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Comparison of S-matrix and WKB methods for half-width calculations
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The calculated Q values and half widths of α-decay of superheavy elements using both the S-matrix and
the WKB methods are analyzed. The calculations are carried out using the microscopically derived α-daughter
potentials for the parents appearing in the α-decay chain of super heavy element (A = 277, Z = 112). Both the
S-matrix and the WKB methods though yield comparable results for smaller, in fact negative log τ1/2 values, the
former is superior. However, for the case of positive log τ1/2 it is found that the S-matrix method though exact,
runs into some numerical difficulties.
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With the discovery of many superheavy elements beyond
Z = 100 and their decay processes involving, among others,
α-decay chains have revived interest in the careful analysis of
Q value of α-decay and the corresponding decay constant.
The α-decay of super heavy nuclei has been intensively
investigated in recent years [1–11]. If α-decay is understood
as a two body phenomena involving the daughter and parent
nucleus, a proper approach requires a reliable input of α-
daughter nucleus potential. These potentials are introduced
either phenomenological [e.g., Woods-Saxon (WS) shape with
adjustable parameters] or are generated microscopically in the
tρρ approximation (double folding model) using explicitly the
calculated nuclear (both proton and neutron) densities. Once
such a potential is given the usual procedure of calculating Q

value and decay constant is to use WKB type approximations
to obtain the energies of long-lived states of the effective
potential. In the α-decay problem, the effective potential is
the sum of the nuclear potential, electrostatic potential and
the centrifugal term. This potential generates a huge pocket
in between the Coulomb barrier and the centrifugal barrier
and in principle can generate bound states with E < 0 and
resonant states with E > 0 with finite lifetime. For a typical
α-decay system of our interest, the Coulomb barrier height is
about 25 MeV, whereas Q values are in the range 5–10 MeV.
Because of the long Coulomb tail, at energies near Q value, the
barrier width is quite large of the order of 7–8 fm. As a result
the resonance which pertains to α-decay will have in most
cases, extremely narrow width. Hence resonance energies can
be calculated using WKB method applicable for bound states.
Thus in such cases, the positive energy resonant states and
bound state energies can be expected to satisfy the equation∫ r2

r1

[k2 − Veff(r)]
1
2 dr =

(
n + 1

2

)
π, (1)

where k2 and Veff(r) are energy and effective potential
respectively in h̄2 = 2m = 1 units; they have dimension L−2.
The effective potential Veff includes the centrifugal term
(l + 1/2 )2/r2, as required in the WKB formula. Here r1 and
r2 denote the two inner turning points.

When this formula is used, in general, one gets a number
of positive eigenvalues; however, for the study of α-decay, the
eigenvalue which corresponds to the Q value of the α-decay

is to be identified. Once this eigenvalue is identified, the decay
constant can be calculated using the WKB formula involving
exponential Gamow factor and the assault frequency factor
Af (kR) adopting the procedure used by Elton [12]. The WKB
approximation yields the following expression for half width
corresponding to k2 = k2

R

�R

2
= Af (kR) exp

[
−2
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r2

(
Veff(r) − k2

R

)1/2
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]
, (2)

where

Af (kR) = 2
{
k2
R + ∫ r2

r1
drVeff(r)/(r2 − r1)

}
rB

[
VB − (

k2
R

)]
1/2

. (2a)

In Eq. (2a) VB is the barrier height located at r = rB .
However one should note that in the above approach the

decaying state should be understood as the resonance state
of the α-daughter nucleus two-body system. In scattering
theory [13–15] a sharp resonance state is understood as a
positive energy state with finite and relatively long lifetime
or equivalently a narrow width. The most rigorous definition
of resonance state and its width can be obtained from the
analytic S-matrix theory of potential scattering [13–15]. In this
approach the bound states and resonances are integrated in a
unified manner and are represented as poles of S-matrix in the
complex momentum (k) or equivalently in the complex energy
plane. Accordingly the poles of S-matrix along the positive
imaginary k axis represent the bound states and the poles
representing the resonances are distributed symmetrically with
respect to the imaginary axis in the lower half of the k-plane
just below the real k axis. One can equivalently obtain the
poles in the complex energy (k2) plane.

