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Impact parameter dependence of heavy ion e+e− pair production to all orders in Zα
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The heavy ion probability for continuum e+e− pair production has been calculated to all orders in Zα as a
function of impact parameter. The formula resulting from an exact solution of the semiclassical Dirac equation in
the ultrarelativistic limit is evaluated numerically. In a calculation of γ = 100 colliding Au ions, the probability
of e+e− pair production is reduced from the perturbation theory result throughout the impact parameter range.
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I. INTRODUCTION

The impact parameter dependence of heavy ion e+e−
pair production to all orders in Zα is of direct relevance to
experiments carried out at the BNL Relativistic Heavy Ion
Collider (RHIC) and possible at the CERN Large Hadron
Collider (LHC). The usual method of scattering theory
formally integrates over the impact parameter to turn the
momentum transfer of the amplitude into that of the cross
section via a δ function [1]. However, a standard method
of triggering measured events at RHIC and LHC uses zero
degree calorimeters, devices that respond to neutrons from
Coulomb dissociation of the beam ions [2]. The physical
process of a measured pair production event then also includes
simultaneously the Coulomb dissociation of the ion nucleus.
Assuming independence of the two processes (pair production
and Coulomb dissociation), the probability of an event is
then the product of the probability of pair production times
the probability of Coulomb dissociation. Predicted cross
sections are then appropriately constructed from the integral
of the product of the pair production probability times the
dissociation probability. I will confine myself in this paper
to evaluating the impact parameter dependent probability for
heavy ion production of e+e− pairs. Combining the probability
of the particular e+e− phase space acceptance of physical
detectors with the probability of Coulomb dissociation will be
left for future treatment.

The impact parameter dependent calculation of heavy ion
e+e− pair production to all orders in Zα described in this
paper is based on techniques previously developed. That
development began with the realization that in an appropriate
gauge [3], the electromagnetic field of a relativistic heavy ion
is to a very good approximation a δ function in the direction
of motion of the heavy ion times the two-dimensional solution
of Maxwell’s equations in the transverse direction [4], and
that an exact solution of the appropriate Dirac equation could
be obtained for excitation of bound-electron positron pairs
exhibiting a reduction from perturbation theory of a little less
than 10% for Au+Au at RHIC [5].

An analytical solution of the Dirac equation was subse-
quently obtained [6–8] for the analogous case of continuum
e+e− pair production induced by the corresponding counter-
moving δ-function potentials produced by heavy ions in an
ultrarelativistic collider such as RHIC. It was noted at the
time [7,8] that the exact solution appeared to agree with the
perturbation theory result.

Several authors then argued [9–11] that a correct regular-
ization of the exact Dirac equation amplitude should lead to
a reduction of the total cross section for pair production from
perturbation theory, the so-called Coulomb corrections. The
first analysis was done in a Weizsacker-Williams approxima-
tion [9]. Subsequently, Lee and Milstein computed [10,11]
the total cross section for e+e− pairs using approximations to
the exact amplitude that led to a higher order correction to the
well-known Landau-Lifshitz expression [12]. One might also
have noted that it is well known that photoproduction of
e+e− pairs on a heavy target shows a negative (Coulomb)
correction proportional to Z2 that is well described by the
Bethe-Maximon theory [13]. In fact some years ago Bertulanni
and Baur [14] applied the structure of the Bethe-Maximon
theory to obtain an impact dependent probability for heavy ion
reactions with a negative Coulomb correction. I will comment
on their results and compare them with the results of the present
work in Sec. V.

In a previous paper, I tried to explicate the Lee and Milstein
approximate results and argued their qualitative correctness
[15]. Subsequently, I undertook the full numerical calculation
of electromagnetically induced ultrarelativistic heavy ion
electron-positron pair production [16]. That evaluation of the
“exact” semiclassical total cross section for e+e− production
with gold or lead ions showed reductions from perturbation
theory of 28% for the CERN Super Proton Synchrotron (SPS)
case, 17% for RHIC, and 11% for LHC. For large Z, no final
momentum region was found in which there was no reduction
or an insignificant reduction of the exact cross section from
the perturbative cross section.

