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Crossing contours in the interacting boson approximation (IBA) symmetry triangle
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Constant contours of basic observables are discussed in the context of the interacting boson approximation
(IBA) symmetry triangle. Contours that exhibit orthogonal crossing within the triangle are presented as a method
for determining a set of parameter values for a particular nucleus and trajectories for isotopic chains. A set of
contours that highlights a class of nuclei that are outside the two-parameter IBA-1 Hamitonian space is also
presented.
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Collectivity in low-energy nuclear structure is traditionally
described relative to particular models. At a very basic level,
the structure of an even-even nucleus can be understood by
comparing its properties to the three traditional benchmarks of
structure, the harmonic vibrator, deformed symmetric rotor, or
γ -unstable shape. However, most nuclei are known to exhibit
structures intermediate between these shapes and a better
description can usually be obtained with a variable parameter
model. The task then becomes to determine the model
Hamiltonian parameter values relevant to a specific nucleus.

One of the standard approaches for extracting parameter
values appropriate for a particular nucleus is to consider
contour plots of basic observables. The purpose of this Brief
Report is to describe a simplified approach using such contours
to pinpoint parameters in the framework of the interacting
boson approximation (IBA) model [1]. These contours will
be analyzed as to their effectiveness in determining a unique
set of parameters. A simple contour is presented that exhibits
orthogonal crossing with most others. This approach is then
discussed as a method for roughly determining the trajectories
of isotopic chains in the IBA triangle. Knowledge of these
trajectories gives an understanding of what collective behavior
nuclei exhibit and thus provides a challenge to microscopic
theories to explain this behavior in terms of the underlying
nucleon motion and interactions.

Calculations of contours of observables are performed in
the framework of the IBA-1 using the extended [2] consistent
Q [3] formalism (ECQF) with the Hamiltonian [4,5],

H (ζ ) = c

[
(1 − ζ )n̂d − ζ

4NB

Q̂χ · Q̂χ

]
, (1)

where

Q̂χ = (s†d̃ + d†s) + χ (d†d̃)(2) (2)

and n̂d = d†d̃ .
The Hamiltonian of Eq. (1) involves two parameters, ζ and

χ (c is a scaling factor). The boson number NB is given by
half the number of valence protons and neutrons, each taken
separately relative to the nearest closed shell.

The parameter space for this Hamiltonian is conveniently
represented by a triangle [6] with one IBA dynamical
symmetry at each vertex, as illustrated in Fig. 1. In this
parametrization, the three symmetries are given by ζ = 0, any
χ for U(5), ζ = 1, χ = −√

7/2 for SU(3), and ζ = 1, χ = 0

for O(6). Transition regions between the three symmetries
can be described by numerical diagonalizations of the above
Hamiltonian for intermediate parameter (ζ, χ ) values.

Contour plots are generally illustrated in a Cartesian space
as a function of the parameters (in this case ζ and χ ). To allow
for a better visualization of how the contours evolve between
the three limiting symmetries, they will be plotted directly into
the IBA symmetry triangle by converting the parameters ζ and
χ of Eq. (1) into radial and angular coordinates (ρ, θ ) by [7]

ρ =
√

3ζ√
3cosθχ − sinθχ

(3)
θ = π

3
+ θχ ,

where θχ = (2/
√

7)χ (π/3). In this coordinate system, θ

ranges from 0◦ to 60◦ and ρ acts as a standard radial coordinate
ranging from 0 to 1.

The technique of using contour plots of observables to
extract IBA parameter values is certainly not new. The first
example of this approach within the framework of the IBA was
outlined in the introduction of the consistent Q formalism [3]
where contour plots of various observables as a function
of NB and χ were used to determine parameter values
appropriate for well-deformed nuclei. Since then, subsequent
IBA investigations (see, for example, Refs. [2,8,9]) have
used the same or similar (such as ζ versus χ ) contour
plots to fit individual nuclei and/or isotopic chains. We
begin by analyzing contour plots similar to those given in
these previous studies and investigate their effectiveness in
extracting appropriate parameter values and then move on to
describe a new class of contours.

There are numerous experimental observables that can
provide insight into nuclear structure. Here, the focus is on
the most basic observables and, hence, usually the best known
experimentally, such as low-spin yrast energies, the energy
of the first excited 0+ state, and the energy of the quasi-2γ

state. The methods presented here serve only as an estimate
for parameter values and, certainly, a detailed interpretation of
a nucleus would involve considering a wider class of relevant
experimental observables.

Starting with the R4/2 ≡ E(4+
1 )/E(2+

1 ) energy ratio, IBA
calculations were performed for a mesh of ζ and χ values and
parameter sets giving constant values of R4/2 were determined.
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FIG. 1. Symmetry triangle of the IBA with contours of constant values of energy ratios of basic observables, R4/2 (left), E(2γ )/E(2+
1 )

(middle), and E(0+
2 )/E(2+

1 ) (right). Calculations are for NB = 10.

