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The qqqqq̄ components and hidden flavor contributions to the baryon magnetic moments
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The contributions from the qqqqq̄ components to the magnetic moments of the octet as well as the �++ and
�− decuplet baryons are calculated for the configurations that are expected to have the lowest energy if the
hyperfine interaction depends on both spin and flavor. The contributions from the uū, dd̄, and the ss̄ components
are given separately. It is shown that addition of qqqqq̄ admixtures to the ground state baryons can improve
the overall description of the magnetic moments of the baryon octet and decuplet in the quark model without
SU(3) flavor symmetry breaking, beyond that of the different constituent masses of the strange and light-flavor
quarks. The explicit flavor (and spin) wave functions for all the possible configurations of the qqqqq̄ components
with light and strange qq̄ pairs are given for the baryon octet and decuplet. Admixtures of ∼10% of the qqqqq̄

configuration where the flavor-spin symmetry is [4]FS[22]F [22]S , which is likely to have the lowest energy, in
particular reduces the deviation from the empirical values of the magnetic moments �− and the �0 compared
with the static qqq quark model.
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I. INTRODUCTION

Recent measurements of the d̄/ū asymmetry in the nucleon
sea indicate a considerable isospin symmetry breaking in
the light quark sea of nucleon. This indicates that the
nucleon contains notable qqqqq̄ components, if not more
exotic components, besides the conventional qqq compo-
nent [1–4]. The experiments on parity violation in electron-
proton scattering moreover indicate that ss̄ quark pairs lead
to nonzero contributions to the magnetic moment of the
proton [5–11].

Here the contributions to the baryon magnetic moments
from wave function components with at most one uū, dd̄

or ss̄ sea quark pair are calculated in the nonrelativistic
quark model. The conventional qqq constituent quark model
by itself provides a qualitative description of the magnetic
moments of the baryon octet. Quantitatively the description
is, however, not better than ∼15%, the largest differences
from the experimental values being the magnetic moments
of the �− and the �0. While covariant reformulation of the
qqq model does not change this situation [12], the overall
description may be improved somewhat by adding effects of
meson exchange and orbital excitations to the qqq model
wave functions [13–15]. This of course also suggests that
explicit qq̄ terms should be included in the quark model for an
improved description. Such explicit qqqqq̄ components with
light qq̄ pairs have been shown to improve significantly the
agreement between the calculated and the measured the decays
of low-lying baryon resonances [16–18].
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The experimental results on the strangeness magnetic
moments can be described, at least qualitatively, by uudss̄

configurations in the proton, where the s̄ antiquark is in the
S-state [19–21]. Since configurations with the antiquark in
the S-state cannot be represented by long range pion or kaon
loop fluctuations, this motivates to a systematic extension of
the qqq quark model to include the qqqqq̄ configurations
explicitly.

Here the explicit flavor and spin wave functions for all
the possible configurations of the qqqqq̄ system in the
baryon octet and �++ and �− decuplet baryons, with totally
symmetric spin-flavor symmetry are derived, when both light
and strange qq̄ pairs are taken into account. Finally the
contributions to the magnetic moments of the octet and
decuplet baryons are evaluated for the mixed symmetry
configurations [4]FS[22]F [22]S and [4]FS[31]F [31]S , which
are likely to have the lowest energy in the case of the octet and
decuplet baryons, respectively. This notation is a shorthand for
the Young tableaux decomposition:

(1)

An interesting result is that this extension of the quark
model allows to a notable reduction of the overall disagreement
with the empirical magnetic moments when the qqqqq̄

admixture is of the order of ∼10% or more and if the qqqqq̄

component is more compact than the qqq component. The
improvement is particularly notable in the case of the �− and
�0 hyperons.
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Explicit expressions for the magnetic moments from the
uū, dd̄ as well as the ss̄ seaquark pairs are given. From
these the “strangeness magnetic” moments, i.e., the magnetic
moment contributions from ss̄ pairs, of all the baryons can
be read off. In addition the light flavor seaquark contributions
as, e.g., the contributions of uū and dd̄ pairs to the magnetic
moment of the �− are given explicitly.

The present paper is organized in the following way.
In Sec. II the explicit flavor wave functions of the qqqqq̄

components in the baryon octet and decuplet from the SU(3)
symmetry are given. Section III contains the expressions and
the corresponding numerical results for the baryon octet.
The corresponding expressions for the two decuplet magnetic
moments are given in Sec. IV. The strangeness magnetic
moments are considered in Sec. V and the light flavor seaquark
magnetic moments in Sec. VI. Finally Sec. VII contains a
concluding discussion.

