system to reach the compound nucleus configuration.
For the events that fail to diffuse over the saddle-point hill,
the composite nucleus then redisintegrates in a fission-like
process, which is referred to as quasifission (QF). There
is a strong competition between compound-nucleus (CN)
formation and quasifission in the fusion process of heavy
nuclei. This competition severely hinders the formation of
superheavy nuclei. It is well established that the probability
of quasifission (PQF) strongly depends on the value Z1Z2.
Moreover, the production cross section depends on mass
asymmetry η = (A2 − A1)/(A1 + A2) of the reaction system
in the entrance channel. Here A1(Z1) and A2(Z2) are the mass
(charge) numbers of the projectile and target nuclei.

The entrance channel dependence of the formation cross
section for superheavy nuclei has been of great concern
in recent years. This is because the cross section for the
synthesis of superheavy elements (SHE) is so small that it
reaches the present experimental limit for the registration of
the evaporation residual nuclei. Therefore, it is key to select the
optimal reaction and favorable bombarding energy before the
experiment to ensure the successful synthesis of SHE. There is
a general opinion that it is more favorable to synthesize SHE
with large mass asymmetry of the reaction system. This is
usually the case, but sometimes it is not because the formation
of superheavy nuclei depends not only on the mass asymmetry
but also on other factors in the entrance channel. In the
present work, we study the entrance channel dependence of
the formation cross section of 270Hs through 4n evaporation
channels of the reactions 26Mg + 248Cm, 30Si + 244Pu, 36S +
238U, and 48Ca + 226Ra. Our results show that in addition to
the mass asymmetry, the reaction Q value plays an important
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role in the formation of superheavy nuclei. In addition, the
macroscopic-microscopic approach [2–5] predicts a strong
proton-deformed shell at Z = 108 to be a partner for the
neutron shell at N = 162. Thus the nucleus 270Hs is expected
to be a relatively strongly bound “double-magic” deformed
nucleus. Therefore, it is meaningful to predict the optimal
selection of the reaction system and bombarding energy for
synthesis of the nucleus 270Hs.

The production cross section of a cold residual nucleus is
usually decomposed over partial waves and given by

σER(E) = π λ̄2
∞∑
l=0

(2l + 1)Tl(E)PCN(E, l)Wsur(E, l). (1)

Here Tl(E) is the probability that the colliding nuclei pen-
etrate the entrance channel potential barrier and reach the
contact point. We calculated Tl(E) by means of an approach
proposed by Zagrebaev et al. [6,7]. In their approach, the
coupling between the relative motion of the nuclei and their
dynamic deformations is taken into account in terms of a
semiphenomenological barrier distribution function method.
This approach was successfully applied to describe the capture
cross sections for a number of reactions leading to superheavy
nucleus formation.

PCN defines the probability that the system will go from the
configuration of two nuclei in contact to the configuration
of a compound nucleus. Swiatecki et al. [8,9] propose a
model to evaluate the probability PCN. They assume that the
dynamics in the second stage, including statistical fluctuations,
can be described by a diffusion process analogous to the
one-dimensional Brownian motion of a particle suspended
in a viscous fluid at temperature T in the presence of a
repulsive parabolic potential. The equation describing the drift
and the spreading of the probability distribution W (x, t) is the
Smoluchowski partial differential equation. Here x denotes
the relative length s between the effective surfaces of the
approaching nuclei. As they point out [9] their model has
advantages: operationally the scheme is very transparent, and
the calculations are sufficiently simple. Based on their model,
we make a modification to include the neutron flow in the early
stage of evolution, and we assume the diffusion process to be
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described by a two-parameter Smoluchowski equation [10]:

∂W (x, y, t)

∂t
= [Lx(x, y) + γLy(x, y)]W (x, y, t). (2)

The operators Lx and Ly are given by

Lx(x, y) = − ∂

∂x
Dx(x, y) + Dxx

∂2

∂x2
, (3)

Ly(x, y) = − ∂

∂y
Dy(x, y) + Dyy

∂2

∂y2
. (4)

Here y represents the neutron number N of the light nucleus.
We assume that the diffusion coefficients, Dxx and Dyy

are constants, i.e., Dxx = kT /αx and Dyy = kT /αy . Here
αx and αy are proportional to the dissipation acting in the
degrees of freedom x and y, respectively. For t → ∞, the
final results are independent of them [8,9]. The potential
Vaf(x, y), which determines the corresponding saddle-point
barrier, is calculated with the formulas in Ref. [9] and
approximated by a repulsive parabolic potential Vaf(x, y) =
−a(y)(x − xmax(y))2/2, with xmax(y) locating the maximum
value in Vaf . The mass asymmetry, the neck formation, and the
overall length of the composite nucleus are taken into account
in the potential calculation. By means of this potential, we
get the drift coefficient Dx = a(y)(x − xmax)/αx . The drift
coefficient Dy is proportional to the y-direction driving force
evaluated with the potential governing the neutron flow [10].