In the present paper, I reformulate the approach used for
my previous cross section calculations in order to calculate the
corresponding impact parameter dependent probabilities.

II. IMPACT PARAMETER DEPENDENT PROBABILITIES

For production of continuum pairs in an ultrarelativistic
heavy ion reaction, one may work in a frame of two
countermoving heavy ions with the same relativistic γ , and
the electromagnetic interaction arising from them goes to the
limit of two δ-function potentials

V (ρ, z, t) = δ(z − t)(1 − αz)�
−(ρ)

+ δ(z + t)(1 + αz)�
+(ρ) , (1)
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where

�±(ρ) = −Zα ln
(ρ ± b/2)2

(b/2)2
. (2)

I calculate the number weighted probability (or number
operator) 〈N (b)〉 for producing e+e− pairs at some impact
parameter b

〈N (b)〉 =
∞∑

n=1

nPn(b) =
∫

m2d3pd3q

(2π )6εpεq

|M(p, q)|2, (3)

with the previously derived exact semiclassical amplitude for
electron-positron pair production [6–8] written in the notation
of Lee and Milstein [10]

M(p, q) =
∫

d2k

(2π )2
exp [ik · b]M(k)FB(k)

×FA(q⊥ + p⊥ − k), (4)

where p and q are the four-momenta of the produced
electron and positron, respectively, p± = p0 ± pz, q± = q0 ±
pz, γ± = γ0 ± γz,α = γ0γ , k is an intermediate transverse
momentum transfer from the ion to be integrated over,

M(k) = ū(p)
α · (k − p⊥) + γ0m

−p+q− − (k − p⊥)2 − m2 + iε
γ−u(−q)

+ ū(p)
−α · (k − q⊥) + γ0m

−p−q+ − (k − q⊥)2 − m2 + iε
γ+u(−q),

(5)

and the effect of the potential [Eqs. (1) and (2)] is contained
in integrals FB and FA over the transverse spatial coordinates
[6–8],

F (k) =
∫

d2ρ exp[−ik · ρ]{exp[−iZα ln ρ] − 1}. (6)

F (k) has to be regularized or cut off at large ρ. How it is
regularized is the key to understanding Coulomb corrections,
as I will review in Sec.III.

In Sec. III, I will show how a properly regularized transverse
potential in Eq. (6) necessitates a numerical integration over
ρ to obtain F (k). With the resultant F (k), the integration
over k in Eq. (4) is then not amenable to the usual Feynman
integral techniques and must be carried out numerically. For
numerical convenience, I have chosen to express k in Cartesian
coordinates and rewrite Eq. (5) as

M(k) = ū(p)
αxkx + αyky − α · p⊥ + γ0m

−p+q− − (k − p⊥)2 − m2 + iε
γ−u(−q)

+ ū(p)
−αxkx − αyky + α · q⊥ + γ0m

−p−q+ − (k − q⊥)2 − m2 + iε
γ+u(−q).

(7)

The expression for the amplitude M(p, q) in Eq.(4) then
becomes

M(p, q) = ū(p)[Ipxαx + Ipyαy + (−α · p⊥ + γ0m)Jp]

× γ−u(−q) + ū(p)[−Iqxαx − Iqyαy

+ (α · q⊥ + γ0m)Jq]γ+u(−q), (8)

where, letting b define the x axis,

Ipx = 1

(2π )2

∫
exp[ikxb] dkx

×
∫

FB(k)FA(q⊥ + p⊥ − k)kxdky

−p+q− − (k − p⊥)2 − m2
, (9)