II. THE FLAVOR WAVE FUNCTIONS OF THE qqqqq̄
COMPONENTS

The color symmetry of the qqqq subsystem in a qqqqq̄

component in a baryon is limited to [211]C by the requirement
that it form a color singlet in combination with the antiquark.
The Pauli principle then requires that the corresponding
orbital-flavor-spin states have the mixed symmetry [31]XFS

in order to combine with the color state [211]C to the required
completely antisymmetric 4q state [1111]. Since the intrinsic
parity is positive for a quark and negative for an antiquark, the
qqqqq̄ components, which have positive parity, require that
either the q̄ is in the P-state and that the qqqq subsystem is in
the spatially symmetric ground state ([4]X) or that one of the
quarks is in the P-state so that the qqqq subsystem has mixed
spatial symmetry [31]X and that the q̄ is in its ground state. The
extant experimental data on the strangeness magnetic moment
of the proton suggests that the qqqq subsystem has mixed
spatial symmetry [31]X if one of the quarks is strange [19–21].

The possible spin symmetry states of four quarks are
[4]S, [31]S , and [22]S . There are four possible flavor symmetry
configurations for the qqqq subsystem, which can combined
with the spatial and spin symmetry to form the orbital-flavor-
spin symmetry [31]XFS : [4]F , [31]F , [22]F , and [211]F in the
Weyl tableaux of the group SU(3) [24,25]. Combination of
these flavor states with the antiquark with flavor [1]∗F leads to
the following qqqqq̄ multiplet representations of SU(3):

[4]F ⊗ [1]∗ = 10 ⊕ 35, (2)

[31]F ⊗ [1]∗ = 8 ⊕ 10 ⊕ 27, (3)

[22]F ⊗ [1]∗ = 8 ⊕ 1̄0, (4)

[211]F ⊗ [1]∗ = 1 ⊕ 8. (5)

Here the numbers in boldface on the right-hand side of
the equations indicate the dimensions of the pentaquark
representations. As an example the possible θ+-pentaquark
may belong to the baryon antidecuplet 1̄0 representation [22].
It’s obvious that the qqqqq̄ components of the baryon decuplet
belong to the 10 representations, and that of the baryon octet
belongs to the 8 representations. The combination of the flavor

states with the spin states gives rise to several flavor-spin states,
which can be split by the spin-dependent hyperfine interaction
between the quarks.

If the hyperfine interaction between the quarks depends on
spin- and flavor [23] the qqqq systems with the mixed spatial
symmetry [31]X are expected to be the configurations with the
lowest energy, and therefore most likely to form appreciable
components of the proton. Consequently the flavor-spin state
of the qqqq system is most likely totally symmetric: [4]FS .
Moreover in the case of the baryon octet the flavor-spin state
[4]FS[22]F [22]S , with one quark in its first orbitally excited
state, is likely to have the lowest energy [26]. For the baryon
decuplet the flavor symmetry [22]F is, however, not possible
for the qqqq subsystem, and the [4]FS[31]F [31]S symmetry
configuration is expected to have the lowest energy [26].

A baryon wave function that includes qqqqq̄ components
in addition to the conventional qqq components may be written
in the following general form:

|B〉 = √
P3q |qqq〉 + √

P5q

∑
i

Ai |qqqqi q̄i〉. (6)

Here P3q and P5q are the probabilities of the qqq and qqqqq̄

components, respectively; the sum over i runs over all the
possible qqqqi q̄i components, and Ai denotes the amplitude
of the corresponding 5q component. The wave functions of
the qqq components are the conventional SU(6)SF ones.
Here the flavor (and spin) wave functions of every qqqqi q̄i

component is constructed along with a calculation of the
corresponding amplitudes Ai . Note that the baryons still have
the SU(3) flavor symmetry when the qqqqq̄ components have
been taken into account.

The weight diagram method [24] of the SU(3) group
will be employed here for the explicit construction of the
wave functions of baryon multiplet in qqqqi q̄i configurations.
These wave functions and amplitudes for the baryon octet and
decuplet, which have complete flavor-spin symmetry [4]FS are
listed in Tables I, II, and III.

TABLE I. The qqqqq̄ components, in which the qqqq subsystem
has the flavor symmetry [4]F .