In Eq. (2) we introduced parameter γ to indicate the
different time scales. It is well established that in low-energy
heavy-ion collisions, the N/Z equilibrium happens on a time
scale much faster than that of other collective motions, such
as the change in the overall length of the configuration. In
the limit γ � 1, which is consistent with the assumption
that y will decay very rapidly to an equilibrium value yeq,
Eq. (2) can be reduced to the Smoluchowski equation with one
parameter [10,11],

∂W (x, t)

∂t
= L00W (x, t). (5)

The operator L0,0 has the form

L00 = − ∂

∂x
Dx(x) + Dxx

∂2

∂x2
, (6)

with

Dx(x) =
∫

Dx(x, y)φ0(x, y)dy. (7)

Here φ0(x, y) is the eigenfunction of the operator Ly(x, y) for
n = 0:

φ0(x, y) =
√

b(x)

2πkT
exp

[
−b(x)(y − yeq)2

2kT

]
. (8)

The probability to reach the compound nucleus configuration
is equal to the area under the distribution’s tail in the region
x � xmax [9,10],

PCN = 1

2
erfc

√
β, (9)

where β = B/kT and erfc is the error function complement,
equal to (1-erf). At time t = 0, the composite nucleus injects
the asymmetric fission valley at x0. According to Eq. (7), the

(a)

(b)

FIG. 1. The probability of CN formation as a function of mass
asymmetry (panel a) and the cross sections of the CN formation as
a function of (E − B0) (panel b) for the reaction systems 26Mg +
248Cm, 30Si + 244Pu, 36S + 238U, and 48Ca + 226Ra. B0 is the average
height of the entrance barrier. The straight line in (a) represents the
least-square fit of the data to guide the eye. The probabilities of the CN
formation are calculated at the energy corresponding to the maximum
of ER excitation function. The arrows in (b) illustrate the positions
of these energies.

average barrier height to be overcome by the diffusion reads

B =
∫

B(y)φ0(x0, y)dy, (10)

with B(y) being the barrier height of the saddle point for
different y values. Figure 1(a) shows the probability of the CN
formation as a function of mass asymmetry for the reactions
26Mg + 248Cm, 30Si + 244Pu, 36S + 238U, and 48Ca + 226Ra.
The PCN values are evaluated at the energy corresponding to
the maximum of evaporation residual excitation function. It
can be seen that the probabilities PCN monotonously increase
as η. The calculated compound formation cross sections are
presented in Fig. 1(b). The CN cross sections are larger for
the reaction systems with larger mass asymmetry. Simply, the
CN formation is favorable for the systems with larger mass
asymmetry.

Finally, Wsur represents the probability that a cold residual
nucleus will be produced in the decay of the excited compound
nucleus. The survival probability for emitting x neutrons can
be written as

Wsur(E
∗
CN, l) = Gxn(E∗

CN, l)
k

[
�n(Umax

k,n )

�f (Umax
k,f ) + �n(Umax

k,n )

]
k

,

(11)
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where Gxn is the probability of realization of x neutron
evaporation [12,13]. The partial width of neutron emission
can be expressed as [12,14]

�n(Umax
k,n ) = gmσnU

max
k,n

π2h̄2an

exp
(

2
√

anU
max
k,n − 2

√
a0U0

)
, (12)

where m and g are the neutron mass and spin degeneration
factor, σn is the cross section for the formation of the decaying
nucleus with mass number A in the inverse process, and a0

and an are the level density parameters of the parent nucleus
and the nucleus after particle emission. The value of the level
density parameter is set to A/12.0 in our calculations. U0 =
E∗

CN − Erot
0 − P0 is the thermal excitation energy of the parent

nucleus corrected for its pairing energy P0. The upper limit
of the final-state thermal excitation energy for the kth neutron
emission is Umax

k,n = E∗
k − Sn(k) − Erot

k − Pk . The energy E∗
k

is the excitation energy after (k − 1) neutron emission,

E∗
k = E∗

CN −
k−1∑
i=1

(Sn(i) + 2Ti), (13)

where Sn(i), and Ti are the neutron separation energy and nu-
clear temperature of the (i − 1)th generation daughter nucleus.
The rotational energy Erot

k is calculated with the ground-state
deformation as predicted in Ref. [15]. In the calculation of
�n, we adopt the approximation proposed by Vandenbosch
and Huizenga [12], i.e., (πh̄2)/(gmσn) ≈ 10 MeVA−2/3. The
partial width of fission is given by [12,14]

�f

(
Umax

k,f

) =
2
√

af Umax
k,f − 1

4πaf

exp
(
2
√

af Umax
k,f − 2

√
a0U0

)
,

(14)

where af is the level density parameter at the saddle point.
The ratio of the level density parameters in the fission and
neutron evaporation channels is equal to af /an = 1.07 [12].
The Umax

k,f denotes the upper limit of the thermal excitation
energy at the saddle point for the nucleus after (k − 1) neutrons
are emitted: Umax

k,f = E∗
k − Bf (k) − Erot

k,sd − Pk . The fission
barrier depends on the excitation energy of the nucleus as

Bf (k) = BLD(k) − �sh(k) exp(−E∗
k /ED), (15)

where Ed = 25 MeV is the shell-damping energy [16]. The
fission barrier Bf contains the macroscopic liquid drop energy
part BLD and microscopic shell correction part �sh. The values
of BLD are estimated from the liquid drop approximation [17],
and those of �sh are taken from Ref. [15]. The rotational energy
is calculated with the deformation at the saddle point [18].

