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We analyze the possibility of producing an intermediate �+ via a KN → �+ formation process in γD →
pK−X(X = nK+, pK0) reactions at some specific kinematical conditions, in which a pK− pair is knocked
out in the forward direction and its invariant mass is close to the mass of �∗[�∗ ≡ �(1520)]. The �+ signal
may appear in the [γD, pK−] missing mass distribution. The ratio of the signal (cross section at the �+ peak
position) to the smooth background processes varies from 0.7 to 2.5 depending on the spin and parity of �+, and
it decreases correspondingly if the pK− invariant mass is outside of the �∗-resonance region. We analyze the
recent CLAS search for the �+ in the γD → pK−nK+ reaction and show that the conditions of this experiment
greatly reduce the �+ formation process making it difficult to extract a �+ peak from the data.
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I. INTRODUCTION

The first evidence for the pentaquark hadron �+, discovered
by the LEPS Collaboration at SPring-8 [1], was subsequently
confirmed in some other experiments [2]. However, many
other experiments failed to find the �+ signal (for surveys
see Refs. [3–5]). Most of them came from the data analysis
of high-statistics high-energy experiments. These null results
at high energies were not so much surprising because it is
natural to expect a sizable suppression in the production
of the more complicated five-quark system compared to
the conventional three-quark hyperons [6]. But the state of
affairs became dramatic after the recent publication of the
high statistics results of the CLAS Collaboration [7,8]. The
first experiment is designed to search for the �+ signal in
γD → pK−nK+ in direct γ n interactions at relatively low
photon energy, Eγ = 1.7−3.5 GeV. The second one aimed to
search for the �+ signal in γp → K̄0nK+ and γp → K̄0pK0

reactions. Within the experimental significance, no �+ signal
was observed. Note, however, that recently the DIANA
Collaboration confirmed a former result for �+ production
in K+ interaction with Xe nuclei [9]. Another positive, but
low statistics result on �+ production in π−p interaction was
obtained in KEK [10]. Therefore, the situation concerning the
existence of the pentaquark state remains controversial.

Coming back to the high statistics CLAS experiments, one
can conclude that if the �+ exists, then the null result means
that we do not understand the mechanism of �+ photopro-
duction in elementary γN → �+K̄ reactions. Indeed, in all
theoretical studies (for references, see the recent review article
[11]) the cross section of this reaction is defined by the K and
K∗ exchange dynamics. In the first case, the amplitudes are
proportional to the product of the �+-nucleon-kaon coupling
constant g�NK and the form factor F (p2

�, p2, p2
K ), where

pB, pK are the four-momenta of the baryon (nucleon or �+)
and the kaon, respectively. One of the hadrons is far off-shell.
If one uses the �+ → NK decay width (��) as an input

parameter, then the g�NK coupling is fixed, but unfortunately,
there are no guiding rules for the off-shell form factors that
bring some ambiguity into the theoretical predictions. For K∗
exchange processes the situation is even worse. In this case
we do not know the g�NK∗ coupling constant (the ambiguity
of its estimate is rather large [12]) and the “off-shellness” in
the �+- nucleon-K∗ vertex is much greater because of the
large mass difference between K∗ and K mesons. The CLAS
null result for a given finite �+ decay width means large
off-shell suppression of the amplitudes with �+NK vertices.
The K∗-exchange amplitude may be additionally suppressed
by the small value of the g�NK∗ coupling constant because
it is not related directly to the �+ decay width and therefore
remains unconstraint. Therefore, the best way to check whether
the �+ exists is to study the KN → �+ fusion reaction with
a quasifree kaon and a nucleon in the initial state. In this
case the g�NK coupling is fixed (for given ��), and there
is no ambiguity with the off-shell form factor because all
hadrons are on the mass shell. This situation may be realized
in the reaction γD → �∗�+ → pK−nK+[�∗ ≡ �(1520)]
with the �+ showing up as a peak in the nK+ invariant mass
distribution as shown in Ref. [13]. There are several conditions
that can enhance this effect. First, the pK− invariant mass must
be close to the mass of �∗. In this case, the total amplitude is
the coherent sum of two amplitudes with charged and neutral
kaon exchange shown in Fig. 1. The dominance of the K∗
meson exchange in �∗ photoproduction [13–15] results in a
constructive interference between the two amplitudes which
enhances the �+ signal.

Second, the deuteron wave function greatly suppresses
the processes with a fast-moving recoil nucleon, therefore,
the experiment must be able to measure an extremely slow-
moving recoil (spectator) nucleon that participates in the
KN → �+ → KN reaction. And, third, the pK− pair must
be knocked out in the forward direction. In this case, the
momentum of the recoil kaon is small, and it can merge with
the slow-moving spectator nucleon to produce a �+.
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FIG. 1. Tree-level diagrams for the reaction γD → �∗�+. The
exchange of charged and neutral kaons is shown in (a) and (b),
respectively.

The CLAS experiment [7] to search for �+ was designed
to study the direct γ n → �+K− → nK+K− reaction and,
in principle, it does not satisfy the above conditions. Thus,
the �+ and the outgoing neutron have finite momenta, and,
therefore, the experiment has a neutron-momentum cut of
pn > 0.2 GeV/c. To reduce the contribution of K− mesons
coming from �∗ excitation the data analysis makes a cut on the
�∗ mass, i.e., the pK− invariant mass is outside the �∗ mass.
It has cuts for the kaon momenta, pK > 0.25 (GeV/c) and cuts
for the angles for positive and negative particles, θ+ > 9◦ and
θ− > 15◦, respectively. All these experimental conditions (the
pK−invariant mass, momenta, and the angle cuts), whereas
being quite acceptable for studying the γ n → �+K− reaction
result in a large suppression of the K + N → �+ formation
process in the γD → pK−nK+ reaction and reduce the ratio
of �+ resonance contribution (signal) to background (noise):
S/N .

To avoid the obvious difficulty in measuring the slowly
moving recoil nucleon one has to analyze the [γD,pK−]
missing mass distribution [16]. In this case, all momenta
allowed by the conservation laws participate in the process
and, of course, the dominant contribution would come from
slow-moving nucleons. As a result, the total cross section
strongly increases. Unfortunately, in this case the background
processes increase roughly by a factor of 2 compared to the
exclusive γD → pK−nK+ reaction, because both the nK+
and pK0 final states now contribute. Nevertheless, even under
this circumstance such experimental conditions can give a
better chance to see the �+ signal, in case it exists.

The aim of the present article is to extend the results of
Ref. [13] for the inclusive reaction γD → pK−X, where X =
nK+, pK0, toward finding favorable kinematical conditions
for a manifestation of the �+ signal. We are going to show that
this signal is independent of the mechanism of the elementary
γN → �+K̄ reaction if the pK− pair is produced in the
forward hemisphere.

Our article is organized as follows. In Sec. II we consider
the kinematics of a 2 → 4 reaction and define the observables.
In Sec. III we briefly discuss the elementary γN → NKK̄

reaction, which is used later for estimating the resonant effect
and background. Section IV is devoted to a description of the
associated �+�∗ photoproduction in γD interactions, where
we discuss the most favorable kinematics for the coherent
effect and the dependence of the cross section on �+ spin and
parity. In Sec. V we discuss two dominant components of the
nonresonant background: spectator and rescattering channels.
In Sec. VI we present our main results and give a comparison of
a possible �+ signal for the inclusive reaction γD → pK−X

with favorable kinematics and the exclusive reaction γD →

−K

D

p

K

N

}

} X

Y

γ

FIG. 2. Reaction γD → pNK−K .

pK−nK+ under the CLAS conditions. We show that in latter
case the �+ signal is weak due to the experimental conditions.
The summary is given in Sec. VII. In Appendices A and B
we show some details for the kinematics considered and the
amplitudes of the elementary rescattering processes.

II. KINEMATICS

The differential cross section of the reaction γD →
pK−X, where X = nK+ or pK0, shown in Fig. 2, reads

dσ

d[· · ·] ≡ dσ

dMXdMY d�d�Xd�Y

= 1

64π2sD

pf

pi

1

6

∑
NK,λ,mD,mp,mN

∣∣T NK
fi

∣∣2 q̃

16π3

˜̄q

16π3
.

(1)

Hereafter, we use the following notations: X is the NK pair
with mass MX, Y is the pK− pair with mass MY , pf is
the absolute value of the three-momentum of Y in the γD

center-of-mass (c.m.) system, pi = |k| is the absolute value
of the photon momentum in the c.m. system, sD denotes the
square of the total energy in this system, q̃ and ˜̄q stand for
the absolute values of the K and K− mesons momenta in
the rest frames of the X and Y systems, respectively. The
indices mD,mp,mN correspond to the spin projections of
the deuteron, outgoing proton and nucleon, respectively, λ

is the photon helicity; �X and �Y are the solid angles of
the directions of flight of K and K− mesons in the rest
frames of the X and Y systems, respectively; � is the solid
angle of the Y system in the c.m. system. The quantization
axis z is chosen along the photon momentum, and the y
axis is perpendicular to the production plane of X and Y

pairs: y = z × pY /|pY |, where pY is the three-momentum of
the Y system in the c.m. system. T NK

fi represents sum of
the amplitudes of the resonant (γD → �+�∗ → pK−X),
semiresonant (γD → �+pK− → pK−X), and nonresonant
(γD → pK−X) processes.