( 3
2

+
, Y, I, I3) qqqqq̄ component

(1, 3/2, +3/2)
√

2
3 |uuuuū〉 +

√
1
6 |uuudd̄〉 +

√
1
6 |uuuss̄〉

(1, 3/2, +1/2)
√

1
2 |uuduū〉 +

√
1
3 |uuddd̄〉 +

√
1
6 |uudss̄〉

(1, 3/2, −1/2)
√

1
3 |udduū〉 +

√
1
2 |udddd̄〉 +

√
1
6 |uddss̄〉

(1, 3/2, −3/2)
√

1
6 |ddduū〉 +

√
2
3 |ddddd̄〉 +

√
1
6 |dddss̄〉

(0, 1, +1)
√

1
2 |uusuū〉 +

√
1
6 |uusdd̄〉 +

√
1
3 |uusss̄〉

(0, 1, 0)
√

1
3 |udsuū〉 +

√
1
3 |udsdd̄〉 +

√
1
3 |udsss̄〉

(0, 1, −1)
√

1
6 |ddsuū〉 +

√
1
2 |ddsdd̄〉 +

√
1
3 |ddsss̄〉

(−1, 1/2, +1/2)
√

1
3 |ussuū〉 +

√
1
6 |ussdd̄〉 +

√
1
2 |ussss̄〉

(−1, 1/2, −1/2)
√

1
6 |dssuū〉 +

√
1
3 |dssdd̄〉 +

√
1
2 |dssss̄〉

(−2, 0, 0)
√

1
6 |sssuū〉 +

√
1
6 |sssdd̄〉 +

√
2
3 |sssss̄〉
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TABLE II. The qqqqq̄ components, in which the qqqq subsystem has the flavor symmetry [31]F .

( 3
2

+
, Y, I, I3) qqqqq̄ component ( 1

2

+
, Y, I, I3) qqqqq̄ component

(1, 3/2, +3/2) −
√

1
2 (|uuudd̄〉 + |uuuss̄〉)

(1, 3/2, +1/2)
√

1
6 |uuduū〉 −

√
1
3 |uuddd̄〉 −

√
1
2 |uudss̄〉 (1, 1/2, +1/2) −(

√
8
15 |uuduū〉 +

√
4

15 |uuddd̄〉 +
√

3
15 |uudss̄)〉

(1, 3/2, −1/2)
√

1
3 |udduū〉 −

√
1
6 |udddd̄〉 −

√
1
2 |uddss̄〉 (1, 1/2, −1/2) −(

√
4
15 |udduū〉 +

√
8
15 |udddd̄〉 +

√
3
15 |uddss̄〉)

(1, 3/2, −3/2)
√

1
2 |ddduū〉 −

√
1
2 |dddss̄〉

(0, 1, +1)
√

1
6 |uusuū〉 −

√
1
2 |uusdd̄〉 −

√
1
3 |uusss̄〉 (0, 1, +1) −(

√
8
15 |uusuū〉 +

√
3
15 |uusdd̄〉 +

√
4
15 |uusss̄〉)

(0, 1, 0)
√

1
3 |udsuū〉 −

√
1
3 |udsdd̄〉 −

√
1
3 |udsss̄〉 (0, 1, 0)

√
11
30 |udsuū〉 −

√
11
30 |udsdd̄〉 −

√
4
15 |udsss̄〉

(0, 1, −1)
√

1
2 |ddsuū〉 +

√
1
6 |ddsdd̄〉 −

√
1
3 |ddsss̄〉 (0, 1, −1)

√
3
15 |ddsuū〉 −

√
8
15 |ddsdd̄〉 −

√
4
15 |ddsss̄〉

(−1, 1/2, +1/2)
√

1
3 |ussuū〉 −

√
1
2 |ussdd̄〉 −

√
1
6 |ussss̄〉 (−1, 1/2, +1/2) −(

√
4
15 |ussuū〉 +

√
3
15 |ussdd̄〉 +

√
8
15 |ussss̄〉)

(−1, 1/2, −1/2)
√

1
2 |dssuū〉 +

√
1
3 |dssdd̄〉 +

√
1
6 |dssss̄〉 (−1, 1/2, −1/2)

√
3
15 |dssuū〉 −

√
4
15 |dssdd̄〉 −

√
8
15 |dssss̄〉

(−2, 0, 0)
√

1
2 (|sssuū〉 + |sssdd̄〉) (0, 0, 0) −(

√
3
10 |udsuū〉 +

√
3
10 |udsdd̄〉 +

√
4
10 |udsss̄〉)