Ipy = 1

(2π )2

∫
exp[ikxb] dkx

×
∫

FB(k)FA(q⊥ + p⊥ − k)kydky

−p+q− − (k − p⊥)2 − m2
, (10)

Iqx = 1

(2π )2

∫
exp[ikxb] dkx

×
∫

FB(k)FA(q⊥ + p⊥ − k)kxdky

−p−q+ − (k − q⊥)2 − m2
, (11)

Iqy = 1

(2π )2

∫
exp[ikxb] dkx

×
∫

FB(k)FA(q⊥ + p⊥ − k)kydky

−p−q+ − (k − q⊥)2 − m2
, (12)

Jp = 1

(2π )2

∫
exp[ikxb] dkx

×
∫

FB(k)FA(q⊥ + p⊥ − k)dky

−p+q− − (k − p⊥)2 − m2
, (13)

Jq = 1

(2π )2

∫
exp[ikxb] dkx

×
∫

FB(k)FA(q⊥ + p⊥ − k)dky

−p−q+ − (k − q⊥)2 − m2
. (14)

After squaring, summing over spin states, and taking traces
with the aid of the computer program FORM [17], I obtain the
expression for the amplitude squared

|M(p, q)|2 = p+q−[(m2 + p2
⊥)|Jp|2 + |Ipx |2 + |Ipy |2

− 2pxRe (JpI ∗
px) − 2pyRe (JpI ∗

py)]

+p−q+[(m2 + q2
⊥)|Jq |2 + |Iqx |2 + |Iqy |2

− 2qxRe (JqI
∗
qx) − 2qyRe (JqI

∗
qy)]

+ 2[(m2 + p2
⊥)(qxRe(JpI ∗

qx)

+ qyRe(JpIqy
∗)) + (m2 + q2

⊥)(pxRe(JqI
∗
px)

+pyRe(JqI
∗
py)) + (p⊥ · q⊥ − m2)(Re(IpxI

∗
qx)

+ Re(IpyI
∗
qy)) − (m2 + p2

⊥)(m2 + q2
⊥)

× Re(JpJ ∗
q ) − (pxqy + pyqx)(Re(IpxI

∗
qy)

+ Re(IpyI
∗
qx)) − 2pxqxRe(IpxI

∗
qx)

− 2pyqyRe(IpyI
∗
qy)]. (15)

There is an apparent numerical difficulty in evaluating
Eqs. (9)–(14) due to the oscillating factor exp[ikxb]. Of course,
in the b = 0 limit, this factor is absent, and so we will first
investigate this numerically more tractable case. The general
case of nonzero b will then be addressed by a technique
involving piecewise analytical integration.

The derived impact parameter dependent amplitude
squared, |M(p, q)|2, is not simply the square of the amplitude
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for the excitation of a particular (correlated) electron-positron
pair [18]. However, as has been discussed in the literature
[19–26], the number operator for a particular (uncorrelated)
electron or positron can be constructed by integrating over
the positron or electron momenta, respectively, and likewise
the number operator for total pair production. In previous
articles [15,16], I have also discussed these matters in more
detail.

For the present, I will limit myself to calculating the number
operator 〈N (b)〉 for total pair production, and from it the total
pair production cross section σT ,

〈N (b)〉 =
∫

m2d3pd3q

(2π )6εpεq

|M(p, q)|2. (16)

Note that σT corresponds to a peculiar type of inclusive cross
section which we should call the “number weighted total cross
section,”

σT =
∫

d2b〈N (b)〉 =
∫

d2b

∞∑
n=1

nPn(b), (17)

in contrast to the usual definition of an inclusive total cross
section σI for pair production,

σI =
∫

d2b

∞∑
n=1

Pn(b). (18)

III. EIKONAL, EXACT, AND PERTURBATIVE CASES

If one merely regularizes the transverse integral Eq. (6) at
large ρ, one obtains [7,8] apart from a trivial phase

F (k) = 4παZ

k2−2iαZ
. (19)

Then all the higher order Zα effects in M(p, q) are contained
only in the phase of the denominator of Eq. (19). It was noted
that as Z → 0 this photon propagator leads to the known
perturbative result for M(p, q) if F (k) is modified to

F (k) = 4παZ

(k2 + ω2/γ 2)1−iαZ
. (20)

In this approach, a lower k cutoff at some ω/γ has to be put
in by hand to obtain dependence on the beam energy and to
agree with the known perturbative result in that limit.