The invariant mass distribution dσ/dMX is defined as a
six-dimensional integral

dσ

dMX

= 2π

∫
dσ

d[· · ·] dMY d cos θ d�Xd�Y . (2)

To define the four-momenta of all particles involved in the
process appearing as arguments of the corresponding elemen-
tary amplitudes, we use the following incoming kinematical
variables: photon four-momentum (laboratory system): kL =
(EL, 0, 0, EL); deuteron four-momentum (laboratory system):
pD = (MD, 0, 0, 0); invariant masses MX and MY ; the polar
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angle of pK− pair photoproduction in the c.m. system θ ; and
the solid angles �X and �Y .

Using these variables we now calculate all momenta in
the γD c.m. system (for details see Appendix A) and then
transform them to the laboratory system. That is because the
deuteron wave function is well defined only in the laboratory
system.

In our study we analyze the missing mass distribution in
the range Mmin < MX < Mmax, where Mmin = MN + MK and
Mmax = √

sD − MN − MK in several selected regions of the
invariant mass MY = M0 ± 20 MeV, where M0 is the mean
value of the selected region of the pK− invariant mass. The
KN → �+ transition leads to a �+ signal in the missing mass
distribution. Associated �∗ �+ photoproduction manifests it-
self most clearly for M0 = M�∗ and MX ∼ M�+ . The coherent
signal must be suppressed outside of the resonance position. To
analyze this situation we choose M0 at the resonance position
with M0 = M�∗ and at a larger value (M0 = 1.62 GeV). We
also analyze the sensitivity of the �+ signal to the pK− pair
photoproduction angle to get a maximum value for the S/N

ratio. This gives the conditions for the range of integration
over θ . In Eq. (2) integration over �X(Y ) is performed in all
regions. In case of the CLAS conditions we do the integration
over the available pK− invariant mass distribution with taking
into account specific data analysis conditions (see Sec. VI B).

III. ELEMENTARY γ N → N K̄ K REACTION

The mechanism of K̄K photoproduction in γN interaction
is quite complicated because many processes can contribute.
In our consideration we select the channel with an interme-
diate excitation of �∗, γN → �∗K → NK̄K , and denote it
hereafter as the“resonant” channel. As we demonstrate, this
process is dominant in the associated �∗�+ photoproduction
at Eγ ∼ 2 GeV.

We denote all other channels as “nonresonant” background.
Of course, this notation is rather conventional, because the K̄K

pairs can also be produced from the virtual vector mesons,
hyperon resonances other than �∗, and so on. In this case the
notation resonant indicates that only the �∗ resonance excita-
tion is selected. In this work we do not put emphasis on �+
photoproduction in γN interactions because, at the considered
kinematics when pK− is produced in the forward direction
with a fast moving proton, this channel is strongly suppressed
by the deuteron wave function. Indeed, a sizable contribution
of the associated �+pK− photoproduction with γN → �+K̄

and K̄Ns → pK− subprocesses at fixed pK− invariant mass
is expected in case of a slowly moving spectator nucleon (Ns)
and recoil intermediate antikaon. This situation is realized
for forward �+ photoproduction (with respect to the photon
momentum) and backward photoproduction of the pK− pair,
respectively, which is not considered in present article.

In this section all variables are given in the γN c.m. system.

A. Reaction γ N → �∗ K → N K̄ K

In this part we follow closely our previous article [13] and
recall the main aspects of our considerations for the sake of
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FIG. 3. Tree-level diagrams for the reaction γN → �∗K →
NKK̄ .

completeness. We assume, that at low photon energies, close
to threshold, the amplitude of �∗ excitation in the γN →
NKK̄ reaction may be described by the effective Lagrangian
formalism, whereas at high energies, the Regge model with the
K∗ exchange as a leading trajectory can be used. The value
Eγ = 2.3 GeV is chosen as the matching point between these
two regimes.

The tree-level diagrams for γN → �∗K reaction at low
energies are shown in Fig. 3. Figures 3(a)–3(d) correspond
to the t, s, and u exchange amplitudes and the contact term,
respectively, and are denoted as the Born terms. Figure 3(e)
describes the t-channel K∗ exchange amplitude. We neglect
the photon interaction within the decay vertex and restore the
gauge invariance by a proper choice of the contact term.

The amplitudes of the γp → �∗K+ and γ n → �∗K0

reactions at low energy read

A�∗
fi(γp) = ūσ

�∗ (p∗
�)

[
Ms

σµ + Mt
σµ

+Mc
σµ + Mt

σµ(K∗)
]
up(p) εµ, (3a)

A�∗
fi(γ n) = ūσ

�∗ (p∗
�)

[
Ms

σµ + Mt
σµ(K∗)

]
un(p)εµ, (3b)

where u�∗ , uN are the �∗ and nucleon spinors, respectively,
and εµ is the photon polarization vector. At high energy
(Eγ > 2.3 GeV) they are replaced by the t-channel K∗ meson
exchange amplitude with Reggeized K∗ meson propagator.
The explicit form of the transition operators Mi

σµ as well as
the choice of parameters are given in Ref. [13].

The total cross section of the reaction γp → �∗K+ as a
function of the photon energy from Ref. [13] together with
available experimental data [14] is exhibited in Fig. 4. Similar
results are obtained in Refs. [15,17] using slightly different
approaches.

Figure 5 shows the differential cross sections for γp →
�∗K+ and γ n → �∗K0 as a function of the kaon production
angle in the γN c.m. system at different Eγ in the near-
threshold region. The difference in shape for these two
reactions at forward photoproduction angles is explained by
the sizable contribution of the Born amplitudes in the γp

reaction. In the γ n reaction the Born term (s-channel) is
small, and the main contribution comes from the K∗ exchange
process. At backward photoproduction the shapes and the
absolute values of the cross sections for γp and γ n are similar
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FIG. 4. The total cross section of the reaction γp → �∗K+

as a function of the photon energy. The experimental data are
taken from Ref. [14]. The dot-dashed curve is a fit to this data
by σ � 0.7(µb) [2.9(GeV)/Eγ ]2.1. The long-dashed curve represents
the cross section for a constant amplitude |T0| = 5.95 GeV−1 (see
discussion above Eq. (4) below). The solid curve corresponds to
a solution in the low- and high-energy regimes. The dashed curve
describes the extrapolation of the effective Lagrangian model to the
high energy region. See Ref. [13] for more details.

to each other, but the total cross sections for γp is larger. At
Eγ = 1.8–2.3 GeV it varies from 0.59 to 1.14µb as compared
with 0.27 to 1.08µb for γ n.

As shown in the next section, the dominant contribution
to the associated �∗�+ photoproduction comes from the
backward angle of the K photoproduction in the γN →
�∗K reaction. In Fig. 6 we show the differential cross
section at Eγ = 2.1 and 3.8 GeV together with available
experimental data [14]. One can see that for increasing initial
photon energy the cross section decreases at backward angles
for the K photoproduction. Therefore, we expect that the
threshold region with Eγ � 2.1–2.2 GeV is most favorable
for studying associated �∗�+ photoproduction that reflects
the �+ formation.

We stress some ambiguity in the choice of the matching
point Eγ = 2.3 GeV, which will be eliminated after measuring
the �(1520) photoproduction cross section at low energy with
Eγ = 1.7–3 GeV. However, we believe that the present model
can still be used for our aim. First, it gives reasonable energy
dependence of the cross section: some increase just near
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FIG. 5. The differential cross section of the reactions γp →
�∗K+ (a) and γ n → �∗K0 (b) as a function of the kaon photo-
production angle in γN c.m. system at Eγ = 1.8, 2.1, and 2.3 GeV.
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FIG. 6. The differential cross section for the γp → �∗K+Eγ =
2.1 and 3.8 GeV. Experimental data from Ref. [14].

the threshold (explained mainly by the phase-space factor)
and then some decrease, usual for the inelastic processes,
confirmed by other authors using different approaches (see
Refs. [15,17]). Second, and most important: in case of
low energy both the �+ formation cross section and the
background dominated by the quasifree �∗ photoproduction
are described by the same elementary amplitudes, Eqs. (3a)
and (3b). Therefore the signal-to-noise ratio, which is main
goal of our study, is not sensitive to the details of �∗
photoproduction.

Finally, let us mention that in our approach the total sign of
the �∗ photoproduction amplitude follows the sign of the K∗
exchange amplitude. Thus, in the γp reaction the interference
between K∗ exchange and Born terms is constructive, i.e., their
total sign coincide with the sign of the K∗ exchange amplitude.
In the γ n reaction the K∗ exchange is the dominant channel.
But SU(3) symmetry predicts opposite signs for the γK∗−K+

and γ K̄∗0
K0 couplings, which results in opposite signs of the

total amplitudes in γp and γ n reactions.