III. THE BARYON OCTET MAGNETIC MOMENTS

A. Wave functions

The baryon wave function is formed as combinations of
the color, space, flavor, and spin wave functions with appro-
priate Clebsch-Gordan coefficients. Here the states, in which
the antiquark is in its ground state, so that the flavor-spin
state of the qqqq system is completely symmetric ([4]FS) are
considered. The flavor-spin configuration of the qqqq system,
which is expected to have the lowest energy for an octet baryon,
is for the reasons mentioned above, the mixed symmetry
configuration [4]FS[22]F [22]S . The flavor-spin decomposition
of this wave function is

|[4]FS[22]F [22]S〉 = 1√
2
{[22]F1 [22]S1 + [22]F2 [22]S2}. (7)

This expression may be rewritten more pictorially in terms of
Young tableaux as

(8)
The explicit forms of the qqqqq̄ flavor wave functions, in
which the qqqq subsystem has flavor symmetry [22]F are
listed in Table III. The corresponding spin wave functions
are readily derived from these flavor wave functions by the
substitutions: u →↑, d →↓ and s →↓.

The corresponding flavor-spin configuration of the decuplet
baryons is [4]FS[31]F [31]S . These wave functions take the

TABLE III. The qqqqq̄ components, in which the qqqq subsystem has the flavor symmetry [22]F and [211]F .

( 1
2

+
, Y, I, I3) qqqqq̄ component ([22]F ) qqqqq̄ component ([211]F )

(1, 1/2, +1/2)
√

2
3 |uuddd̄〉 +

√
1
3 |uudss̄〉 |uudss̄〉

(1, 1/2, −1/2)
√

2
3 |udduū〉 −

√
1
3 |uddss̄〉 |uddss̄〉

(0, 1, +1)
√

1
3 |uusdd̄〉 +

√
2
3 |uusss̄〉 −|uusdd̄〉

(0, 1, 0) −(
√

1
6 |udsuū〉 −

√
1
6 |udsdd̄〉) +

√
2
3 |udsss̄〉

√
1
2 (|udsuū〉 − |udsdd̄〉)

(0, 1, −1) −(
√

1
3 |ddsuū〉 −

√
2
3 |ddsdd̄〉) |ddsuū〉

(−1, 1/2, +1/2) −(
√

2
3 |ussuū〉 −

√
1
3 |ussdd̄〉) −|ussdd̄〉

(−1, 1/2, −1/2) −(
√

1
3 |dssuū〉 +

√
2
3 |dssdd̄〉) |ddsuū〉

(0, 0, 0) −
√

1
2 (|udsuū〉 + |udsdd̄〉)

√
1
6 |udsuū〉 −

√
1
6 |udsdd̄〉 +

√
2
3 |udsss̄〉)
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general form:

|[4]FS[31]F [31]S〉 = 1√
3
{[31]F1 [31]S1 + [31]F2 [31]S2

+ [31]F3 [31]S3}. (9)

The explicit forms of the qqqqq̄ flavor wave functions, in
which the qqqq subsystem have flavor symmetry [31]F are
listed in Table II. The corresponding spin wave functions
are obtained from these flavor wave functions by the same
substitutions as above.

The remaining 19 different symmetric combinations of
mixed symmetry flavor and spin wave functions for the qqqq

system are listed in Table 3 of Ref. [26]. The appropriate
S4 Clebsch-Gordan coefficients for the completely symmetric
combinations of these flavor and spin wave functions are listed
in Table 4.13 of Ref. [25].

In the nonrelativistic quark model, the magnetic moment of
a baryon is defined as the expectation value of the magnetic
moment operator:

µ̂ =
∑

i

Qi

2mi

(l̂iz + σ̂iz). (10)

Here the sum over i runs over the quark content of the baryon,
and Qi denotes the corresponding electric charge of the quark
and mi are the constituent quark masses.