In the S-matrix approach one starts with time independent
Schrödinger wave equation. Since the α-decay is likely to
occur when the daughter nucleus and α-system are in s (l = 0)
state we confine our discussion to s state. Its generalization to
higher partial waves, if needed, is fairly straight forward. For
s(l = 0) state the equation reads

d2u

dr2
+ (k2 − V (r))u = 0; (3)

k2 and V (r) denote energy and well behaved short range
potential, respectively.
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Then one writes u as a linear combination of Jost solutions
F (k, r) and F (−k, r) such that

u −→
r→∞

1

2ik
[f (−k) e−ikr − f (k) eikr ]. (4)

The coefficients f (±k) are known as Jost functions and are
given by Wronskions

f (±k) = W [u, F (±k, r)]. (5)

The S-matrix is given by

S(k) = f (k)

f (−k)
. (6)

It is well known that poles generated by zeros of f (−k)in
the lower half of complex k-plane denote resonances provided
the poles are close to the real k-axis.

Let kp = kr − iki , with kr > ki > 0, denotes a resonant
position. Then

k2
p = k2

r − k2
i − i2krki = ER − i(�R/2). (7)

Here ER and �R , denote the resonance energy and width,
respectively. The width �R = |4krki | is related to decay
constant λ, mean life τ and half-life τ1/2 through the relations
�R = h̄/τ = 0.693 h̄/τ1/2 = h̄λ.

In short, one needs to calculate the zeroes of f (−k) in
the appropriate region of the complex k plane by adopting a
numerical technique. In applying this method to alpha decay
problem, we have to use the appropriate Coulomb distorted
Jost functions which can be obtained as linear combinations
of regular and irregular Coulomb wave functions. The S-matrix
in this case is a product of s-wave Coulomb S-matrix Sc (k) and
the “nuclear” S-matrix Sn (k). The method of calculating these
are well known in optical model [16–19]. However, care is
needed to retain numerical accuracy when complex k is used.
The resonances are represented by the poles of Sn (k) as stated
earlier. In order to obtain the pole position of S-matrix in k-
planes we adopted Newton–Raphson iterative method starting
with reasonable trial values [20–22]. This iterative procedure
converges to the pole position, i.e., the zero position of f (−k),
fairly fast.

As a first step we carried out detailed systematic compar-
ative analysis of the calculated Q values and half-lives using
both the WKB and S-matrix methods employing simple model
potentials like rectangular and also smoother potential barriers.
The later potential has a pocket followed by a more or less
flat barrier and was used in an earlier work [22] to make a
comparison of pocket and barrier region resonances. It is to
be mentioned that the half-width calculated using WKB type
barrier penetration formula is independent of the nature of the
potential beyond the outer most turning point. On the other
hand in an exact S-matrix approach one expects that resonant
energy and half width should depend on the entire potential.
In order to ascertain the importance of tail region beyond the
effective barrier we calculated the resonant energy and half
width for a smoother potential.

We find from this combined analysis that though the
WKB and S-matrix results are similar especially for smoother
potential barriers however significant differences are noticed
particularly for half-lives at several places. This indicates that,

FIG. 1. α-decay chain of superheavy element 277112.

if one has to seek a more accurate calculation of widths, it is
important to use the S-matrix method wherever feasible.