B. Nonresonant γ N → N K̄ K reactions

In Ref. [13] we assumed that the dominant contribution
to the nonresonant γp → pK+K− reaction comes from
the virtual vector-meson production (γp → pV → pK+K−)
and intermediate �(1405) excitation [γp → �(1405)K+ →
pK+K−]. We believe that the vector-meson contribution is
under control because the mechanism of real vector-meson
photoproduction is well known. As an example, in Fig. 7
we show the differential cross sections for φ meson photo-
production at Eγ ∼ 2–3 GeV calculated using the model of
Ref. [18] together with the available experimental data. One
can see that the description of this reaction is quite reasonable.
Next, the coupling constant of φK+K− can be extracted
from the φ → K+K− decay, and the ρK+K− and ωK+K−
couplings can be found from SU(3) symmetry relations. Then,
the contribution to K+K− photoproduction from the virtual
vector-meson excitation may be easily evaluated. But at this
moment, we have to make two comments. First, in the γN →
NK̄K reaction the virtual vector mesons are off mass shell
and, therefore, one has to introduce the corresponding form
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FIG. 7. The differential cross section of φ meson photoproduction
based on the model of Ref. [18]. Data from Refs. [19–22].

factors [18]. The form factors, together with the vector-meson
propagators, strongly suppress contributions of the virtual ρ

and ω mesons, leaving only a noticeable contribution from
the φ meson, which is almost on-shell because of the small
decay width of the φ meson. Second, in the data analysis for
�+ photoproduction the contribution of the φ meson can be
excluded by making a corresponding “φ-meson cut” [1,7].
Nevertheless, we discuss it here to fix other sources of K+K−
photoproduction, having in hand only the total cross section
σK+K−

of the γp → pK+K− reaction [23].
The situation with the contribution from the �(1405)

is not so transparent. At Eγ = 1.8–2.5 GeV, there is some
difference (�σK+K−

) on the level of 10–30% between the
total cross section σK+K−

and the total contribution from
�∗ and vector-meson excitations. This difference increases
at higher energies, because σK+K−

increases with energy,
whereas the contribution from �∗ decreases with energy
and the contribution from the φ mesons stays constant. At
low energies, �σK+K−

may be identified with the virtual
excitation and decay of hyperons other than �∗. Thus, for
example, Oh, Nakayama, and Lee considered contributions
from �(1405),�(1116), �(1193), and �(1385) [11];
and Roberts included additionally contributions from
�(1600), �(1670), �(1690), �(1800), �(1810), �(1890)
and �(1620),�(1660),�(1670), �(1730), �(1880), �(1940)
[24]. In principle, one can also add contributions from �(1480)
and �(1560) hyperons, listed in PDG [25].

Another source of K̄K pair photoproduction in γN reaction
is the so-called Drell process [11,15,24], where the incoming
photon virtually decays into a K+K− pair with subsequent
quasielastic or charge-exchange KN rescattering. Also a K̄K

pair may be produced from the virtual decay γ → KK∗ with
a subsequent inelastic K∗N → KN transition. It is quite
clear that a consistent description of all the listed background
sources is well beyond the present state-of-the-art because
one needs a fairly large number of poorly known strength
parameters, form factors, phases, and so on. Moreover, we
need a proper description of the high-energy behavior of these
processes. However, in case of a large number of background
sources we can assume random relative phases between them
that leads to cancellations of the interference terms. Also, as
a first approximation one can choose the incoherent sum of
the squares of the amplitudes to be a constant. This means
that the energy dependence at low energies of this source

of K+K− pairs is defined essentially by the phase-space
factor. Our analysis of the �∗ photoproduction shows that
this approximation works well (see the solid and long dashed
curves in Fig. 4 at low energy). The value of the constant matrix
element can be obtained from a comparison with experimental
data for the γp → pK+K− reaction. In our further analysis
we parameterize the amplitude of the additional contribution
�σK+K−

(for the sake of a concise notation, we denote it
as BGY ) by the constant matrix element with |TBGY

| ≡ T0 =
5.95 GeV−1. This parametrization, being quite reasonable at
low energy with Eγ <∼ 2.3 GeV, results in a somewhat larger
rise of the cross section and overestimates the data by 20-50%
at Eγ = 3–6 GeV. To fit the data, we multiply T0 by a correction
factor C(Eγ )

C2(E) = θ (E0 − E) + IC(E0)

IC(E)

(
E

E0

)1.2

θ (E − E0),

IC(E) = 1

s
(
s − M2

N

)
×

∫ √
s−MK

MN +MK

√
λ
(
s,M2,M2

K

)
λ
(
M2,M2

N,M2
K

) dM

M
,

s = M2
N + 2MNE, (4)

with the matching point E0 = 2.3 GeV. In Fig. 8 we show
the total cross section of the γp → pK+K− reaction together
with available experimental data [23].

To summarize this section we conclude that, for the
elementary γp → pK+K− process, which is used in our
analysis of the γD → pK−X reaction, we have selected
and described explicitly the �∗ and vector-meson (φ meson)
excitation channels. The sum of all other possible processes
is parameterized effectively by a constant matrix element.
The energy dependence of this channel follows the phase
space. At higher energies, Eγ = 2.3–3.5 GeV, this dependence
is slightly corrected. In case of γ n → pK−K0, the vector
meson may contribute only through virtual excitation of the ρ−
meson, which is negligibly small. For γ n → pK−K0 channel
we use the contribution from a �∗ excitation in the γ n reaction

1.5 2.0 2.5 3.0 3.5 4.0

Eγ (GeV)

0.0

0.4

0.8

1.2

σK
+

K
 (

µb
)

BGY

γ +
K

total

Λ∗

V

FIG. 8. The total cross section of the γp → pK+K− reaction as
a function of the photon energy. Thin solid curve is the contribution
of �∗ excitation, the dashed curve depicts the contribution of the
vector-meson decay, all other sources denoted as BGY are shown by
the short-dashed curve. The solid curve is the sum of all processes.
Experimental data from Ref. [23].
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TITOV, KÄMPFER, DATÉ, AND OHASHI PHYSICAL REVIEW C 74, 055206 (2006)

and the contribution from nonresonant channels BGY , taking
the same as for the γp reaction.

IV. ASSOCIATED �∗�+ PHOTOPRODUCTION

Now we turn to the associated �∗ �+ photoproduction off
the deuteron. Basically, our consideration of γD → �+�∗
is similar to that in Ref. [13]; however, we make several
modifications. Therefore, for completeness, we recall the main
aspects of our model to fix the new points. We assume that main
contribution comes from the charged and neutral K meson
exchange, shown in Figs. 1(a) and 1(b), respectively, and we do
not discuss the diagrams with direct �+ photoproduction being
important at backward angles of pK− pair photoproduction.
In calculating the K + N → �+ vertices we consider the �+
decay width as an input parameter, taking �� = 1 MeV [26].

The amplitudes of the associated �∗�+ photoproduction
are expressed through the transition operators of the “elemen-
tary” process γN → �∗K as

A(a,b) = g�NK

∫
d4p

(2π )4
ū�γ5

1

q2 − M2
K

ūσ
�∗M�∗

σµεµ

× p/ + M

p2 − M2
�D

p/′ + M

p′2 − M2
UD, (5)

where the transition operator M defines the amplitude of
�∗ photoproduction and uses the sum of transition operators
in Eqs. (3a) and (b); �D and UD stand for the deuteron
np coupling vertex and the deuteron spinor, respectively;
p′ = pD − p; and q is the momentum of the exchanged kaon.
We begin our consideration for the case of �+ spin-parity 1

2
+

.
Generalization and discussion of our results for another �+
spin-parity is relegated to the end of this section.

Following Refs. [13,27] we assume that the dominant
contribution to the loop integrals comes from their pole
terms. The consideration of the regular parts with off-shell
kaons needs incorporation of the corresponding off-shell form
factors, which brings an additional ambiguity into the model.
Thus, our estimate may be considered as a lower bound of
the coherence effect. The pole part may be evaluated by
summing all possible cuttings of the loops, as shown in
Fig. 9. Calculating the imaginary parts we use the following
substitutions for the propagators of the on-shell particles
(Cutkovsky rules [28]), shown by crosses in Fig. 9,

1

q2 − M2
K

→ −2πiδ
(
q2 − M2

K

)
,

(6)
p/ + M

p2 − M2
→ −2πi (p/ + M) δ(p2 − M2)

and the identity∫
d4pδ(p2 − M2) =

∫
d3p
2Ep

(7)

with E2
p = p2 + M2. We also use the standard representation

of the product of the deuteron vertex function and the attached
nucleon propagator through the nonrelativistic deuteron wave

(α)

K

γ

D

K

γ

D
(β)

FIG. 9. Diagrammatic representation of cutting (indicated by
crosses) the loop diagrams.

function

�D

ūm1 ūm2

p′2 − M2
N

UmD
=

√
2MD φmD

m1m2
, (8)

where p′ = pD − p and φmD
m1m2

is the deuteron wave function
with the spin projection mD and the nucleon spin projections
m1 and m2. By using Eqs. (6)–(8), one can express the principal
parts of the invariant amplitudes in Eq. (5) as

AP =
∑

ξ=α,β

AP (ξ ),

AP (ξ ) = i

√
2MD

16π

∑
m1m2

∫
p dp

Ep|pξ |T
�∗
m1

(ξ )�∗�+
m2

(ξ )

× θ [1 − a(p, pξ )] φmD

m1m2
[p, a(p, pξ )], (9)

where pξ is the spatial component of the corresponding four-
vectors, defined as pα = p�+ and pβ = pY − kγ . Indices α

and β refer to the left and right cutting diagrams in Fig. 9,
respectively. The function a(p, pξ ) is the cosine of the polar
angle of the internal nucleon momentum p in a deuteron when
the z axis is along the momentum pξ .

a(p, pξ ) ≡ cos θp = M2
K − M2

ξ − M2
N + 2EξEp

2|p||pξ | , (10)

with ξ = α, β and M2
α,β = p2

α,β .
The �∗ photoproduction and �+ decay amplitudes read

T �∗
m1

(α) = ūσ
�∗ (p∗

�)M�∗
σµ εµum1 (p′) θ (m′2),

T �∗
m1

(β) = ūσ
�∗ (p∗

�)M�∗
σµ εµum1 (p),

��+
m2

(α) = ūm2 (p)γ5u�(p�),
(11)

��+
m2

(β) = ūm2 (p′)γ5u�(p�) θ (m′2),

p′ = pD − p,

m′2 = p′2
0 − p′2.