Rather than put in the ω2/γ 2 cutoff by hand, my physically
motivated ansatz is to apply a spatial cutoff to the transverse
potential χ (ρ) (which has been up to now set to 2Zα ln ρ)
in order to obtain an expression consistent with the pertur-
bation theory formula [27,28] in the ultrarelativistic limit. In
the Weizsacker-Williams or equivalent photon treatment of
electromagnetic interactions, the effect of the potential is cut
off at impact parameter b � γ /ω, where γ is the relativistic
boost of the ion producing the photon and ω is the energy of
the photon. If

χ (ρ) =
∫ ∞

−∞
dzV

(√
z2 + ρ2

)
(21)

and V (r) is cut off in such a physically motivated way, then [11]

V (r) = −Zα exp[−rωA,B/γ ]

r
, (22)

where

ωA = p+ + q+
2

, ωB = p− + q−
2

, (23)

with ωA the energy of the photon from ion A moving in
the positive z direction and ωB the energy of the photon
from ion B moving in the negative z direction. Note that
we work in a different gauge than that used to obtain the
original perturbation theory formula, and thus our potential
picture is somewhat different. The transverse potential will
be smoothly cut off at a distance where the the longitudinal
potential δ-function approximation is no longer valid.

The integral Eq. (21) can be carried out to obtain

χ (ρ) = −2ZαK0(ρωA,B/γ ), (24)

and Eq. (6) is modified to

FA,B(k) = 2π

∫
dρρJ0(kρ)

×{exp[2iZA,BαK0(ρωA,B/γ )] − 1}. (25)

FA(k) and FB(k) are functions of virtual photon ωA and ωB ,
respectively. The modified Bessel function

K0(ρω/γ ) = − ln(ρ) − ln(ω/2γ ) − γe (26)

for ρ � γ /ω (γe is the Euler constant), and cuts off exponen-
tially at ρ ≈ γ /ω. This is the physical cutoff to the transverse
potential. One may define ξ = kρ and rewrite Eq. (25) in terms
of a normalized integral IA,B(γ k/ω)

FA,B(k) = 4πiZA,Bα

k2
IA,B(γ k/ω), (27)

where

IA,B(γ k/ω) = 1

2iZA,Bα

∫
dξξJ0(ξ )

×{exp[2iZA,BαK0(ξω/γ k)] − 1}. (28)

Note that FA,B is equal to 4πZA,B/k2 times a function of
(γ k/ω). The form of the integral, Eq. (6) without the cutoff
[here with added arbitrary phase constants consistent with
K0(ξω/γ k) for small ξ , Eq. (26)], was solved in closed
form [7,8]

IE
A,B(γ k/ω) = −i

(
exp[γe]ω

γ k

)−2iαZ
�(−iαZ)

�(iαZ)

× 1

(1 + ω2/k2γ 2)1−iαZ
. (29)

I will refer to this form as the eikonal. In the limit as Z → 0,

IE
A,B(γ k/ω) goes to

I 0
A,B(γ k/ω) = −i

1 + ω2/k2γ 2
, (30)

leading to the familiar perturbation theory form

F 0
A,B(k) = 4πiZA,Bα

k2 + ω2/γ 2
. (31)
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FIG. 1. Top: Relative magnitude squared of virtual photon source;
solid line, exact; long dashed line, eikonal or perturbative (see
text). Bottom: Corresponding phase of virtual photon source; the
perturbative phase (not shown) does not vary with kγ /ω.