With the combination of qqq and qqqqq̄ state wave
functions (6) the magnetic moment will have contributions
from the diagonal matrix elements of the operator (10) between
the qqq component and the qqqqq̄ components, respectively,
and from the off-diagonal matrix elements between the qqq

and the qqqqq̄ components. These transition matrix elements
between the qqq and qqqqq̄ components typically give rise
to larger contributions to the baryon magnetic moments than
the diagonal contributions from the qqqqq̄ components. The
contributions to the magnetic moment operator from the
nondiagonal terms, which involve qq̄ pair annihilation and
creation, are obtained as matrix elements of the operator:

µ̂ =
∑

i

Qi

2
(
ri × σ̂i)z. (11)

The calculation of these nondiagonal contributions to the
magnetic moments calls for a specific orbital wave function
model. Here, for simplicity, harmonic oscillator constituent
quark model wave functions are employed:

φ00( 
p; ω) = 1

(ω2π )3/4
exp

{
− p2

2ω2

}
, (12)

φ1m( 
p; ω) =
√

2
pm

ω
φ00( 
p; ω). (13)

Here φ00( 
p; ω) and φ1,m( 
p; ω) are the s-wave and p-wave
orbital wave functions of the constituent quarks, respectively.
The oscillator parameters of the qqq and qqqqq̄ components,
ω3 and ω5, will in general be different.

The relation between the oscillator parameters ω3 and ω5

depends on the color dependence of the effective confining
interaction. If the confining interaction between two quarks is
pairwise with the color factor λ̃i · λ̃j , where λa

i is a color SU(3)
generator, the strength of the pairwise confining interaction

between the quarks in the qqqq subsystem is half of that
between the quarks in a color singlet qqq triplet [27]. This
would imply the relation:

ω5 =
√

5/6 ω3. (14)

The parameter ω3 may be determined by the nucleon radius
as ω3 = 1/

√
〈r2〉 or as half the splitting between the nucleon

and its lowest positive parity resonance. Both methods yield
the same value ∼246 MeV. The parameter ω5 may be set
by the relation (14) or be treated as a free phenomenological
parameter. In Ref. [21] it was noted that the best description of
the extant empirical strangeness form factors is obtained with
ω5 ∼ 1 GeV, which would imply that the qqqqq̄ component
is very compact.

B. Magnetic moment expressions

The magnetic moments of the octet baryons are formed of
diagonal matrix elements in the qqq and qqqqq̄ subspaces,
respectively, and off-diagonal transition matrix elements of
the form qqq → qqqqq̄ and qqqq̄ → qqq. The former only
depend on the group theoretical factors, while the latter also
depend on the spatial wave function model. The diagonal
contributions to the octet magnetic moments may be expressed
in the form:

µp = P3q

MN

m
+ P(p)ss̄

(
MN

6m
− MN

6ms

)
, (15)

µn = −P3q

2MN

3m
+ P(n)uū

MN

3m
− P(n)ss̄

MN

6ms

, (16)

µ�+ = P3q

(
8MN

9m
+ MN

9ms

)
+ P(�+)ss̄

(
2MN

9m
− 2MN

9ms

)

+P(�+)dd̄

(
MN

18m
− MN

18ms

)
, (17)

µ�0 = P3q

(
2MN

9m
+ MN

9ms

)
+ P(�0)ss̄

(
MN

18m
− 2

MN

9ms

)

−P(�0)dd̄

(
MN

9m
+ MN

18ms

)
,

+P(�0)uū

(
7

MN

18m
− MN

18ms

)
, (18)

µ�− = −P3q

(
4MN

9m
− MN

9ms

)
− P(�−)ss̄

(
MN

9m
+ 2MN

9ms

)

−P(�−)uū

(
2MN

9m
+ MN

18ms

)
, (19)

µ�0→� = −P3q

(
MN√

3m

)
+ 1

4
√

3
P5q

MN

m
, (20)

µ�0 = P3q

(
−2MN

9m
− 4MN

9ms

)
+ P(�0)uū

(
4MN

9m
− MN

9ms

)

−P(�0)dd̄

(
MN

18m
+ MN

9ms

)
, (21)
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µ�− = P3q

(
MN

9m
− 4MN

9ms

)
+ P(�−)uū

(
5MN

18m
− MN

9ms

)

−P(�−)dd̄

(
2MN

9m
+ MN

9ms

)
, (22)

µ� = −P3q

MN

3ms

+ P(�)uū

(
7

MN

18m
− MN

18ms

)

−P(�)dd̄

(
MN

9m
+ MN

18ms

)
. (23)

The factors P(B)qi q̄i
are the probabilities of the qqqqi q̄i compo-

nents in the baryon B. These are related to the corresponding
amplitudes Ai and the probability of the qqqqq̄ components,
Eq. (6), as

P(B)qi q̄i
= P5qA

2
i . (24)

The contributions to the octet magnetic moments from the
off-diagonal matrix elements take the following forms in the
harmonic oscillator model:

µp = −2
√

3

9
F35(P(p)ss̄) − 2

√
6

9
F35(P(p)dd̄ ), (25)

µn = −4
√

6

9
F35(P(n)uū) − 2

√
3

9
F35(P(n)ss̄), (26)

µ�+ = −2
√

3

9
F35(P(�+)dd̄ ) − 2

√
6

9
F35(P(�+)ss̄), (27)

µ�0 = +2
√

6

18
F35(P(�0)ss̄) − 2

√
6

9
F35(P(�0)uū)

+
√

6

9
F35(P(�0)dd̄ ), (28)

µ�− = −2
√

6

9
F35(P(�−)ss̄) + 4

√
3

9
F35(P(�−)uū), (29)

µ�0→� = −2
√

3

3
F35(P5q) (30)

µ�0 = −2
√

3

9
F35(P(�0)dd̄ , 0) + 4

√
6

9
F35(P(�0)uū), (31)

µ�− = 4
√

3

9
F35(P(�−)uū) − 2

√
6

9
F35(P(�−)dd̄ ), (32)

µ� = − 1
3F35(P5q). (33)

Here the phase factors for the off-diagonal matrix element
between the qqq and qqqqq̄ components have been taken to
be +1. The functions F35(P(B)qq̄) above are defined as

F35
(
P(B)qq̄

) = C35
MN

ω5

√
P3qP(B)qq̄ , (34)

where the factor C35,

C35 =
(

2ω3ω5

ω2
3 + ω2

5

)9/2

, (35)

is the overlap integral of the s-wave wave functions of the
quarks in the qqq and qqqqq̄ configurations.

Note that the [22] symmetry of the flavor wave function
rules out any contribution to the magnetic moments of the �

hyperons from ss̄ components. For the same reason there is
no contribution to the proton magnetic moment from uū nor
to the neutron magnetic moment from dd̄ components.

C. Numerical results

Here the factor C35, Eq. (35), is treated as a free phe-
nomenological parameter. It is found that addition of qqqqq̄

admixtures reduces the deviation of the calculated values
from the experimental magnetic moment values only if the
qqqqq̄ component is much more compact than the qqq

component. This will be shown by comparing the calculated
values for C35 ∼ 0.24 and C35 = 1. The latter value implies
equal oscillator parameters in the qqq and qqqqq̄ systems,
while the former value corresponds to ω5 ∼ 2.3 ω3. The former
value would imply that the radius of the qqqqq̄ component is
only ∼0.3 fm.

The other model parameters are the probabilities of the
qqqqq̄ components P5q and the constituent quark masses. To
reproduce the experimentally measured values d̄ − ū = 0.12
in the proton [28] the qqqqq̄ probability is set to P5q =
1 − P3q = 0.18. The constituent masses of the up and down
quarks are set to be mu = md = m = 274 MeV and that of the
strange quark to be ms = 419 MeV. The oscillator parameter
ω5 is taken to have the values 0.57 GeV, which corresponds
to a compact qqqqq̄ extension in the baryon octets. The
corresponding numerical results of the baryon octet magnetic
moments are shown in Table IV.

The results show that the average deviation from the
empirical magnetic moment values drops from ∼9% to ∼4%,
when the qqqqq̄ admixture is included in the quark model.
The improvement is most notable in the case of the �− and the
�o hyperons, which deviate most notably from the empirical
values in the conventional qqq model [14]. For these the
qqq model results differ by 14% and 21%, respectively, from
the experimental values. Inclusion of the contributions of the
qqqqq̄ components reduces these differences to ∼4% and 3%,
respectively.

TABLE IV. Magnetic moments of the baryon octet. The column
qqq contains the results of the conventional quark model from
Ref. [29] and the column Exp the experimental data from Ref. [30].
The present results are listed in column P1. Columns D (qqq) and
D (P1) contain the deviations of the calculated results from the data,
respectively.

Baryon Exp qqq P1 D (qqq) D (P1)

p 2.79 2.76 2.72 1.1% 2.5%
n −1.91 −1.84 −1.93 3.6% 0.8%
� −0.61 −0.67 −0.61 9.8% 0.0%
�+ 2.46 2.68 2.63 8.9% 6.9%
�0 ? 0.84 0.87 ? ?
�− −1.16 −1.00 −1.11 13.7% 4.3%
�0 −1.25 −1.51 −1.21 20.8% 3.0%
�− −0.65 −0.59 −0.58 9.2% 10.3%
�0 → � |1.61| −1.59 −1.67 1.2% 3.7%
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TABLE V. Magnetic moments of the baryon octet. The column
Exp contains the experimental data from Ref. [30]. The present results
are listed in columns P1, with model parameters C35 = 0.24, P3q =
0.82; P2, with C35 = 0.24, P3q = 0.90; P3, with C35 = 1, P3q =
0.82; P4, C35 = 1, P3q = 0.90, respectively.