Now we have an additional cut m′2 > 0, compared to Ref. [13],
that suppresses the integrals in Eq. (9) and reduces the values
of the corresponding cross sections. The effective deuteron
vertex reads

φmD

m1m2
(p, a) = 4π

∑
LmLms

〈
1

2
m1

1

2
m2

∣∣∣∣1ms

〉

×〈1msLmL|1mD〉 iLuL(p)YLmL
(̂p), (12)

where a is the cosine of the polar angle of p, uL(p) denotes
the deuteron wave function in momentum space

uL(p) =
∫

uL(r) jL(pr) rdr, (13)
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normalized as
2

π

∫
p2

[
u2

0(p) + u2
2(p)

]
dp = 1. (14)

In our calculation we use the deuteron wave function derived
from the “realistic” Paris potential. We checked that the final
result does not depend on the fine details of the deuteron wave
function and practically does not depend on the choice of the
potential.

Calculating the loop integrals in Eq. (9), one has to be
careful with the proper determination of the three-momentum
of p which is the argument of the corresponding elementary
amplitudes in the integrals. The azimuthal angle of p is chosen
to be zero because all momenta are in the production plane.
To get the internal momentum p in the laboratory system with
the z axis along the beam direction, we make the following
transformation

px → px cos θξ − pz sin θξ

(15)
pz → px sin θξ + pz cos θξ ,

where θξ is the polar angle of momentum pξ .
The differential cross section of the associated pK− and

NK photoproduction, integrated over the pK− invariant mass
in the range MY = M�∗ ± 20 MeV at MX = M�+ , is related
to the differential cross section of the associated �∗�+
photoproduction as

dσγD→pK−X

d cos θ dMX

∣∣∣∣∣
MX=M�+

� N

π��+

dσγD→�∗�+

d cos θ
, (16)

where N � 0.17 is the integral over the Breit-Wigner �∗ →
pK− decay distribution

N = BpK−

∫ M�∗ +�

M�∗ −�

2M�∗MX��∗dMX(
M2

X − M2
�∗

)2 + (M�∗��∗)2
(17)

with � = 20 MeV and the branching ratio BpK− � 0.45/2.
The differential cross section of the coherent �∗�+

photoproduction reads

dσγD→�∗�+

d cos θ
= 1

32π

1

sD

pf

pi

|Aa + Ab|2, (18)

where Aa and Ab are the amplitudes of the charge and neutral
current exchange, respectively, depicted in Fig. 1. In this
equation, averaging and summing over the spin projections
in the initial and the final states are performed. The difference
between Aa and Ab consists of different elementary amplitudes
for the γp → �∗K+ and γ n → �∗K0 reactions, and in an
opposite sign of the �+nK+ and �+pK0 couplings which is
a consequence of the zero isospin of �+. The relative sign of
the amplitudes of γp → �∗K+ and γ n → �∗K0 follows the
relative sign of the γ K̄0∗

K0 and γK−∗
K+ coupling constants

and, according to SU(3) predictions, is opposite. Therefore, the
sum of the charged and neutral K meson exchange diagrams
leads to a constructive interference between Aa and Ab, and
an enhancement of the cross section of the associated �∗�+
photoproduction.

In Fig. 10 we show the average momenta 〈〈pα〉〉 and
〈〈pβ〉〉 in the loop diagrams depicted in Figs. 9 [(α) and (β),

0 30 60 90

θγ,pK
- (degrees)

0.0

0.2

0.4

<
p>

 (
G

eV
/c

) <<pα>>

<<pβ>>

0.6

FIG. 10. The average momenta 〈〈pα〉〉 and 〈〈pβ〉〉 in the loop
diagrams shown in Figs. 9 [(α) and (β), respectively] as a function of
the pK− photoproduction angle.

respectively] as a function of the pK− photoproduction angle
in the c.m. system. This example corresponds to Eγ = 2.1 GeV
and M0 = 1.52 GeV. The definition of this averaging is given
as usual,

〈〈p〉〉2 =
∫

dMXd�Xd�Y 〈p〉2∫
dMXd�Xd�Y

, (19)

with

〈p〉 =
∫

pF (p)dp∫
F (p)dp

, (20)

where F (p) is the integrand in the loop integrals. One can see
that the average momenta have a minimum at θ ∼ 25◦. Near
this position the corresponding amplitudes have a maximum.
At large angles, mean values of p are large and, as a result,
the corresponding amplitudes are very small because of the
exponentially small value of the deuteron wave function at
large p.

In Fig. 11 we show the angular distribution of the differ-
ential cross section dσ/d�dMX of the γD → �+pK− →
pK−X reaction at Eγ = 2.1 GeV, and the missing mass
[γD,pK−],MX = M�+ = 1.53 GeV, and at M0 = M�∗ =
1.52 and 1.62 GeV in (a) and (b), respectively. The solid
curves correspond to the resonance contribution, i.e., γD →
�∗�+ → pK−X, whereas the dashed curves shows the
contribution from the nonresonant γN → pK−K processes
depicted schematically in Fig. 12.
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θγΛ (degrees)
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10
0
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1
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/d

Ω
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X
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µb
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G
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 s
r)

)

M0=1.52 GeV
(a)

γ Λ∗Θ+

γ Θ+

*
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X
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 s
r)

)

M0=1.62 GeV
(b)

γ Λ∗Θ+

γ Θ+

*

FIG. 11. The angular distribution of the differential cross section
dσ/d�dMX at MX = M�+ = 1.53 GeV, Eγ = 2.1 GeV, and M0 =
M�∗ = 1.52 and 1.62 (GeV), shown in (a) and (b), respectively.
The solid and dashed curves correspond to resonant and coherent
background contributions.
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Θ+

K
KoK+

Θ+

K

γ p

D

n

p

(b)

n

(a)

p

γ p

D

FIG. 12. Diagrammatic representation of the associated nonreso-
nant pK−�+ photoproduction.

One can see that in the �∗ region, where M0 = M�∗ , the
resonant cross section is about one order of magnitude larger
than the contribution of the nonresonant channels discussed
in the previous section. Outside the resonance position, say
for M0 = M�∗ + 100 MeV, the result is opposite, namely the
resonant contribution is strongly suppressed because of a small
�∗ total decay width, and the processes with nonresonant
γN → pK−K transitions become dominant. In Figs. 13(a)
and 13(b) we show the resonant cross section as a function
of the �∗ photoproduction angle in the c.m. system and
the laboratory system, respectively, for several values of the
photon energy. The value of the cross section at maximum
and the position of the maximum depends on the energy. One
can see that the �+ formation in associated �∗�+ photo-
production is hardly measurable if the detector acceptance
does not allow measuring the pK− pairs at small angles
θlab � 10◦.

Finally, let us discuss the dependence of the associated
�∗�+ photoproduction on the spin and parity of the �+.
The case of JP

� = 3/2− is especially attractive because the
small �+ decay width [26] has a natural explanation for this
assignment of the �+ spin and parity [29–32].

The effective Lagrangians of the �+NK interactions are
expressed usually in the following form [31]

L
1
2

±

�NK = g
1
2

±

�NK�̄�±KN + h.c., (21)

L
3
2

±

�NK = g
3
2

±

�NK

M�

�̄α�∓(∂αK)N + h.c., (22)

where �,N , and K are the �+, nucleon, and kaon fields;
�+ = γ5; and �− = 1. For the fixed �+ → NK decay width
the coupling constant g�NK depends on the spin and parity of
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θγΛ (c.m.s., degrees)

0.0
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0.5
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 (
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G
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r)

)
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2.0
2.1
2.3

Eγ (GeV)

(a)

γ Λ∗Θ+

*
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/d

Ω
dM

X
 (

µb
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G
eV

 s
r)
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1.9
2.0
2.1
2.3

Eγ (GeV)

(b)

γ Λ∗Θ+

*

FIG. 13. The same as in Fig. 11 but for different Eγ . (a) and (b)
correspond to the dependence on the �∗ photoproduction angle in the
c.m. system and the laboratory frame, respectively.

