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Baryonic strangeness and related susceptibilities in QCD
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The ratios of off-diagonal to diagonal conserved charge susceptibilities, e.g., χBS/χS, χQS/χS , related to the
quark flavor susceptibilities, have proven to be discerning probes of the flavor carrying degrees of freedom in
hot strongly interacting matter. Various constraining relations between the different susceptibilities are derived
based on the Gell-Mann-Nishijima formula and the assumption of isospin symmetry. Using generic models of
deconfined matter and results from lattice quantum chromodynamics, it is demonstrated that the flavor-carrying
degrees of freedom at a temperature above 1.5Tc are quarklike quasiparticles. A new observable related by isospin
symmetry to CBS = −3χBS/χS and equal to it in the baryon free regime is identified. This new observable, which
is blind to neutral and nonstrange particles, carries the potential of being measured in relativistic heavy-ion
collisions.
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I. INTRODUCTION

The goal of of the heavy-ion program at the Relativistic
Heavy Ion Collider (RHIC) is the creation and study of
heated strongly interacting matter at nearly vanishing baryon
density [1,2]. Detailed models of nuclear reactions predicted
that the energy deposition in the center-of-mass frame should
be sufficient to cause temperatures at midrapidity in central col-
lisions of gold nuclei to reach upwards of 300 MeV [3]. These
predictions have been confirmed by the experimental results of
the four detector collaborations at the BNL RHIC, which set a
lower bound of about 5 GeV/fm3 on the energy density at a time
τ = 1 fm/c in central Au+Au collisions [4]. This estimate for
the attained energy density should place the produced matter
well into the region of the quantum chromodynamics (QCD)
phase diagram that cannot be described as a dilute hadronic
resonance gas. Until recent results from the RHIC experiments
had raised doubts about this interpretation [2], the matter in
this domain of the QCD phase diagram was expected to be a
colored plasma composed of quasiparticle excitations with the
quantum numbers of quarks and gluons [1,5].

Signals of the excited matter produced in the early stages of
such a collision, buried in the pattern of detected particles, may
be divided into two categories: hard probes, such as the modifi-
cation of partonic jets by the medium [6], bound states of heavy
quarks [7] and electromagnetically produced particles [8];
and bulk observables, dealing with low-momentum particles
that make up a large fraction of the produced matter. Bulk
observables include the single inclusive spectra of identified
hadrons [9] and the event-by-event fluctuations of conserved
charges [10]. The latter are the subject of our present study.

The theoretical analysis of the observed suppression of
energetic hadron emission in Au+Au collisions at RHIC (“jet
quenching” [6]) confirms that matter with a very high energy
density is produced. This matter clearly exhibits collective
behavior as evidenced by its radial and elliptic flow [11]. As
a large elliptic flow requires large pressure gradients that can
be present only during the earliest stage of the collision, the
matter produced at such times must exhibit the properties of a
fluid. A quantitative analysis of the observed magnitude of the

flow indicates that this fluid must be nearly ideal, i.e., endowed
with a very low viscosity [12]. This result suggests that there
must exist a strong interaction between the constituents of the
medium.

At vanishing baryon density, the entire range of thermal
conditions expected to be attained at RHIC may be simulated
by the numerical methods of lattice QCD (LQCD) at finite
temperature [13]. Here one computes the grand canonical
partition function of a system whose states are thermally
weighted by the QCD action at a temperature T , with
baryon (B), electric charge (Q) and strangeness (S) chemical
potentials set to zero (µB = µQ = µS = 0). Explorations on
the lattice consist of a threefold approach [13]: studies of
the behavior of the components of the stress energy tensor,
i.e., the energy density ε and the pressure P ; spatial and
temporal correlation functions; and the recently measured
derivatives of the free energy such as the various conserved
flavor susceptibilities.

Investigations of the first kind, exploring the QCD equation
of state at vanishing chemical potentials, provide the most
solid evidence for the expectation that, when hadronic matter
is heated beyond a critical temperature Tc ∼ 170 MeV, a
transition to a new state of matter, the quark-gluon plasma
(QGP), will occur. The transition is signaled by a steep rise
in the energy density and the pressure as a function of the
temperature. The slow rise of both quantities prior to the
sudden transition has come to be understood in a picture of a
hadronic resonance gas [14]. However, attempts to describe the
excited phase as a weakly interacting plasma of quasiparticles
[15,16] have not met with success in the region Tc � T � 3Tc.