Baryon Exp P1 P2 P3 P4

p 2.79 2.72 3.01 2.40 2.76
n −1.91 −1.93 −2.12 −2.46 −2.54
� −0.61 −0.61 −0.68 −0.71 −0.80
�+ 2.46 2.63 2.90 2.31 2.65
�0 ? 0.87 0.94 1.03 1.07
�− −1.16 −1.11 −1.18 −1.11 −1.18
�0 −1.25 −1.21 −1.43 −0.89 −1.18
�− −0.65 −0.58 −0.60 −0.58 −0.60
�0 → � |1.61| −1.67 −1.84 −2.12 −2.19

In Table V the calculated magnetic moments are shown
for both P5q = 0.1 and P5q = 0.18 and for both C35 = 0.24
and C35 = 1.0. The results indicate a clear preference for the
smaller value of C35 and the larger value of P5q .

IV. DECUPLET MAGNETIC MOMENTS

In the case of the decuplet baryons the lowest energy qqqqq̄

configuration is expected to be that, for which the qqqq

subsystem is assumed to have the [4]FS[31]F [31]S mixed
flavor-spin symmetry. The corresponding flavor wave func-
tions are listed in Table II, and the combined flavor-spin wave
function in Eq. (9). This wave function, and the corresponding
conventional wave function in the qqq quark model lead to
the following diagonal matrix element contribution to the
magnetic moment values for the �++ and the �− members of
the baryon decuplet for which experimental data exist:

µ�++ = P3q

2MN

m
+ P(�++)dd̄

35MN

24m

+P(�++)ss̄

(
13MN

12m
+ 3MN

8ms

)
, (36)

µ�− = −P3q

MN

ms

+ P(�−)uū

(
−13MN

24ms

− 3MN

4ms

)

+P(�−)dd̄

(
3MN

8m
− 13MN

24ms

)
. (37)

The off-diagonal qqq → qqqqq̄ matrix element contributions
are the following:

µ�++ = −
√

3

12
F35(P(�++)dd̄ , 0) −

√
3

12
F35(P(�++)ss̄ , 0), (38)

µ�− =
√

3

6
F35(P(�−)uū, 0) −

√
3

12
F35(P(�−)dd̄ , 0). (39)

Note that the qqqq subsystem of the qqqqq̄ component in
baryon decuplet can have both total angular momentum J = 1
and J = 2. Here only the contribution from J = 1, which, with
40% and 20% proportion of the qqqqq̄ component in baryon
deculplet, leads to the values in Table VI.

TABLE VI. The magnetic moments of the baryon decuplet. The
column qqq contains qqq model results [29] and the column Exp
the experimental data from Ref. [30]. The present results are listed
in columns P1 with model parameters C35 = 0.24, P3q = 0.60; P2

with C35 = 1, P3q = 0.60; P3 with C35 = 0.24, P3q = 0.80; P4 with
C35 = 1, P3q = 0.80.

Baryon Exp CQ P1 P2 P3 P4

�++ 3.7−7.5 5.52 4.98 4.94 5.87 5.84
�− −2.02 −2.01 −2.02 −2.00 −2.11 −2.09

Note that the [31] symmetry of the flavor wave function
rules out any contribution to the magnetic moments of the
�− hyperon from ss̄ components. For the same reason there
is no contribution to the �++ magnetic moment from uū

components.
The values in Table VI shows that the inclusion of

the qqqqq̄ components leads to improved agreement with
the empirical value of the the empirically well determined
magnetic moment of �− only if the qqqqq̄ system is again
very compact. In the case of the magnetic moment of the �++
the uncertainty range of the empirical values is too wide to
allow any definite conclusion.

V. STRANGENESS MAGNETIC MOMENTS

The contribution to the strangeness magnetic moment of the
proton can be inferred directly from Eqs. (15) and (25). With
P5q = 0.18 SU(3) symmetry suggests Pss̄ ∼ 0.06. With this
value the strangeness magnetic moment of the proton is µs =
0.17, which falls well within the ranges of the empirical data
(0.37 ± 0.2 ± 0.26 ± 0.07) given by the SAMPLE experiment
[7] and of the combined value from all the presently completed
experiments (0.28 ± 0.20) [31].