�+ as∣∣g 1
2

±

�NK

∣∣2 = 4π��

pF

M2
�

(M� ∓ MN )2 − M2
K

,

∣∣g 3
2

±

�NK

∣∣2 = 48π��

pF

M6
�

λ
(
M2

�,M2
N,M2

K

)[
(M� ± MN )2 − M2

K

] ,

(23)

where pF =
√

λ(M2
�,M2

N,M2
K )/2M� is the �+ decay mo-

mentum. These equations result in the following relation∣∣g 1
2

−

�NK

∣∣: ∣∣g 1
2

+

�NK

∣∣: ∣∣g 3
2

+

�NK

∣∣: ∣∣g 3
2

−

�NK

∣∣ = 0.134 : 1 : 1.39 : 10.21,

(24)

where, for example for �� = 1 MeV, |g
1
2

+

�NK | = 1.04. Us-
ing this estimate one can expect naively that in case of
JP = 3

2
−

( 1
2

−
) the coherent �∗�+ photoproduction would be

enhanced (suppressed) roughly by two orders of magnitude
compared to the case of JP = 1/2+. But the real situation is
far from this expectation. The matrix elements defining the
�+ formation are proportional to the products

g�+NK × tm�mN
(25)

with

t
1
2

±

m�mN
= ū�m�

�±umN
,

(26)

t
3
2

±

m�mN
= ūα

�m�
�∓qαumN

,

where q is the kaon momentum and m� and mN denote
the spin projections of �+ and nucleon, respectively. As
a result, the large (small) value of |g�NK | is compensated
by the corresponding small (large) value of tm�,mN

. For a
qualitative estimate of such a compensation let us consider
the combination

|A|2 =
∑

m�mN

|g�NK tm�,mN
|2, (27)

where the nucleon may be off-shell and express |A|2 through
the �+ decay width

∣∣A 1
2

± ∣∣2 = 8πM2
�

��

pF

(M� ∓ M̄N )2 − M2
K

(M� ∓ MN )2 − M2
K

,

∣∣A 3
2

± ∣∣2 = 16πM2
�

��

pF

λ
(
M2

�,M̄2
N,M2

K

)
λ
(
M2

�,M2
N,M2

K

) (M� ± M̄N )2 − M2
K

(M� ± MN )2 − M2
K

,

(28)

where M̄2
N = p2 > 0 is the square of the nucleon momentum

in the �+NK vertex. From these equations one can conclude
that in case of an on-shell nucleon with M̄2

N = M2
N : (i) |A|2

does not depend on parity and (ii) |A 3
2 |2 = 2|A 1

2 |2. The latter
is the consequence of the spin factor 2J + 1 in the expression
for the decay width. The dependence on parity arises only for
off-shell nucleons. |A|2 increases (decreases) for JP = 1/2+
and 3/2±(1/2−) at the off-shell region with M̄2

N < M2
N . The

increase for JP = 3/2+ and 3/2− is different, because in the
former case |A|2 is defined by the interplay of suppression and
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FIG. 14. The same as in Fig. 13(a), but for different �+ spin and
parities. Eγ = 2.1 GeV and M0 = 1.52 GeV.

enhancement factors. On average, the ratio of |A 3
2 |2/|A 1

2 |2
would be slightly larger than 2.

In some sense, the dependence of the amplitude of the
associated �∗�+ photoproduction on spin and parity of the �+

is rather similar to that of AJP

in our example. The diagrams
with the on-shell hadrons in the �+ formation vertex [see (α)
in Fig. 9] do not depend on �+ parity, and for J = 3/2 their
contribution is roughly two times greater than for J = 1/2.
The amplitudes with the off-shell nucleon in the �+ formation
vertex [(β) in Fig. 9] are enhanced for JP = 1/2+, 3/2± and
suppressed for JP = 1/2−. But this off-shell modification is
not so large, because the contribution of the nucleons that are
far off-shell are suppressed by the deuteron wave function.

In Fig. 14 we show the angular distribution of the differ-
ential cross section dσ/d�dMX at MX = M�+ = 1.53 GeV,
and Eγ = 2.1 GeV, M0 = M�∗ = 1.52 and different �+ spin

and parities, JP = 1
2

∓
and 3

2
±

. The ratio of the cross section
at their maximum position for different JP reads

1

2

−
:

1

2

+
:

3

2

+
:

3

2

−
� 0.81 : 1 : 1.87 : 2.53. (29)

This result is in agreement with our qualitative analysis,
namely the cross section for J = 3/2 on average is 2.4 times
greater than for J = 1/2. For JP = 1/2+ and 3/2− the cross
sections are enhanced compared to the cases of JP = 1/2−
and 3/2+, respectively.

Now two questions arise. First, whether the associated
�∗ �+ photoproduction may be seen against other nonres-
onant processes in the resonance region with M0 = M�∗ and,
second, whether this signal is suppressed outside the resonance
region and why? To answer these questions we have to analyze
the background processes.

V. NONRESONANT BACKGROUND

A. Spectator channels

The spectator channels are depicted in Fig. 15. Contribu-
tions of these channels to the invariant mass distribution are
defined by Eqs. (1) and (2), where the amplitudes are expressed
via products of the amplitude of the elementary γN → NK̄K

p  

Λ∗

K0

K+
K K 

K0

K 

K+

Λ∗ γ p

D

(b)

p

n

γ p

nD

p

γ p

D

(c) (d)

n

p

(a)

γ p

D n

K

FIG. 15. Diagrammatic representation of background spectator
channels. [(a) and (b)] Quasifree �∗K photoproduction; [(c) and (d)]
quasifree nonresonant pK−K photoproduction.

reactions AγN (n) and the deuteron wave function φ as

Tf i(n) =
√

2MD

∑
m

A
γN

m2;mλ(n)φmD

m,m1
(p), (30)

where the deuteron wave function is defined in Eq. (12) and the
index n corresponds to the different elementary subprocesses
discussed in Sec. III. The background contributions for the
quasifree �∗ photoproduction, vector-meson, and hyperon
excitations are shown in Fig. 16 by solid, dot-dashed, and
long-dashed curves, respectively. If the pK− invariant mass
is close to the �∗ mass [cf. Fig. 16(a)] the quasifree
�∗ photoproduction gives the dominant contribution to the
background. The next important contribution comes from the
BGY channel, parameterized by the constant matrix element.
The contribution of the vector mesons in the region where
the [γD,pK−] missing mass is around the �+ mass is rather
small. Indeed, it does not contribute to the γ n reaction and,
moreover, it is suppressed dynamically. Thus, the kinematics of
the associated �∗�+ photoproduction in the forward direction
requires a fast K− and slow K+. In this case, the K+K−
invariant mass is far from the φ meson mass. But the situation
changes at large values of the [γD,pK−] missing mass. In
this case the available values of K+K− invariant mass cover
the φ meson mass region, and the contribution of the φ meson
excitation becomes essential. The case when the pK− invariant
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FIG. 16. Background contributions to the missing-mass distribu-
tion in the γD → pK−X reaction at Eγ = 2.1 GeV for quasifree �∗

photoproduction, vector-meson, and hyperon excitations (spectator
mechanism), and rescattering channels shown by solid, dot-dashed,
long-dashed, and dashed curves, respectively. (a) and (b) correspond
to M0 = 1.52 and 1.62 GeV, respectively.
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FIG. 17. Rescattering of the proton (a and b) and K− meson (c
and d) in the pK−NK photoproduction from the deuteron.

mass is far from the �∗ mass is shown in Fig. 16(b). Now, the
quasifree �∗ photoproduction is suppressed, whereas the other
channels have the same order of magnitude.

B. Rescattering processes

Let us consider proton and K− meson rescattering when
a pK− pair is produced in the γN interaction as shown in
Figs. 17(a)–17(d), respectively. In principle, the K+n and K0p

rescattering in quasifree γN → pK−K photoproduction from
a deuteron must be taken into account, too, but we skip them
at the present stage, assuming first that such processes give a
small correction to the spectator (quasifree photoproduction)
channels considered in the previous section and, second, the
cross section for elastic K+N scattering is much smaller
than for K−N scattering [25]. Moreover, as we show, the
dominant contribution here comes from proton rescattering
and, therefore, kaon rescattering is a small part. Basically, the
amplitudes of the rescattering processes are evaluated similarly
to the amplitudes of the associated coherent �+�∗ or �+pK−
photoproduction considered in Sec. III, where we assumed the
dominance of the imaginary part of the corresponding loop
diagrams, calculated by cutting rules. But there are several
new aspects.

First, the rescattered particles are outside of the production
plane and, therefore, now, in the loop integrals we have
to integrate over the virtual nucleon momentum p and the
azimuthal angle ϕp. If the polar and azimuthal angles of the
momentum pξ are θξ and ϕξ , respectively, then the three-
dimensional vector of the virtual nucleon in the laboratory
frame, with the z axis along the beam direction, reads

px = p′
x cos ϕξ − p′

y sin ϕξ ,

py = p′
y cos ϕξ + p′

x sin ϕξ , (31)

pz = p(cos θp cos θξ − sin θp sin θξ cos ϕp),

where

p′
x = p(sin θp cos ϕp cos θξ + cos θp sin θξ ),

p′
y = p sin θp sinp ϕp.

The polar angle θp is fixed by the on-shell conditions [cf.
Eq. (10)]

a(p, pξ ) ≡ cos θp = M2
K − M2

ξ − M2
N + 2EξEp

2|p||pξ | , (32)

where the four-momenta pξ = p(α,β) are defined as follows:
p rescattering:

pα = pN + pf , pβ = pK + pK− − kγ , (33)

K− rescattering:

pα = pN + pK− , pβ = pf + pK − kγ , (34)

where pN and pf refer to the momenta of the outgoing nucleon
and the proton of the X and Y systems, respectively. We remind
the reader that the indices α and β refer to the cut loops
shown in (α) and (β), respectively, in Fig. 9. To preserve the
energy-momentum conservation in the loop vertices one has
to be careful with the determination of the azimuthal angles
ϕξ . The corresponding expression reads

ϕξ = ϕ̄ξ θ (sξ ) + (2π − ϕ̄ξ )θ (−sξ ),

cos ϕ̄ξ = pξ x

|pξ | sin θξ

, (35)

sξ = pξ y

|pξ | sin θξ

.