The top panel of Fig. 1 displays the results of the numerical
calculation of |I (kγ /ω)|2 for Z = 79 and in the perturbative
limit. The curves that go to zero on the left are |I (kγ /ω)|2. The
curves that go to zero on the right are |I (kγ /ω)|2 multiplied
by (ω/kγ )4 to exhibit the reduction at high Z on the left of the
curve. (ω/kγ )4|I (kγ /ω)|2 goes to unity as kγ /ω goes to zero
in the perturbative case; it goes to a reduced constant value as
kγ /ω goes to zero for Z = 79. The bottom panel exhibits the
phase of the full expression F (k). The perturbative phase (not
shown) is constant. Both exact and eikonal phases are identical
at high kγ /ω and diverge by 22◦ for this Z = 79 case as they
approach constants at low kγ /ω.

IV. THE b = 0 LIMIT

Since the present calculations, based on the ultrarelativistic
limit, employ a somewhat different approach than that taken in
previous perturbative calculations but should agree with them
in the perturbative limit, I have deemed it prudent to do some
comparison of numerical results. As a first step, I computed the
b = 0 limit, both as a test of the method and general structure
of the computer code as well as for physical interest. Figure 2
shows a pertubation theory calculation of the energy spectrum
of produced positrons at b = 0 compared with a previous
perturbation theory calculation of Hencken, Trautmann, and
Baur [29]. The same dipole form factor has been utilized for
the ions with � = 83 MeV, and the curves have been divided
by (Zα)4. The heavy ions are from Au+Au at RHIC, and the
energy of the electrons has been integrated over. Except at
the lowest energies, the agreement is good, and the integrated
probability of the present calculation P 0(0) = 1.64 is in good
agreement with the previous calculation P 0(0) = 1.6. The

1 10 100
 Positron Energy E (MeV)

0.01

0.1

1

dP
/d

E

FIG. 2. Total probability as a function of energy of the positron.
The curves have been divided by (Zα)4. Short dashes, present per-
turbation theory; dotted line, previous perturbation theory calculation
[29].

integrated numbers have not been divided by (Zα)4 as the
displayed curves were.

Figure 3 shows the effect of higher order contributions. My
perturbation result of Fig. 2 is repeated for reference. The solid
line is the result of the exact calculation. It is clearly reduced
from perturbation theory for the lowest to highest values of
the energy range; the exact energy integrated P (0) = .94 =
.57P 0(0). Only slightly larger in magnitude is the result of
an eikonal calculation where the energy integrated P E(0) =
1.03 = .63P 0(0).

The overall reduction from perturbation theory is almost as
large in the eikonal case as it is in the exact calculation, and the
two curves in Fig. 3 do not diverge much at any energy value.

1 10 100
 Positron Energy E (MeV)

0.01

0.1

1

dP
/d

E

FIG. 3. Probabilities as in Fig. 2. Short dashes, present perturba-
tion theory; solid line, exact; long dashes, eikonal.
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This would suggest that similar effective physics is involved
in the two calculations. Recall from Fig. 1 the reduction in
magnitude of the virtual photon source for the exact calculation
as compared to the eikonal (which is identical in magnitude
to perturbation theory) for kγ /ω < 50. For k > 100ω/γ , the
magnitude of F (k) goes over into the eikonal or perturbative
result, while the phase of F (k) is identical to the eikonal.
It is in this large k region, where F (k) becomes identical
the eikonal in both magnitude and phase, that most of the
contribution for b = 0 comes. Test calculations show that 80%
of the contribution to the total probability at b = 0 comes from
k > 100 ω/γ , and that less than a tenth of a percent comes
from k < 10 ω /γ . It is not the region of reduced magnitude
that dominates for the exact case b = 0, but the region of
rotating phase, and that rotating phase is what reduces the
cross section from perturbation theory. The eikonal F (k) is a
fair approximation to the exact at b = 0, but as we will see in
Sec. V this is not true for larger b.