The resulting R4/2 contours are given in Fig. 1 (left). The region
around U(5) gives R4/2 values close to the vibrational limit.
With increasing ζ, R4/2 increases, approaching the axially
symmetric rotational value of 3.33 in the SU(3) vertex. Clearly,
the R4/2 energy ratio alone does not constrain the parameter
values, because each R4/2 contour traces out an entire locus of
parameter values in the triangle, cutting more or less vertically
through the triangle.

Similar contours can be constructed for additional energy
ratios, such as E(0+

2 )/E(2+
1 ) and E(2+

γ )/E(2+
1 ), as also shown

in Fig. 1. Their evolution in the triangle represents the change
in character from multiphonon structure in U(5) to intrinsic
excitations in SU(3) or O(5) excitations in U(6). Both sets of
contours display a similar evolution in the triangle, values of
2.0 close to the U(5) region that increase with increasing defor-
mation, passing more or less vertically through the triangle and
they also resemble the behavior of the R4/2 contours. These
observables are therefore usually not useful in pinpointing
structure because they do not provide a unique intersection
with R4/2 over most of the triangle. In general, energies of
individual low-lying, positive-parity states (normalized to the
2+

1 energy) trace out similar vertical paths through the triangle.
Contours with more horizontal trajectories can, however,

be obtained by combining the energies of different intrinsic
states. One such contour used in Refs. [2,8,10] is given by

R02 = E(0+
2 )

E(2+
γ ) − E(2+

1 )
(4)

and is illustrated in Fig. 2 (left). Although this contour provides
horizontal trajectories for some regions, there is still a large
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FIG. 2. Contours of constant values of the energy ratios R02 ≡
E(0+

2 )/[E(2+
γ )-E(2+

1 )] (left) and R0γ ≡ [E(0+
2 ) − E(2+

γ )]/E(2+
1 )

(right) in the IBA triangle. Calculations are for NB = 10.

region (contours which correspond to R02 values ∼1.6–2.4)
where they follow a similar path as say, R4/2.

Here, we propose a new class of contours, involving a
difference of energies of intrinsic excitations. The most useful
case of this is

R0γ = E(0+
2 ) − E(2+

γ )

E(2+
1 )

, (5)

which is illustrated in Fig. 2 (right). These contours are
sensitive to the relative movement of the 0+

2 and 2+
γ states with

deviations from U(5) (degenerate) or SU(3) (β, γ vibrations
almost degenerate) and are roughly perpendicular to the R4/2

contours for almost all regions of the triangle, apart from a
small region close to the O(6) vertex. Furthermore, R0γ has
the somewhat unique property that it separates the triangle
into two distinct regions. For E(0+

2 ) < E(2+
γ ) a nucleus would

be described by parameters along or near the bottom leg of
the triangle, whereas if E(0+

2 ) > E(2+
γ ) the parameter space

is constrained to the upper region of the triangle. We return to
the significance of this boundary later.

The intersection of a R0γ contour with a R4/2 contour [or
similarly a E(0+

2 )/E(2+
1 ) or E(2+

γ )/E(2+
1 ) contour] provides

a unique point of parameter values for describing a particular
nucleus. To elucidate the evolution of an isotopic chain in
the IBA triangle, the progression of the above contours with
varying boson number must also be considered. The contours
for R4/2 and R0γ will be used as examples although the same
overall trends apply to other observables. A comparison of the
R4/2 and R0γ contours is given in Fig. 3 for boson numbers 6
and 16.

Several features become immediately obvious when com-
paring the results for different boson numbers in Fig. 3. For
R4/2, the vibrational region up to R4/2 ∼ 2.5 is very similar
regardless of boson number. For increasing boson number,
the increase in R4/2 across the transition region becomes
more rapid, indicated by a compression of the contours. This
corresponds to the spherical to deformed phase transition
region discussed in Refs. [11,12]. For large boson number, the
area corresponding to rotational values of R4/2 ∼ 3.3 extends
further into the interior of the triangle.

For R0γ , the contour corresponding to a near degeneracy
between the 0+

2 state and the 2+
γ state does not vary significantly

with boson number. Above and below the contour of R0γ ∼ 0,
the contours follow a similar pattern. The main difference is
the overall scales. For example, in the region close to O(6),
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FIG. 3. Contours of constant values of the energy ratios R4/2 (top)
and R0γ (bottom) in the IBA triangle for NB = 6 (left) and NB =16
(right).

along the O(6)-SU(3) leg of the triangle, the R0γ ratio is ∼2
for NB = 6 and grows to values >4 for NB = 16.

The near constancy of the contour R0γ ∼ 0 independent of
boson number is interesting. In fact, it was recently shown [13]
that a degeneracy of the 0+

2 and 2+
2 states corresponds to a

nearly regular region amid the basically chaotic interior region
of the triangle. Thus the contour R0γ ∼ 0, which divides the
triangle according to whether the 0+

2 state is above or below
the 2+

γ state, also marks the unique locus of regular behavior
within the triangle. Further study of structure along this locus
would be very interesting.