Next, one has to choose the effective amplitudes in the loop
integrals. We take them as a product of the deuteron wave
function, photoproduction of the K−K pair in γN → pK−K

reaction, and elastic-scattering amplitudes. For the proton and
K−meson rescattering they read correspondingly

T
p

mpmN ;mDλ =
√

2MD

∑
mm1m2

T
γN→pKK−
m,m1λ

× T pN→pN
mpmN ,mm2

φmD

m1m2
[p, a(p, pξ )],

(36)
T K−

mpmN ;mDλ =
√

2MD

∑
m1m2

T
γN→pKK−
mp,m1λ

× T K−N→K−N
mN ,m2

φmD

m1m2
[p, a(p, pξ )],

where mp and mN are the spin projections of the outgoing
proton and nucleon, respectively. In our calculations we use
an on-shell approximation for the elastic-scattering amplitudes
T

pN→pN

f i and T K−N→K−N
f i , taken from the experimentally

measured cross sections of elastic scattering. Details of the
employed parameterizations are given in Appendix B.

An important point is related to the γN → pKK− vertex.
In our model it consists of three components: �∗ excitation,
the vector-meson contribution, and the remaining background
contribution denoted above as BGY . Consider first the �∗
channel. Due to the rescattering kinematics, the invariant mass
of the virtual pK− pair in the loop integrals covers the �∗
resonance region even when the invariant mass of the outgoing
p and K− meson is outside the resonance position. This results
in increasing the background contribution at M0 �= M�∗ . But
the situation is not so simple. Because the �∗ has a small total
decay width, �tot � 15.6 MeV, its decay length is large,

l0 = vt0 = v

c

h̄c

�tot
� 6–10 fm, (37)
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FIG. 18. The pN and K−N rescattering channels in γD →
pK−X reaction at Eγ = 2.1 GeV for M0 = 1.52 and 1.62 GeV shown
in (a) and (b), respectively.

at a �∗ velocity v ∼ (0.5–0.8) c. In other words, the �∗
decays mostly outside of the deuteron. Similar or even
larger suppression is expected for the case of the φ-meson
contribution. Therefore, we can simply neglect these two
channels.

In Fig. 18 we show the relative contributions of p and
K− rescattering for different channels. Enhancement of the p

rescattering is explained by the difference between the cross
sections for pN and K−N elastic scattering.

To summarize this section we conclude that at low energy,
say Eγ = 1.7–2.3 GeV, the dominant component of the non-
resonant background comes from the quasifree �∗ spectator
channel, the next important contribution is composed of the
BGY spectator channel and pN rescattering, if the invariant
mass of the pK− pair is inside the �∗ resonance position with
M0 = 1.52 GeV. Outside of the �∗ resonance position the
quasifree �∗ spectator channel is strongly suppressed, whereas
other channels remain on the same level.

Finally, let us examine the angular dependence of the spec-
tator channel, similar to the associated �∗�+ photoproduction
(cf. Figs. 13 and 14). The corresponding result is shown in
Fig. 19 where we present simultaneously contributions from
the associated �∗�+ photoproduction (signal) and from the
background (noise) dominated by the spectator channels. The
calculation is for the resonance region with MX = 1.53 GeV,
M0 = 1.52 GeV, and Eγ = 2.1 GeV. We choose the case of
JP

� = 3/2−. One can see that the spectator channel has a sharp
peak caused by the deuteron wave function with a maximum

0 20 40 60

θγΛ (degrees)

0.0

0.3

0.6

0.9

1.2

dσ
/d

Ω
dM

X
 (

µb
/(

G
eV

 s
r)

)

γ Λ∗Θ+

*

γ X

FIG. 19. The angular dependence of the missing mass distribution
for the associated �∗�+ (solid curve) photoproduction and the
background spectator processes (dashed curve) at MX = 1.53 GeV,
M0 = 1.52 GeV, and Eγ = 2.1 GeV.

close to the maximum for coherent �∗�+ photoproduction. At
small angles the noise decreases much faster than the signal.
Therefore, we can conclude that the largest value for the S/N

ratio is expected at extremely forward pK− photoproduction
angles, say θc.m.s. � 22◦.

VI. RESULTS AND DISCUSSION

Below, we discuss the prediction for the �+ formation
processes under two different conditions. The first is �+
photoproduction at low energy (Eγ = 1.7–2.3 GeV) in the
inclusive γD → pK−X reaction. It can be studied, for
example, by LEPS at SPring-8 and/or Crystal-Barrel at ELSA
(Bonn). The second is the formation �+ photoproduction
process in exclusive γD → pK−nK+ reaction in a wider
energy interval (Eγ = 1.7–3.5 GeV) with the experimental
conditions of the CLAS Collaboration measurement [7]. All
calculations are made for a total �+ decay width of �� =
1 MeV.

A. The missing mass distribution in inclusive γ D → pK− X
reactions

We calculate the missing mass distribution in the inclusive
γD → pK−X reaction with two cuts. The first one is the
φ-meson cut. We exclude all events with a K+K− invariant
mass close to the mass of the φ meson: |MK+K− − Mφ| <

20 MeV [1]. The second one is the angular cut: we keep only
forward pK− pair photoproduction with θc.m.s. � 22◦. This
cut gives a maximum S/N ratio. Hereafter, we define the
corresponding missing mass distribution as dσF /dMX, where
the superscript F indicates, conditionally, an alignment in the
forward photoproduction of the pK− pair. Figure 20 illustrates
the effect of the angular cut in the missing mass distribution
γD → pK−X reaction at the �∗ resonance position with
MpK− ∼ M�∗ (M0 = 1.52 GeV), averaging over the energy
interval Eγ = 1.7–2.3 GeV. Here, we choose the case of
JP

� = 3/2−. First, in the �∗ resonance region one can see
a distinct effect of the associated �∗�+ photoproduction as a
sharp �+ peak against the flat nonresonant background with
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FIG. 20. The [γD, pK−] missing mass distribution in the γD →
pK−X reaction together with the partial contributions of different
background channels at M0 = 1.52 GeV and Eγ = 1.7–2.3 GeV. The
contributions from the �+ signal, spectator and rescattering processes
are shown by the thin, long dashed, and dashed curves, respectively.
(a) and (b) correspond to calculations without and with the angular
cut θpK− � 22◦, respectively.
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FIG. 21. The same as in Fig. 20(b) but for M0 = 1.62 GeV.

and without the angular cut. The angular cut increases the
S/N ratio. Figure 20(a) shows the missing mass distribution
calculated for θpK− � π/2 (c.m. system), whereas in Fig. 20(b)
the angular interval is limited to 22◦ in accordance with the
results in Fig. 19. The angular cut suppresses the cross sections
of both the �+ signal and the background; it further modifies
the shape of the background in such a way as to get the
maximum S/N ratio at the resonance position MX = M�.
The shape modification is explained by the suppression of
the quasifree spectator channel at large invariant mass MX.
When MX increases the maximum in the quasifree background
distribution, shown in Fig. 19 (dashed curve), moves toward
large angles being outside of the integration region and,
therefore, the contribution of this channel decreases. As a
result, the angular cut creates an enhancement of the S/N

ratio by about 40%.
Figure 21 illustrates the case when the pK− invariant mass

is far from the �∗ resonance position, M0 = 1.62 GeV. Now
we also see some �+ peak generated mainly by the associated
nonresonant processes. The resonance channel is suppressed
because of the small �∗ decay width. The background near the
�+ peak is dominated by the BGY and rescattering channels.
Because now the charged and neutral K-meson exchange
diagrams contribute incoherently, the ratio (S/N )NR would be
smaller compared to the ratio in the resonance region, (S/N )R .
Neglecting the rescattering channels and the background shape
modification, one can get the following qualitative estimate(

S

N

)
NR

� 1

2

(
S

N

)
R

. (38)

The background shape modification and the rescattering
channels result in decreasing (S/N )NR.
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FIG. 23. The missing mass distribution for γD → pK−NK at
Eγ = 1.7–2.3 GeV and M0 = 1.52 GeV and for different �+ spin
and parity, folded with a Gaussian resolution function.

In Fig. 22 we show the missing mass distribution for
different �+ spin and parity: JP = 1

2
∓
, 3

2
±

. The signal-to-
noise ratio for different JP reads

1
2

−
: 1

2
+

: 3
2

+
: 3

2
− � 0.7 : 0.9 : 1.7 : 2.5. (39)

This result is in qualitative agreement with the previous
analysis of the differential invariant mass distributions [cf.
Eq. (29)].

Note that the value of the invariant mass distribution at
the resonance is independent of the �+ decay width. But
because all experiments have a finite experimental resolution,
the measured signal is smeared by the experimental resolution,
and this smeared signal must depend on the value of ��. In
Fig. 23 we show the missing mass distribution folded with a
Gaussian distribution function

dσ

dMX

=
∫

dσ

dM
f (MX − M)dM,

(40)

f (MX − M) = 1

σ
√

2π
exp

[
− (MX − M)2

2σ 2

]
,

with σ = 3 MeV, which imitates a finite experimental reso-
lution. The symbol SGS/N means the signal-to-noise ratio in
missing mass distribution folded with a Gaussian resolution
function. In this case, the height of the resonance peak (S)
decreases proportional to the factor of

√
π

2
√

2

��

σ
� 0.21. (41)

Therefore, to see this peak above the background, one needs
rather good experimental resolution, even assuming that the
�+ spin-parity is 3/2−.

    

FIG. 22. Missing mass distribution in the γD → pK−X reaction at Eγ = 1.7–2.3 GeV and M0 = 1.52 GeV for different �+ spin and
parity: (a), (b), (c) and (d) correspond to the �+ spin and parity J P = 1

2

−
, 1

2

+
, 3

2

+
, and 3

2

−
, respectively.
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Finally, let us estimate the total �+ formation cross section
in inclusive γD → pK−X reactions with angle and φ-meson
cuts. For JP

� = 3/2−, the �+ photoproduction cross section
at maximum is equal to

dσ�+ F

dM

∣∣∣∣∣
max

� 0.26
µb

GeV
, (42)

and this value is independent of the �+ decay width. Then,
the total cross section for the �+ signal reads

σ�+ F
tot � π

2
× �� × dσ�+ F

dM

∣∣∣∣∣
max

� 0.41 nb. (43)

Results for other assignments of JP
� can be evaluated using

Eq. (39).