It is worth emphasizing that calculations labeled pertur-
bative, exact, and eikonal differ only in the expressions used
for FA,B(k). The analytical expression Eq. (31) is used for
perturbative calculations, and Eqs. (27) and (29) for the eikonal
calculations. The exact calculations use the expressions in
Eqs. (27) and (28) , which must be evaluated numerically,
but only once for each ZA,B of interest.

V. b DEPENDENT PROBABILITIES AND THE TOTAL e+e−

CROSS SECTION: Au + Au AT RHIC

With the addition of impact parameter dependence, we
are faced with a nine-dimensional integral for the total cross
section as compared with the seven-dimensional integral in
the previous section, or the seven-dimensional integral in the
representation of cross sections without impact parameter
[16]. Although the usual method of evaluation, e.g., in
perturbation theory, is via Monte Carlo, I have chosen to do
the multidimensional integral directly on meshes uniform on a
logarithmic scale in each radial momentum dimension and on a
logarithmic scale in impact parameter. It was computationally
tedious but possible to carry out the calculations to some rough
but significant accuracy without using Monte Carlo because
the integrands are very smooth and they smoothly go to zero
at both the high and low ends of the momentum ranges and
the impact parameter range.

Apart from the fact that impact parameter dependence adds
two more dimensions to calculations (the magnitude of b
and the angle of the outgoing pair relative to b), evaluation
of the square of the pair production amplitude, Eq. (15), is
considerably more difficult for nonzero impact parameter b

due to the factor exp[ikxb] in Eqs. (9)–(14). For increasing
values of b, the integral over kx oscillates rapidly and presents
a challenge to numerical integration. Furthermore, while the
oscillation is on a linear scale in kx , experience has shown
that the natural scale for integration over momenta in this
electromagnetic problem is logarithmic; we want to choose
numerical mesh points on a logarithmic scale. I have chosen
to work in Cartesian coordinates because after a numerical
integration over the comparative smooth variation in ky I am

10 100 1000 10000 100000 1000000

Impact Parameter b (fm)

0

5000

dσ
/d

 ln
(b

) 
(b

ar
ns

)

FIG. 4. Impact parameter dependence of contribution to total
cross section. Dashed line, perturbation theory; long dashed line,
eikonal. Comparable results are shown derived from the calculations
of Hencken, Trautmann, and Baur [30]: Dotted line, perturbation
theory; dot-dashed line, eikonal.

able to make use of a relatively simple piecewise analytical
method to integrate over kx . I do the integration over kx in the
manner described in the Appendix.

Calculations were again carried out for the RHIC case of
Au + Au at γ = 100. For the perturbation theory and eikonal
probabilities, I was able to do a rough check of my computer
code by comparing my results with another set of published
calculations [30]. Figure 4 shows the comparison of cross
section contributions derived from the present calculations
with those derived from the b dependent probabilities of
Hencken, Trautmann, and Baur. The logarithmic derivative
was chosen so that contributions to the integrated cross section
go as the area under the curves on this natural log scale plot. No
form factor was utilized in either calculation as its effect should
be small for total cross section probabilities at these impact
parameters. Agreement is reasonably good, considering the
large grids used in the present calculations. Note that for
both sets of calculations, the eikonal solution is less than
perturbation theory for low impact parameters, and then it
crosses over to be greater than perturbation theory at about
b = 3000 fm and larger. For small impact parameters, there is
fair agreement, but there is an incipient divergence between
the curves for the present calculations and those of Hencken,
Trautmann, and Baur where the latter cut off. However, one of
the authors had warned me not to trust their results far out in b

too much because the Fourier transform used was not as good
there [31].