In this short communication, as an illustrative example,
we present and discuss the calculated Q values and the log
τ1/2 using the microscopically derived α-daughter potentials
for the parents appearing in the α-decay chain (Fig. 1)
of the super heavy element (A = 277, Z = 112) employing
both the S-matrix and WKB type methods. The Q values and
the half lives for this decay chain have been measured [23].
The calculations proceed in three steps: (i) The relativistic
mean field (RMF) calculations [24] have been carried out
for the relevant nuclei. The calculated ground state properties
(binding energies, deformations, sizes) agree well with the
experiment (where available) as expected [2]. (ii) The l = 0
(spherical) multipole part is projected out from the deformed
RMF densities and then renormalized. These spherical RMF
densities both for protons and neutrons along with the well
known M3Y nucleon-nucleon interaction are then used in the
double folding (tρρ) approximation to generate the α-daughter
nucleus potential. It is to be mentioned that the inclusion of
deformation explicitly makes calculations quite complicated
[25]. (iii) Next, these microscopically calculated numerical
(spherical) potentials [2] have been parametrized reasonably
well (see Fig. 2) in terms of attractive Woods-Saxon potential
having three parameters V0, a, Rz. The Coulomb potential is
characterized by the radius parameter rc. The Coulomb barrier
height for these cases is between about 25–30 MeV and barrier
location is around 10–11 fm. Finally this microscopically
generated WS potential is used to calculate the Q values and
the half-lives using both the WKB and the S-matrix methods.

At this stage we would like to highlight some difficulties
posed in the half-life calculations when we use S-matrix
method which was not so crucial in the model calculations
mentioned earlier. For illustration, let us now consider the

FIG. 2. The microscopic numerical potential of α-nucleus (A =
273, Z = 110) fitted with the WS shape: V (r) = Vo/[1 + exp((r −
Rz)/a)] with Vo = −77.15 MeV, a = 0.96 fm, and Rz = 7.73 fm.
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case where Q value of the decay is 8 MeV and log τ1/2 is
3.5, say, this corresponds to �/2 ∼ 0.72 × 10−25. This means
the position of the resonance pole in the energy plane, in MeV
units, is at E = 8. − i 0.72 × 10−25. Hence this particular state
will imply an extraordinary sharp resonance. On the other
hand if log τ1/2 is −3.5, The S-matrix pole in complex energy
plane will be at E = 8. − i 0.72 × 10−18. The half width in the
latter case is substantially larger. In a numerical evaluation of
resonance pole it becomes quite difficult to generate reliable
saturation in iteration if width is ∼10−25 whereas it is feasible
when it is much larger and of ∼10−18 or more. The technical
reason for this difficulty is due to the fact that if kp = kr − iki is
a pole of the S-matrix, k = kr + iki is the zero of the same. This
is due to the symmetry property satisfied by the Jost functions.
This may make the search of the pole when ki is too small
a very delicate task. Hence we found that width calculations
using S-matrix method becomes somewhat approximate when
log τ1/2 is significantly larger than unity. It may be pointed
out that in the R-matrix and complex r-plane method [18] for
calculating complex eigenvalues also, in the width calculation
the accuracy for width is of the order of 10−4 MeV. Since
the approach used by us and the method of Ref. [18] are on
similar lines, the calculation of much smaller widths will face
numerical complications.

In alpha decay studies such infinitesimally small widths
arise because of the fact that effective height of the Coulomb
barrier at resonance energy say, at 7.5 MeV is about 20 MeV
or more and its barrier width is also quite large. It is due to
this fact that calculation of the imaginary part pole position for
resonance is going to be very difficult in several alpha decay
cases. However, using sufficiently refined iterative technique
we found that some of these poles can be computed when log
τ1/2 is negative.

We developed the code to solve the Schrödinger equation
for complex energy for the α-nucleus problem for the total
potential which includes Coulomb potential with Coulomb
parameter rc in the usual way and the nuclear potential. As
stated earlier we use WS form of nuclear potential. In the
expression for the nuclear S-matrix the denominator, the zeroes
of which can be identified with the poles is given by the
function

[φ′(R)f (η,−kR) − kφ(R)f ′(η,−kR)].

Here R is the matching point and η is the Coulomb pa-
rameter, f (η,−kR) is the appropriate Coulomb Jost solution
for s-wave given by f (η,−kR) ∝ [G0(η, kR) + iF0(η, kR)].
Here F0 and G0 are, respectively, the regular and irregular
Coulomb functions for s wave. φ(R) is the usual modified
regular s-wave function of the Schrödinger equation. The
symbol ′ denotes the derivative with respect to r . The task
of finding the zeros of the above function with very small
imaginary part is complicated by the fact that the function
G0(η, kR) takes exponentially large values for large η and
R (see for example tables in Ref. [26]). We illustrate the
origin of the complication through the following trivial
example.