B. �+ formation processes in exclusive γ D → pK−nK+

The reaction γD → �+pK− → npK+K− has been ana-
lyzed recently by the CLAS Collaboration [7]. We note that this
experiment was designed for studying the �+ photoproduction
in direct γ n → �+K− elementary processes. To enforce the
�+ signal the data analysis was performed with some specific
cuts. For convenience, we denote those cuts together with
acceptance of the CLAS detector as the CLAS experimental
conditions. No sizable �+ signal in the nK+ invariant mass
distribution was observed. Therefore, it seems to be interesting
and important to estimate the cross section for �+ formation
for the condition of this experiment. If we find that the
formation cross section is greater than the experimental
accuracy of the CLAS experiment, then it indicates problems
for the �+: either �+ does not exist or it does exist but the
�+ width is much smaller than 1 MeV.

The acceptance of the CLAS detector allows to detect
(i) proton and kaons with momenta greater than 0.35 and
0.25 (GeV/c), respectively; (ii) the angles of the direction of
flight of the positively and negatively charged particles are
greater than 9◦ and 15◦ (laboratory system), respectively. The
data analysis was performed with (iii) φ-meson cut MK+K− >

Mc = 1.06 GeV, (iv) �∗ cut |MpK− − M�∗ | > �c = 25 MeV,
(v) neutron momentum cut pn > pc = 0.2 GeV/c.

The �∗ cut almost kills the associated �∗�+ photoproduc-
tion shown in Fig. 1. “Almost” means that at �c � 25–50 MeV
the �∗ signal is rather weak but finite. Nevertheless, the main
contribution to the �+ formation comes from the nonresonant
channels shown in Fig. 12.

The neutron momentum cut strongly reduces the spectator
processes, shown in Fig. 15, making rescattering channels
dominant. In Fig. 24 we show the nonresonant background
for nK+ invariant mass distribution accounting for the CLAS
experimental conditions. One can see the dominance of the
rescattering (mainly pn rescattering) channel. Two other cuts
are dangerous for the formation processes. As we have shown
in Sec. IV, the dominant contribution to the �+ formation
comes from the forward photoproduction of a pK− pair
with θpK− <∼ 15◦ in laboratory system. In this case, the K+
meson is a slowly moving particle. Therefore, the acceptance
restriction for momentum pK+ > 0.25 GeV/c together with
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FIG. 24. The nonresonant background structure of the nK+

invariant mass distribution in γD → pK−NK at Eγ = 1.7–3.5 GeV
and for CLAS conditions.

the angle limitation for the proton and K− meson reduce the
cross section of �+ formation. Note that for the inclusive
photoproduction discussed above the pK− pairs are detected
in the forward direction, i.e., there are no such restrictions
(cuts), and any value of pK+ consistent with conservation laws
is allowed.

Figure 25 shows the nK+ invariant mass distribution
in γD → pK−nK+ at Eγ = 1.7–3.5 GeV and for CLAS
conditions (i)–(v). For convenience, we denote this distribution
as dσC/dMnK+ , where the superscript C indicates the CLAS
conditions. One can see some �+ signal against the nonres-
onant background dominated by the rescattering channels.
We have chosen the more favorable case of JP

�+ = 3/2−.
However, even in this case the S/N ratio is about three times
smaller compared to the case shown in Fig. 20(b). The �+
photoproduction cross section at maximum is equal to

dσ�+ C

dM

∣∣∣∣∣
max

� 29
nb

GeV
. (44)

Using this value we can evaluate the total �+ formation cross
section for conditions (i)–(v)

σ�+ C
tot � 2 × π

2
× ��+ × 29

nb

GeV
� 0.1 nb. (45)

In the latter case, the additional factor 2 means that only
the �+ → nK+ decay channel is under consideration. Our
estimate of the �+ formation cross section for the CLAS
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FIG. 25. The nK+ invariant mass distribution in γD →
pK−NK at Eγ = 1.7–3.5 GeV and for conditions (i)–(v).
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FIG. 26. (Left) Missing mass distribution in inclusive γD →
pK−X at Eγ = 1.7–2.3 GeV and the pK− photoproduction an-
gular cut (θpK− < 22◦ (c.m.s.)) and φ-meson cut. (Right) nK+

invariant mass distribution in exclusive γD → pK−nK+ at Eγ =
1.7–3.5 GeV and for CLAS experimental conditions (i)–(v). Exper-
imental data from Ref. [7]. In both cases, J P

� = 3/2− and the �+

signal is folded with a Gaussian resolution function with a width of
3 MeV.

experiment is three times smaller than the upper bound for the
�+ signal (0.3 nb) reported in Ref. [7].

For illustration, in Fig. 26 we exhibit simultaneously the
missing mass distribution in the inclusive γD → pK−X re-
action, averaged over the interval Eγ = 1.7–2.3 GeV with the
pK− photoproduction angular cut [θpK− < 22◦ (c.m. system)]
(left panel) and the nK+ invariant mass in the exclusive γD →
pK−NK+ reaction for the CLAS experimental conditions
(i)–(v) (right panel) together with the available experimental
data [7]. Remember that the nK+ invariant mass distribution
shown in Ref. [7] is obtained after removing certain processes
(contributions from φ meson and �∗ excitations and the
neutron spectator channels), because this experiment intends to
search for direct �+ production in the γ n → �+K− reaction.
In our analysis of the �+ formation process in the CLAS
experiment we include all experimental conditions (i)–(v). To
be close to the conditions of the data analysis in Ref. [7] we
include in the consideration the acceptance correction factor
that restores the full four-body phase space broken by the cuts
(i)–(v). Our results with acceptance corrections are shown in
Fig. 26.1 The model satisfactory describes the data at low
MnK+ and slightly underestimates them at higher invariant
mass with MnK+ > 1.6 GeV. It is not surprising because our
simple model does not pretend for detailed description of all
aspects of the γD interaction in a wide interval of the photon
energy. Our main purpose is the analysis of �+ signal-to-noise
ratio at MnK+ ∼ M�, where the model looks quite reasonable.

For the left and right panels of Fig. 26 the �+ signal is
folded with a Gaussian resolution function with σ = 3 MeV.
Notice, that utilizing the Gaussian resolution function reduces
the �+ signal at the maximum position by a factor 0.21 [cf.
Eq. (41)].2 In our calculation we choose the favorable �+
spin-parity 3/2−. The absolute value of the signal for other
spin-parities decreases according to Eq. (39). From Fig. 26

1The acceptance correction increases the total cross section in
Eq. (45) to 0.15 nb.

2Our choice σ = 3 MeV is rather illustrative. Using Eq. (41) one can
easily reestimate the amplitude of the �+ signal for any value of σ .

(right) one can see that the effective �+ signal predicted for
the CLAS conditions (i)–(v) is comparable to the statistical
fluctuations. Therefore, the absence of a bright �+ signal in
the CLAS data [7] does not exclude its possible manifestation
under more favorable experimental conditions.

VII. SUMMARY

In summary, we analyzed the possible manifestation of the
�+ formation process in inclusive γD → pK−X reactions.
If the �+ exists, then in the [γD,pK−] missing mass
distribution there must be a distinct �+ peak. Its strength
depends on the �+ spin and parity, and has a maximum
value for JP

� = 3/2−. We found that at forward angles of the
pK− pair photoproduction the signal-to-noise ratio is most
favorable.

We also analyzed the recent results of the CLAS Collab-
oration and found that the present experimental conditions
are not favorable for studying the �+ formation processes.
The corresponding signal-to-noise ratio is small, and the �+
signal is comparable to the statistical fluctuations due to the
experimental acceptance.

In our model a distinct �+ signal is caused by the
constructive interference of the �∗ photoproduction from the
proton and neutron in the associated �∗�+ photoproduction
off the deuteron. In calculations we use relatively old data
for �∗ photoproduction off the proton at photon energies
greater than the most favorable ones for the associated �∗�+
photoproduction making a corresponding extrapolation. For
a more detailed study of this effect, new high-statistics
low-energy data both for γp → �∗K+ and γ n → �∗K0 are
greatly desired, especially for large kaon photoproduction
angles. A similar problem concerns fixing the nonresonant
background. The elementary γp → pK+K− cross section is
very important here. In our analysis we used old data with low
accuracy. It is clear that for understanding the �+ formation
processes one needs more accurate low-energy data for this
elementary subprocess, too. However, our main results have
a general character. Thus, it seems more reliable to detect
the �+ signal in the KN → �+ fusion reaction realized
in associated �∗�+ photoproduction, which may be seen
in inclusive γD → pK−X reaction for certain experimental
conditions.