This finding might indicate that matter in this region may
not be a weakly coupled plasma where quarks and gluons are
deconfined over large distances as it was originally proposed
[17]. It has been established that such a weakly coupled state,
indeed, occurs at much higher temperatures (see Ref. [18] and
references therein). Assuming that temperatures at RHIC do
not exceed 3Tc, a strongly coupled state is not inconsistent
with the strong collective behavior observed in experiments.
It is clear that a microscopic understanding of the emergent
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degrees of freedom in this regime is essential for an explanation
of the “perfect liquid” character of the matter created in nuclear
collisions at RHIC.

There already exists a candidate model for such matter,
proposed by Shuryak and Zahed [19,20], consisting of a
tower of colored bound states of heavy quasiparticulate
quarks and gluons. In spite of the presence of such heavy
quasiparticles, this model was able to account for the large
pressure required by the RHIC data because of the proliferation
of excited bound states. The large cross sections resulting from
resonance scattering were put forward as the cause for the
short mean free path that is a requisite for the appearance of
hydrodynamic behavior. The model has, however, fared poorly
in a comparison with lattice susceptibilities. Koch et al. [21]
recently proposed the susceptibilities of conserved charges
B, Q, S and their off-diagonal analogs as diagnostics of the
conserved charge or flavor carrying degrees of freedom in a
strongly interacting system. The primary quantity of interest
is the ratio of the covariance between baryon number and
strangeness σ 2

BS ∝ χBS to the variance in strangeness σ 2
S ∝ χS ,

renormalized to be unity in a quasiparticle gas of quarks and
gluons,

CBS = −3
〈δBδS〉
〈δS2〉 = −3

χBS

χS

. (1)

This quantity may be calculated on the lattice and estimated in
the dynamical model of Ref. [19]. The calculated values on the
lattice were found to be 50% higher than those computed in
the model [21]. Such comparisons demonstrate the capacity of
ratios such as CBS to serve as tests for models of the QGP. The
origin of the difference between the results from lattice QCD
and those from the bound state model are further discussed in
the upcoming sections.

The objective of the present work is to continue the study
of diagonal and off-diagonal flavor susceptibilities. In the next
section, we point out that there exists an entire gamut of such
diagonal and off-diagonal susceptibilities for conserved quan-
tum numbers and they are related by a simple transformation
to the equivalent basis of quark flavor susceptibilities. This
presentation builds on the work of Gavai and Gupta [22].
In the next section, a complete set of such susceptibilities is
introduced and related via the Gell-Mann-Nishijima formula.
The alternative set of quark flavor susceptibilities, which
appear more often in the literature, is also compared. In
Sec. III, operator relations between the off-diagonal sus-
ceptibilities in different bases are derived and the generic
behavior of such operators, depending on the prevalent degrees
of freedom, is outlined. In Sec. IV, several models for the
flavor-carrying sector of the QGP are analyzed and arguments
favoring a picture of quasiparticle quarks are presented. In
Sec. V, we formulate observables based on the ratios of
susceptibilities that may be estimated from experimental mea-
surements. Concluding discussions are presented in Sec. VI.

II. DIAGONAL AND OFF-DIAGONAL SUSCEPTIBILITIES

In the lattice formulation of QCD, the fundamental degrees
of freedom are local quark and gluon fields. Under conditions

where deconfinement has been achieved, the elementary set
of conserved charges is given by the quark flavors: the
net “upness” (�u = u − ū), “downness” (�d = d − d̄), and
“strange-quarkness” (�s = s − s̄ ). An alternate basis is
provided by the hadronically defined conserved charges of
B,Q, and S. The two bases are related by

B = 1
3 (�u + �d + �s),

Q = 2
3�u − 1

3�d − 1
3�s, (2)

S = −�s.

In what follows, the � is omitted and the variables u, d, s are
understood to denote the net flavor contents.

The mean values of any conserved charge may be measured
in a thermal ensemble of interacting quarks and gluons on the
lattice. The grand canonical partition function may be defined
using either basis, i.e.,

Z(T ,µB,µQ,µS) = Z(T ,µu, µd, µs),
(3)

if µu = µB

3
+ 2µQ

3
& µd = µB − µQ

3
& µs = −µS.