In Fig. 5 one can observe the comparison of the exact
calculation with perturbation theory and the eikonal. For
all impact parameters, the probability of pair production is
smaller in the exact calculation than it is in perturbation
theory. The small impact parameter agreement between the
exact calculation and the eikonal extends the mechanism
discussed in the b = 0 case, the reduction from pertubation
theory due to the similar rotating phase of F (k) for dominant
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FIG. 5. Impact parameter dependence of contribution to total
cross section. Dashed line, perturbation theory; long dashed line,
eikonal; solid line, exact.

large values of k seen in Fig. 1. For larger impact parameters
providing the dominant contribution to the cross section,
a significant contribution comes in the region k < 10 ω/γ ,
where the magnitude of F (k) is reduced from perturbation
theory and the eikonal. This demonstrates how a correct
physical cutoff process preserves the Coulomb corrections at
high b and thus leads to Coulomb corrections in the total cross
section.

The calculations can be integrated over impact parameter
to compare with my previous calculations [15] that were
not done in the impact parameter representation. That the
present integrated perturbation theory calculation of 34.6 kb
(kilobarns) is in such good agreement with my previous
calculation of 34.6 kb must be considered fortuitous, given the
relatively crude nature of the impact parameter calculation.
The present integrated exact calculation of 29.4 kb is in fair
agreement with my previous 28.6 kb. The integrated eikonal
calculation of 35.5 kb should in principle be identical to the
34.6 kb perturbation theory calculation, but like the present
exact calculation, it is slightly larger than my previously
published non-impact-parameter calculation.

At this point, it is interesting to also compare the present
results with two previous approximate analytical expressions
for impact parameter dependence. In their classic article,
Bertulani and Baur [14] presented an impact parameter
formula that included a Coulomb correction. Figure 6 shows
a comparison of the cross section contribution derived from
their probability formula with the present results. Bertulani
and Baur integrated over their stated range of validity, from
1/me to ∼γ 2/me, to obtain a Landau-Lifshitz perturbative
result with a Coulomb correction. For symmetric heavy ions,
the Coulomb correction that they obtained was of the same
form as the result later obtained by Ivanov et al. [9] and by
Lee and Milstein [10,11]. However, since Bertulani and Baur
had postulated averaging the result of a Coulomb correction
for the target with one for the projectile, they obtained half of

100 1000 10000 100000 1000000
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dσ
/d

 ln
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) 
 (
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rn

s)

FIG. 6. Impact parameter dependence of contribution to total
cross section. Present calculation: Dashed line, perturbation theory;
solid line, exact. Comparable results are shown derived from the
calculations of Bertulani and Baur [14]: Dotted line, perturbation
theory; long dashed line, Coulomb corrected. Comparable perturba-
tive results derived from the formula of Lee, Milstein, and Serbo [32]
are represented by the dot-dashed line.

the more correct later result based on adding the lowest order
Coulomb correction for both target and projectile. The overall
shapes of the Bertulani and Baur results differ from the present
results, but their Coulomb correction reduces the probability
throughout the impact parameter range.

Shortly after obtaining their above-mentioned Coulomb
correction results for the total cross section [9–11], Lee,
Milstein, and Serbo presented an analytical form for the the
impact parameter dependence [32] that differed substantially
from that of Bertulani and Baur, especially in the intermediate
range from 1/me to γ /me. Figure 6 also displays the impact
parameter contribution to the cross section obtained from their
pertubative expression for the probability. The shape of the
curve seems qualitatively more in agreement with present
results. As in the case of Bertulani and Baur, the treatment
is considered valid for values of impact parameter larger than
1/me (386 fm), and in both cases integration of the contribution
from their expression is in agreement with the leading ln3(γ 2)
term of Landau and Lifshitz [12]. Lee, Milstein, and Serbo
did not present a specific form for the impact parameter
dependence of the Coulomb correction, but as noted above,
their previous work indicates a negative Coulomb correction
on average twice that of Bertulani and Baur over the indicated
parameter range.