The contributions from ss̄ seaquark configurations to any
of the octet and decuplet magnetic moments can be directly
calculated from the terms in Eqs. (15)–(23) and (34), (36)
that are proportional to P(B)(ss̄) and inversely proportional to
the constituent mass ms of the strange quark. From these it
emerges that the strangeness magnetic moments of the proton
µs(P ) and the neutron µs(N ) are equal as required by SU(3)
flavor symmetry. For the same reason µs(�+) = µs(�−).

As noted above there are no ss̄ contributions to the magnetic
moments of the � hyperons because of the restriction to [22]F ,
nor to that of the �− hyperon because of the restriction to
[31]F symmetry. Such contributions are nevertheless possible
in the case of the � hyperons if the flavor symmetry is [31]F
and in the case of the �− hyperon if the flavor symmetry is
[4]F instead. Those configurations are however expected to be
energetically unfavorable.

VI. LIGHT FLAVOR SEAQUARK MAGNETIC MOMENTS

The contributions to the magnetic moments from one uū

seaquark component can be derived from those terms in the
expressions (15)–(23) and (37), (39), which are proportional
to P(B)(uū) and inversely proportional to the light flavor
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constituent mass m. In the case of the octet baryons the
resulting expressions naturally only apply to the symmetry
qqqq configuration [4]FS[22]F [22]S . In the case of the
decuplet baryons the corresponding expressions (37), (39) are
restricted to the symmetry configuration [4]FS[31]F [31]S .

These two symmetries imply that in the case of the proton
only dd̄ contributions, but no uū contributions appear. This is
in line with empirical observation that the d̄ contributions are
larger than the ū contribution [32]. Similarly there are no dd̄

contributions to the magnetic moment of the neutron.

VII. CONCLUSIONS

Here the magnetic moment contributions from qqqqq̄

admixtures in the baryon octet and decuplet have been derived
within the framework of the flavor SU(3) symmetry. In addition
explicit expressions for all the possible flavor wave functions
for qqqqq̄ systems with completely symmetric combinations
of flavor and spin wave functions are given. The calculated
magnetic moments include the contributions from the qqq

components and the qqqqq̄ components with both light and
strange qq̄ pairs. The magnetic moment expressions readily
allow separation of the strangeness components from ss̄ pairs
as well as individual components from uū and dd̄ pairs.

If the qqqqq̄ components are more compact than the qqq

components of the wave functions an improved description
of the experimental magnetic moments is possible, with
appropriately chosen model parameter values. With a qqqqq̄

probability in the range ∼10–20% the qqqqq̄ components
lead to small corrections to the magnetic moment values
given by the conventional qqq model apart from the �− and
�0 hyperons, where these corrections are large and notably
improve the agreement with the empirical values.

The restriction in the calculation of the baryon octet
magnetic moments to the configuration with flavor-spin
symmetry [4]FS[22]F [22]S given in Table III, is motivated
on the one hand by its expected low energy and on the

other hand by the indications of the experimentally observed
positive sign of the strangeness magnetic moment of the
proton, which is best described by this configuration [19–21].
The configuration with [4]FS[31]F [31]S symmetry given in
Table II is expected to have the next lowest energy and to
give an at most very insignificant contribution to the baryon
octet magnetic moments. In the case of the decuplet this
configuration is, however, expected to have the lowest energy
as the configuration [4]FS[22]F [22]S cannot contribute. The
contribution of admixtures of qqqqq̄ components with the
flavor-spin symmetry [4]FS[31]F [31]S were found to be very
small in the case of the �−.

It is of course not obvious that those qqqqq̄ configurations
that have the lowest energy for a given hyperfine interaction
model should have the largest probability in the nucleons. The
main terms should be expected to be those with the strongest
coupling to the qqq component. This coupling depends both
on the confining interaction in the transition amplitude and
(inversely) on the difference in energy from the rest energy of
the nucleon.

It should be noted that the qqqqq̄ components here, for
which the antiquark is in its ground state, do not correspond to
the pion contributions considered e.g. in Refs. [13,14]. In the
quark model those pion contributions correspond to qqqqq̄

configurations, in which the antiquark is in the P−state, and
the qqqq system is in the ground state. The present approach
is motivated by the empirical observation that the strangeness
magnetic moment of the proton is positive, which only can be
described by qqqqq̄ configurations with the antiquark in the
ground state [19–21].
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