The mean values and variances of any combination of
conserved charges may be obtained from appropriate differen-
tiation of either partition function:

〈x〉 = T
∂

∂µx

logZ(T ,µx, µy), (4)

σ 2
xy = T 2 ∂2

∂µx∂µy

logZ(T ,µx, µy). (5)

Although the mean values in a given basis are related to
the other via Eq. (2), the variances exhibit a more complex
structure. A similar and larger matrix relates the 6 fluctuation
measures, viz. the variances σ 2

B, σ 2
Q, σ 2

S and the covariances
σ 2

BS, σ
2
BQ, σ 2

QS, to the 6 diagonal and off-diagonal quantities
constructed from the quark flavors. The 6 × 6 matrix relating
these two sets of (co-)variances is given by

B2

Q2

BQ
BS
QS
S2


= 1

9



1 1 2 2 2 1
4 1 −4 −4 2 1
2 −1 1 1 −2 −1
0 0 0 −3 −3 −3
0 0 0 −6 3 3
0 0 0 0 0 9





u2

d2

ud

us

ds

s2


, (6)

where the corresponding subscripts of σ 2
xy are used to indicate

the corresponding variance. The above matrix immediately
demonstrates the utility of using ratios of σ 2

BS, σ
2
QS, and σ 2

S as
opposed to the other three variances, as these form a smaller
subgroup with the quark flavor covariances σ 2

us, σ
2
ds and the

strangeness variance σ 2
s . The (co-)variances are extensive

quantities:

σ 2
xy = V T χxy, (7)

where χxy is the intensive diagonal or off-diagonal suscepti-
bility. These susceptibilities can be measured on the lattice.
In heavy-ion experiments, the variances and covariances are
measured by means of an event-by-event analysis of the
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corresponding conserved quantities, i.e.,

σ 2
xy = 1

NE

∑
i∈E

XiYi −
(∑

i∈E Xi

NE

)(∑
i∈E Yi

NE

)
, (8)

where E represents the set of events, NE is the number
of events considered, and Xi, Yi are the net values of the
conserved charge in a given event i. The volume-independent
ratios of variances, measured event-by-event in heavy-ion
collisions, may then be directly compared with the lattice
estimate for the ratio of susceptibilities.

In addition to relating the susceptibilities or variances from
one basis to another, simplifying relations may be obtained
between the variances in a given basis using the Gell-Mann-
Nishijima formula,

Q = I3 + B + S

2
, (9)

where I3 denotes the third component of the isospin. Because
the mass difference between the u, d quarks is small compared
with the typical scale of hadron masses, the masses of all
hadrons in a given isospin multiplet are degenerate. One
may also assume that any quasiparticle excitations in highly
excited chromodynamic matter display a large degree of
isospin symmetry. It should be pointed out that in actual
experiments, in addition to a small mass split between the
u and the d quark, there is an overall isospin asymmetry in the
entire system as all heavy nuclei have a large isospin due to
their proton-neutron imbalance. Such an isospin asymmetry is,
however, dominantly correlated with the net baryon number of
the nuclei. As the matter formed in the central rapidity region
has nearly vanishing net baryon density, one may assume that
the produced matter has almost no net I3 component, on the
average. In the following, we also ignore the isospin-violating
effects of weak decays and electromagnetic interactions.

To obtain relations between quadratic variables involving
strangeness, we obtain the variance of the left- and right-hand
side of the equation

QS = I3S + BS + S2

2
. (10)

Taking the ensemble or event average of the above quantity,
we obtain

σ 2
QS = 1

NE

∑
i∈E

QiSi − 1

NE

∑
i∈E

Qi

∑
j∈E

Sj


=

 1

NE

∑
i∈E

∑
f

n
f

i Qf

∑
g

n
g

i Sg

− 1

NE

∑
i∈E

∑
f

n
f

i Qf

1

NE

∑
j∈E

∑
g

n
g

j Sg

 . (11)

In the above, the total charge and strangeness measured
in an event i is denoted as Qi, Si . In the case that the
degrees of freedom or active flavors f are eigenstates of
charge or strangeness, this expression may be decomposed
as Qi = ∑

f n
f

i Qf , where n
f

i are the number of states of

flavor f in event i. For independent flavors, where 〈nf ng〉 =∑Ens.
i n

f

i n
g

i = 〈nf 〉〈ng〉, one may easily demonstrate that

σ 2
QS =

∑
f

σ 2
f Qf Sf =P.S.

∑
f

〈nf 〉Qf Sf . (12)

The last equality in the above equation holds solely in the
case that Poisson statistics is applicable to the independent
flavors (i.e., the variance σ 2 is equal to the mean 〈n〉), e.g., in
the case where the masses of the various flavors exceeds the
temperature.