VI. SUMMARY AND DISCUSSION

Calculated exact total probabilities for heavy ion e+e− pair
production exhibit a reduction from the probabilities calculated
in perturbation theory throughout the full range of impact
parameters.
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In principle, the impact parameter approach to calculating
exact e+e− pair production probabilities is suited for com-
bining with an impact parameter dependent mutual Coulomb
dissociation calculation [2] to be able to compare with, e.g.,
data such as those obtained with the solenoidal tracker at RHIC
(STAR) setup [33]. In this paper, I have presented calculations
only for the total e+e− pair production probabilities. Still to be
done is a sufficiently accurate calculation of the high transverse
momentum slice of data seen by STAR to be combined
with a Coulomb dissociation calculation for the zero degree
calorimeter acceptance. Also, since the present approach is
strictly speaking valid only when either the positrons or
electrons have been integrated over, and in the STAR case
both electron and positron are constrained to be in the high
momentum slice, the present approach to e+e− production
is not exactly valid for the STAR case. At present, the best
one can do is observe that the present method is valid for
both uncorrelated positrons and electrons of all momenta, and
ignore the correlations. The effect of correlations averages to
zero, but some estimate of individual magnitudes would be
useful.
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APPENDIX: PIECEWISE ANALYTICAL FOURIER
INTEGRATION

Consider the integral over kx (I will drop the subscript x

for now). It contains a smoothly varying part which I will call
f (k) times the rapidly varying coefficient exp[ikb], that is,

I =
∫ ∞

−∞
f (k) exp[ikb]dk. (A1)

One can use integration by parts to transform I to

I =
∫ ∞

−∞

(1 − exp[ikb])

ib

df (k)

dk
dk, (A2)

where the term 1 is inserted for numerical convenience. One
now rewrites I in a form suggesting piecewise analytical

integration from mesh point to mesh point

I =
kimax∑
kimin

∫ ki+1

ki

(1 − exp[ikb])

ib

df (k)

dk
dk. (A3)

Taking the lowest order (constant) approximation to the
derivative over the interval, one has

I =
kimax∑
kimin

(
f (ki+1) − f (ki)

ki+1 − ki

)∫ ki+1

ki

(1 − exp[ikb])

ib
dk

=
kimax∑
kimin

(
f (ki+1) − f (ki)

ki+1 − ki

)

×
(

ki+1 − ki

ib
+ exp[iki+1b] − exp[ikib]

b2

)
. (A4)

This is the lowest order expression for piecewise analytical
integration.

One can obtain the piecewise analytical expression good
to the next leading order by taking three point Lagrange
interpolation for f (k) between ki and ki+1 and then taking
the derivative. One obtains

I =
kimax∑
kimin

1

ib

(
A(ki+1 − ki) + B

2

(
k2
i+1 − k2

i

)

− exp[iki+1b]

(
A + B ki+1

ib
+ B

b2

)

+ exp[ikib]

(
A + B ki

ib
+ B

b2

))
, (A5)

where

A = −
(

f (ki) (ki+1 + ki+2)

(ki − ki+1)(ki − ki+2)
+ f (ki+1) (ki + ki+2)

(ki+1 − ki) (ki+1 − ki+2)

+ f (ki+2) (ki + ki+1)

(ki+2 − ki) (ki+2 − ki+1)

)
, (A6)

and

B = 2

(
f (ki)

(ki − ki+1) (ki − ki+2)
+ f (ki+1)

(ki+1 − ki) (ki+1 − ki+2)

+ f (ki+2)

(ki+2 − ki) (ki+2 − ki+1)

)
. (A7)

The expression Eqs. (A5)–(A7) exhibits numerical difficul-
ties for small impact parameters. Therefore, for impact pa-
rameters in the range below the electron Compton wavelength
(about 386 fm), I have utilized Eq. (A4); and I have utilized
Eqs. (A5)–(A7) for higher impact parameter values.
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