Now equipped with a set of orthogonal contours, the
evolution of an isotopic chain within the IBA triangle can
be determined. Taking the Dy isotopic chain as an example,
the experimental values of R4/2 and R0γ are plotted in
Fig. 4. The R4/2 energy ratio rises quickly for neutron numbers
between 88 and 92 and then remains relatively constant around
3.3 for larger neutron numbers. The sharp rise in R4/2 suggests
that the beginning of the isotopic chain (N = 88–92) evolves
close to the U(5)-SU(3) leg of the triangle because this is
where R4/2 undergoes the most rapid increase. This agrees
with the R0γ ratio that experimentally starts out slightly
negative and approaches zero before turning sharply positive.
Negative values of R0γ can be obtained only in the IBA near
the U(5)-SU(3) leg of the triangle. For N�94, the relatively
constant R4/2 value (∼3.3) and large boson numbers constrain
the trajectory to a large region of the right-hand side of the
triangle. The exact trajectory can be determined by considering
the R0γ ratio that experimentally goes through zero and then
becomes increasingly more positive. This behavior can be
followed in the triangle by turning away from the U(5)-SU(3)
leg of the triangle and approaching the O(6)-SU(3) leg. A
schematic representation of this trajectory is illustrated in the
inset of Fig. 4.
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FIG. 4. Values of the energy ratios R4/2 (open squares) and R0γ

(solid circles) for the Dy isotopic chain. The inset gives a schematic
representation of the trajectory of the Dy isotopic chain in the IBA
triangle.

The crossing of the R4/2 contours and the R0γ contours
can be useful in some cases but misleading in others. Careful
study of these and other contours involving energy differences
of intrinsic states reveals a class of nuclei that cannot be
fit with the ECQF Hamiltonian. To illustrate this, consider
NB = 16, where there is no consistent set of parameters to
describe nuclei with R4/2 values <2.5 and R0γ values >4.0.
A less obvious case occurs for R0γ ∼ 0, because this contour
intersects all of the R4/2 contours, seeming to imply that any
nucleus with a collective R4/2 and R0γ ∼ 0 can be fit with the
ECQF Hamiltonian. However, problems can arise because the
overall scale of E(0+

2 ) and E(2+
γ ) are lost when the numerator

of R0γ is close to zero and so, although R4/2 and R0γ can be
reproduced, there is no guarantee that the ratios E(0+

2 )/E(2+
1 )

or E(2+
γ )/E(2+

1 ) are well described. To illustrate the issue
consider contours involving the difference between one of the
above two intrinsic states and the ground-state band

R06 = E(0+
2 ) − E(6+

1 )

E(2+
1 )

(6)

Rγ 6 = E(2+
γ ) − E(6+

1 )

E(2+
1 )

illustrated in Fig. 5. In nuclei where R0γ ∼ 0, the ratios R06

and Rγ 6 will be nearly equal. For positive values and for
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FIG. 5. Constant contours of the ratios R06 (left) and Rγ 6 (right)
in the IBA triangle. Calculations are for NB = 10.
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negative values of R06 and Rγ 6 down to about −1.0, the
R06 and Rγ 6 contours intersect for R06 = Rγ 6 along the line
of R0γ ∼ 0. However, for R06 and Rγ 6 < −1.0, there is no
intersection for R06 = Rγ 6, because these two contours form
pockets in incompatible regions of the triangle; R06 < −1.0
along the U(5)-SU(3) leg and Rγ 6 < −1.0 along the U(5)-O(6)
leg. Therefore, for nuclei with R0γ ∼ 0 and both R06 and
Rγ 6 < −1.0, a consistent set of parameters cannot be obtained.
That is, in nuclei where the 0+

2 and 2+
γ levels are close lying,

but both are well below the 6+
1 level, no solution is possible

with the ECQF IBA-1 Hamiltonian.
A survey of the available data identifies about 20 collective

nuclei where R0γ ∼ 0 and both R06, Rγ 6 < −1.0 and thus
lie outside the simple two-parameter IBA space. Some of
these nuclei, 102−106Pd and 110−120Cd, are known [14,15] to
have additional degrees of freedom, such as intruder state
0+ excitations. The inability of the IBA to reproduce the

basic properties of the other identified nuclei, 118−122Xe,
124−130Ba, and 130−136Ce, could also suggest additional degrees
of freedom present in these nuclei. It would be interesting to
study if the use of the most general IBA-1 Hamiltonian, as
discussed in Refs. [16,17], could alleviate this problem.

In summary, we have discussed contours of basic observ-
ables within the IBA symmetry triangle in terms of their
effectiveness for determining a unique set of parameter values
particular for individual nuclei and/or isotopic chains. We
identified a contour involving the difference between the 0+

2
and 2+

γ states that gives orthogonal crossings with most other
contours of basic observables and we observe a class of nuclei
that cannot be fit with the two-parameter, ECQF Hamiltonian.
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