Finally, we note that the �+ formation reaction together
with other accompanying processes considered in the present
article may be studied experimentally at the electron and
photon facilities at LEPS of SPring-8, JLab, Crystal-Barrel
of ELSA, and GRAAL of ESRF.
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APPENDIX A: KINEMATICS FOR THE REACTION
γ D → pK− N K

Let us consider the determination of the momenta of all
outgoing particles in the γD → pK−NK reaction at fixed
input parameters defined in Sec. II in detail. The square of the
total energy in the c.m. system is

sD = M2
D + 2MDEγ , (A1)

where MD is the deuteron mass and Eγ is the photon energy
in the laboratory system. The momenta pi and pf read

pi =
√

λ
(
sD,M2

D, 0
)

2
√

sD

= sD − M2
D

2
√

sD

,

(A2)

pf =
√

λ
(
sD,M2

X,M2
Y

)
2
√

sD

,

where λ(x2, y2, z2) = [x2 − (y − z)2][x2 − (y + z)2] is the
triangle kinematical function. The four-momenta of proton
and K− meson in the Y rest frame is defined by the mass MY

and the solid angle �Y . Thus, the absolute value of the decay
three-momentum reads

˜̄q =
√

λ
(
M2

Y ,M2
K,M2

N

)
2MY

. (A3)

Then the four-momenta are defined as

p̃K− = (ẼK− , ˜̄q sin θY cos ϕY , ˜̄q sin θY sin ϕY , ˜̄q cos θY ),
(A4)

ẼK− =
√

˜̄q2 + M2
K

and

p̃p = (Ẽp,− ˜̄q sin θY cos ϕY ,− ˜̄q sin θY sin ϕY ,− ˜̄q cos θY ),
(A5)

Ẽp =
√

˜̄q2 + M2
N,

respectively. Note, that here the z̃ axis is taken along pY , and
the ỹ axis coincides with y. Next, we boost these momenta to
the c.m. system along the z̃ axis as

p′
p0 = γY (p̃p0 + vY p̃p3), p′

p3 = γY (p̃p3 + vY p̃p0),

p′
p1 = p̃p1 p′

p2 = p̃p2, (A6)

where vX = pf /

√
pf + M2

X and γX = vX/

√
1 − v2

X. Then,
we rotate the coordinate system around the y axis by the angle
θ to get the momenta in the c.m. system with z along the
photon momentum k

pp1 = p′
p1 cos θ + p′

p3 sin θ,

pp3 = p′
p3 cos θ − p′

p1 sin θ, (A7)

pp2 = p′
p2, pp0 = pp

′
0.

Similarly, we transform the momenta of the outgoing nucleon
N and K meson of the X system with obvious substitutions:
MY → MX, θY → θX, ϕY → ϕX, and θ → π + θ .

APPENDIX B: AMPLITUDES OF THE
ELASTIC-SCATTERING PROCESSES

A. K− N → K− N scattering

Let us consider the elastic K−p → K−p scattering. The
amplitude is related to the differential cross section via

dσKp

d�
= 1

64π2 s

pf

pi

1

2

∑
mimf

∣∣T Kp
mf mi

(s, cos θ )|2, (B1)

where pi,mi and pf ,mf are the three-dimensional relative
momenta and the proton spin projections in the initial and the
final states, respectively; s is the square of the total energy
in the c.m. system; and θ denotes the scattering angle. In
our calculations we take the differential cross section from
experiment [33], given as a function of the scattering angle in
certain energy intervals. In rescattering processes, one of the
incoming proton may be off-shell, and therefore, generally,
pi �= pf . Thus, the scattering angle is defined as

cos θ = 2EiEf − 2M2
K + t

pipf

(B2)

with t, pi(f ) and Ei(f ) given as

t = (q − q ′)2,

|pi | =
√

λ
(
s,M2

K, M̄2
N

)
2
√

s
,

(B3)

|pf | =
√

λ
(
s,M2

K,M2
N

)
2
√

s
,

Ei(f ) =
√

p2
i(f ) + M2

K,

where q and q ′ are the kaon four-momenta in initial and
final states, respectively, and M̄2

N is the square of the four-
momentum of the incoming off-shell nucleon.

We use the following parametrization of the differential
cross section (in mb)

pL < 0.3663, dσKp/d� = 3.01(2 + cos θ )/s,

0.3663 < pL < 0.4185, dσKp/d� = 3.01(1 + 3 cos2 θ )/s,

0.4185 < pL, dσKp/d� = 0.5[1 + (1 + cos θ )δ],

(B4)

where pL is the kaon momentum in laboratory frame in GeV/c
and

δ = 1.443 ln(13.33pL − 1). (B5)

The spin dependence of the amplitude is chosen in the simplest
form as

T Kp
mf mi

= T0
(
δmi,mf

+ δ−mi,mf

)
. (B6)
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TABLE I. Parameters of the function dσ/dt = AeBta+Ct2
a .

pL A B c

(MeV/c) [mb/(GeV/c)2] (GeV/c)−2 (GeV/c)−4

<899 87.1 0.96 2.91
900–999 78.8 1.17 1.89

1000–1099 64.7 1.00 0.72
1100–1199 60.4 2.01 2.10
1200–1299 79.6 4.38 3.96
1300–1399 107.4 5.76 3.68
1400–1499 116.1 5.45 2.04
1500–1599 126.2 6.51 3.56
1600–1699 137.0 7.20 3.80
1700–1799 140.9 7.66 4.39
1800–2399 141 7.66 3.55

Concerning the K−n reaction, we employ dσK−n→K−n �
dσK−p→K−p.

B. pN → pN scattering

For the differential cross section of the elastic pp scattering
we use the parametrization of Ref. [34]:

dσ

dt
= A exp

(
Bta + Ct2

a

)
, (B7)

TABLE II. Parameters of the function dσ/dt = A[(1 − α)
eBta + α eCta ].

pL α B c

(MeV/c) (GeV/c)−2 (GeV/c)−2

2200–2599 0.022 7.8 0.7
2600–2999 0.015 8.0 0.7
3000–3500 0.015 8.8 1.0

where ta = 2M2
N − 2E2 + 2p2| cos θ |, p and E are the pro-

ton momentum and energy in the c.m. system, respec-
tively. The parameters A,B, and C are listed in Table I.
Here pL is the proton momentum in laboratory system.

For pL = 2.2–3.5 GeV/c the cross section is parametrized
as a sum of two exponentials

dσ

dt
= A[(1 − α) exp(Bta) + α exp(Cta)], (B8)

where A � 141 mb/GeV2 and α,B, and C are listed in
Table II.

Similarly to the K−p scattering we ignore the spin depen-
dence of the amplitude. In our study we assume approximately
dσpn � dσpp.
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72, 035206 (2005).

[14] D. P. Barber et al. (LAMP2 Group), Z. Phys. C 7, 17
(1980).

[15] A. Sibirtsev, J. Haidenbauer, S. Krewald, U-G. Meissner, and
A. W. Thomas, arXiv:hep-ph/0509145.

[16] N. Muramatsu et al. (LEPS Collaboration), in Proceedings of
the 14th International Workshop on Deep Inelastic Scattering,
Tsukuba, Japan, 2006, edited by M. Kuze et al., (World Sci-
entific Publishing Co., Singapore) to be published; http://www-
conf.kek.jp/dis06/program-wg5.htm.

[17] S. I. Nam, A. Hosaka, and H. C. Kim, Phys. Rev. D 71, 114012
(2005).

[18] A. I. Titov, H. Ejiri, H. Haberzettl, and K. Nakayama, Phys. Rev.
C 71, 035203 (2005).

[19] H. J. Besch, G. Hartmann, R. Kose, F. Krautschneider, W. Paul,
and U. Trinks, Nucl. Phys. B70, 257 (1974).

[20] J. Barth et al. (SAPHIR Collaboration), Eur. Phys. J. A 17, 269
(2003).

[21] T. Mibe et al. (LEPS Collaboration), Phys. Rev. Lett. 95, 182001
(2005).

[22] E. Anciant et al. (The CLAS Collaboration), Phys. Rev. Lett.
85, 4682 (2000).

[23] R. Erbe et al. (Aachen-Berlin-Bonn-Hamburg-Heidelberg-
Muenchen Collaboration), Phys. Rev. 188, 2060
(1969).

055206-16



θ+ FORMATION IN INCLUSIVE γD → pK−X PHYSICAL REVIEW C 74, 055206 (2006)

[24] W. Roberts, Phys. Rev. C 70, 065201 (2004).
[25] S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1

(2004).
[26] R. A. Arndt, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C

68, 042201(R) (2003) [Erratum-ibid. 69, 019901(E) (2004)];
J. Haidenbauer and G. Krein, Phys. Rev. C 68, 052201(R)
(2003); A. Sibirtsev, J. Haidenbauer, S. Krewald, and U-G.
Meissner, Phys. Lett. B599, 230 (2004); A. Sibirtsev, J. Haiden-
bauer, S. Krewald, and U-G. Meissner, Eur. Phys. J. A 23,
491 (2005); A. Casher and S. Nussinov, Phys. Lett. B578, 124
(2004).

[27] V. Guzey, Phys. Rev. C 69, 065203 (2004).

[28] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum
Field Theory (Addison-Wesley, Reading, MA, 1996).

[29] S. Capstick, P. R. Page, and W. Roberts, Phys. Lett. B570, 185
(2003).

[30] R. L. Jaffe and A. Jain, Phys. Rev. D 71, 034012 (2005).
[31] T. Hyodo and A. Hosaka, Phys. Rev. D 71, 054017

(2005).
[32] T. Nishikawa, Y. Kanada-En’yo, O. Morimatsu, and Y. Kondo,

Phys. Rev. D 71, 076004 (2005).
[33] C. J. Adams et al., Nucl. Phys. B96, 54 (1975).
[34] B. A. Ryan, A. Kanofsky, T. J. Devlin, R. E. Mischke, and P. F.

Shepard, Phys. Rev. D 3, 1 (1971).

055206-17