We present the cross sections of evaporation residue (ER)
as a function of the CN excitation energy in Fig. 2 for the
reaction systems considered. In contrast to the CN formation,
the ER cross sections of the systems 48Ca + 226Ra and 36S +
238U are obviously greater than those of the systems 26Mg +
248Cm and 30Si + 244Pu. This change should be attributed to
the reaction Q value because we are dealing with the reactions
to forming the same CN 270Hs; hence, the parameters relevant

FIG. 2. The evaporation residue cross sections (σER) for the
4n channel of fusion reactions 26Mg + 248Cm, 30Si + 244Pu,
36S + 238U, and 48Ca + 226Ra.

to the exit channels, such as the neutron separation energies
Sn and the fission barrier heights Bf , are the same.

There are two reasons for the enhancement of the ER cross
sections for the reactions 48Ca + 226Ra and 36S + 238U. First
and foremost, the peak position of the ER excitation function
depends on the reaction Q value as illustrated in Fig. 3. As
formulated in Eq. (1), the ER cross section is the product of
three factors: the transmission coefficient Tl , the CN formation
probability PCN, and the survival probability Wsur of the
compound nucleus. Among these factors, Wsur itself contains
two constituents, i.e., Gxn and �n/�t , with �t the total decay
width. All three factors, Tl, PCN, and �n/�t increase with
energy, whereas Gxn decreases exponentially beyond certain
threshold energy Eth of which the channel for fission after x

neutron emission opens. The dashed, dash-dotted, and solid
lines in Fig. 3 represent the reduced ER cross section σ̃ER =
σER/π λ̄2, the average values 〈TlPCN�n/�t 〉, and the survival
probability Wsur as a function of excitation energy, respectively.
For the reaction 48Ca + 226Ra, the center-of-mass energy
relevant to the peak position of the ER excitation function,
as illustrated by the arrow in Fig. 1(b), locates at well above
the Coulomb barrier because of its large negative Q value.

FIG. 3. The reduced ER cross section σ̃ER, average value
〈TlPCN�n/�t 〉, and survival probability Wsur as a function of the
CN excitation energy for the reactions 26Mg + 248Cm and 48Ca +
226Ra.
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The probability of CN formation 〈TlPCN〉 increases relatively
slowly as a function of energy at the well-above-barrier-energy
region. Hence the increased slope of 〈TlPCN�n/�t 〉 is mainly
controlled by �n/�t . This results in the maximum of the ER
excitation function being at nearly the same excitation energy
as the one of the survival probability Wsur. On the other hand,
for the reaction systems 26Mg + 248Cm and 30Si + 244Pu, the
maxima of the ER excitation function appear at the energies
near the barrier. In this energy region, the increase of the CN
formation probability is relatively fast, and the decrease of Gxn

is somehow balanced by this rapid increase near the threshold
excitation energy Eth, so as to move the peak position of the ER
excitation function to higher excitation energy. Because of the
exponential decrease of Wsur, any slight increase of excitation
energy above the threshold energy Eth will dramatically reduce
the ER cross section. This is shown for the reaction 26Mg +
248Cm in Fig. 3. Second, although CN formation is favorable
for the systems with larger asymmetry, as shown in Fig. 1(b)
the probabilities of CN formation at the energy corresponding
to the maximum of ER excitation function for the systems
48Ca + 226Ra and 36S + 238U are still larger than those of the
systems 26Mg + 248Cm and 30Si + 244Pu.

In summary, we studied the probabilities of fusion reactions
26Mg + 248Cm, 30Si + 244Pu, 36S + 238U, and 48Ca + 226Ra by
using a two-parameter Smoluchowski equation. As expected,
the CN formation is favorable for the systems with larger mass
asymmetry. However, the ER cross sections for the 4n channel
of the reactions 48Ca + 226Ra and 36S + 238U are obviously
larger than those of the reaction systems 26Mg + 248Cm and
30Si + 244Pu because of the large negative Q values of the
former reactions. The enhancement of ER cross sections is due
to the fact that the energy corresponding to the maximum of
the ER excitation function depends on the reaction Q value.
The maximum ER cross section sensitively depends on the
peak position of the ER excitation function relative to the
effective threshold energy Eth. As a final remark, we wish
to emphasize that, in addition to the mass asymmetry, the
reaction Q value plays an important role in superheavy nucleus
formation. This is the reason why the 208Pb and 209Bi targets
and the 48Ca projectile are, respectively, used in the cold fusion
and hot fusion of superheavy nuclei.
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