Suppose we are interested in finding the zero of the function
f (x) = (x − 10) × 1010. Mathematically speaking x = 10 is
the location of the zero. However suppose the zero is calculated
with only one percent accuracy. That is instead of x = 10
computer gives x = 10.1. At this value of x = 10.1, f (x) =
109 which is too huge and nowhere near zero and hence does
not give a feeling that we have calculated the zero of f (x) to
1% accuracy. Because of these factors each case of calculation
of Q and log τ1/2 values has to be done very diligently. As
stated earlier, the cases where log τ1/2 values are significantly
larger than unity are more difficult to handle. When log τ1/2 is
negative, half widths are easier to compute.

The results are summarized in Table I. This table provides
a variety of results. Under the log τ1/2 (WKB) column,
Q-SM (Q-WKB) correspond to the WKB results obtained
by using the Q values of the S-matrix (WKB) method. As
stated earlier, in the alpha decay cases, it is reasonable to use
Eq. (1) for obtaining Q values by WKB method. The Q values
from S-matrix and WKB methods are fairly close but they
differ to some extent from the corresponding experimental
values. However there is difference as far as the half-life
results are concerned, where WKB results seem to be better for
positive log τ1/2. As elaborated earlier, this is because of the
difficulty in finding the imaginary part of the S-matrix pole,
which is too small. As expected, when half-life values are
negative, the S-matrix results seem to be substantially better.

So far the calculation of Q and log τ1/2 values using
S-matrix or WKB methods have been carried out using the
potential having WS shape which gives the best least squares
fits to the numerical potential. Since such a fit may not be
entirely satisfactory in generating the numerical potential in all

TABLE I. Q values (in MeV) and log (τ1/2) obtained from S-matrix (SM) and WKB methods. rc, Rz, a are in fm, V0 is in MeV and τ1/2

is in sec. Under the log τ1/2(WKB) column, SM-Q (WKB-Q) correspond to the WKB results obtained by using the Q values of the S-matrix
(WKB) method. Subscript D stands for the daughter and Expt. denotes the experiment.

Parameters (V0 = −78.0, rc = 1.2,

a = 0.95) for all cases
Pole position in Energy
plane E = ER − i�/2

Q (SM) log τ1/2

(SM)
log τ1/2

(WKB)
(SM-Q)

Q

(WKB)
log τ1/2

(WKB)
(WKB-Q)

Q

(Expt.)
log τ1/2

(Expt.)

ZD = 100, AD = 253, Rz = 7.598 7.95 − i0.4772 × 10−25 7.95 3.630 1.687 7.95 1.687 8.47 1.176
ZD = 102, AD = 257, Rz = 7.6373 8.41 − i0.2302 × 10−25 8.41 2.723 0.824 8.39 0.893 8.65 0.672
ZD = 104, AD = 261, Rz = 7.7257 8.35 − i0.6642 × 10−24 8.35 2.536 1.696 8.40 1.517 8.90 1.382
ZD = 106, AD = 265, Rz = 7.7637 8.80 − i0.1306 × 10−23 8.79 2.472 0.940 8.85 0.729 9.37 1.294
ZD = 108, AD = 269, Rz = 7.6013 10.98 − i0.9854 × 10−18 10.98 −3.630 −4.185 11.04 −4.340 11.25 −3.958
ZD = 110, AD = 273, Rz = 7.6886 10.98 − i0.2976 × 10−18 10.98 −3.110 −3.663 11.04 −3.828 11.62 −3.550
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domains of r space, we have repeated some of the calculations
using the exact numerical potential. The results are very
similar to those obtained with the corresponding WS type
potential. Even though S-matrix results for log τ1/2 are better in
principle, when log τ1/2 is significantly larger than zero, due to
extraordinary small widths involved computational difficulties
arise and in such cases WKB method is preferable.

To summarize the WKB method is satisfactory for obtaining
Q values and the results compare very closely with those

of S-matrix. However, differences do occur for log τ1/2

values.
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