If isospin symmetry is maintained by the system, then
σ 2

f = σ 2
g when f, g belong to the same isospin multiplet. The

associated physical picture is that fluctuations of isospin, or of a
product quantum number involving isospin, are brought about
by fluctuations in the populations of flavors that carry isospin.
If all the members of an isospin multiplet have the same mass
and there exist no chemical potentials that favor one species
over another, the fluctuations of carriers with opposing values
of I3 compensate for each other. As a result, one obtains the
equalities,

I∑
i=−I

I3iσ
2
i �

I∑
i=−I

I3iSiσ
2
i �

I∑
i=−I

I3iBiσ
2
i � 0, (13)

where the sum is restricted to lie in a given isospin multiplet.
One uses the notation of an approximate equality (�) as
opposed to an exact equality (=) to highlight the fact that such
relations hold only in the case of exact isospin invariance.
However, even in the case with a small mass split between the
u and d quarks, the equalities are still approximately true and
are applied in this spirit. In actual calculations involving quarks
and hadrons, in the upcoming sections, the physical masses of
all known species are used. Based on the above, the following
simplifying relations between the various covariances may be
easily derived,

σ 2
QS = σ 2

I3S
+ σ 2

BS + σ 2
S

2
� σ 2

BS + σ 2
S

2
(14)

σ 2
QB = σ 2

I3B
+ σ 2

B + σ 2
BS

2
� σ 2

B + σ 2
BS

2
. (15)

In the definitions introduced in Refs. [21,22], for the two
coefficients: CBS = −3σ 2

BS/σ
2
S and CQS = 3σ 2

QS/σ
2
S , one may

use Eq. (14) to obtain the following simplifying relation:

CQS � 3 − CBS

2
. (16)

The validity of the above equation is amply demonstrated
by Fig. 1. The solid red and blue data points are taken from the
lattice calculations of Ref. [22], where both these quantities
were computed independently of each other. The hazed cyan
points represent an estimation of CQS from the CBS points using
Eq. (16). In the lattice computation, the masses of the u and d

quarks are set equal to each other, i.e., the lattice calculation
displays exact isospin symmetry, clearly demonstrated by the
exact coincidence of the hazed cyan and solid blue circles. It
should be reiterated that CQS may be calculated given a CBS

using Eq. (16).
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FIG. 1. (Color online) A test of the formula CQS = 3 − CBS/2.
Both ratios, CBS and CQS, computed on the lattice in Ref. [22], are
presented as the solid red and blue points. The CBS points are then
used to calculate CQS resulting in the hazed cyan points.

Similarly, one may also define another set of related
observables,

CQB = σ 2
QB

σ 2
B

, CSB = σ 2
SB

σ 2
B

. (17)

We refrain from ascribing any overall normalization factor,
as in the cases of CBS, CQS: none is self-evident. Both these
quantities may be estimated on the lattice, in models, as well
as in an experiment. In all such cases, independent of the phase
of matter involved, one will recover the equality imposed by
isospin symmetry [Eq. (15)],

CQB = 1 + CSB

2
. (18)

An interesting situation is afforded for flavor SU(2), i.e., in a
theory without strangeness. Although CBS, CSB, and CQS are
undefined, CQB = 1

2 (a similar situation is that of the canonical
ensemble where S is held fixed). This last value serves as an
important test of any model devised to reproduce the properties
of any phase of strongly interacting matter and is used in the
upcoming sections where we compare model predictions to
results from lattice simulations.

III. OPERATOR RELATIONS

In the previous section, we outlined various properties and
relations between the diagonal and off-diagonal susceptibil-
ities of heated strongly interacting matter. In this section,
we extend the discussion to the operator structure of these
susceptibilities and derive general expectations for the value of
the off-diagonal flavor susceptibilities in different quasiparticle
bases. The reader not interested in such a study can skip to

XX

X X

FIG. 2. Connected and disconnected quark number operators.

the next section, in which comparisons of lattice results with
phenomenological models is made.

In numerical simulations of lattice QCD, one evaluates
thermal expectation values of operators weighted with the
SU(3) gauge action Sg and the fermionic determinant det[M],

〈O〉 =
∫
DUO(det[M])nf e−Sg∫
DU (det[M])nf e−Sg

. (19)

In the case of the quark number susceptibility, the operator in
question is

Nqi
Nqj

=
∫

d3xd3ynqi
(x)nqj

(y), (20)

where nqi
(x) =: �̄i(x)γ 0�i(x) : and qi, qj represent quarks of

flavor i and j . The normal ordering removes the leading short
distance piece, which is proportional to the four-volume. The
operator may be decomposed into connected and disconnected
diagrams as shown in Fig. 2. The locations x, y of the two
operator insertions are indicated by the crosses in the figures.
The solid lines represent the valence quarks, whereas the
dashed lines represent virtual gluons or quarks as allowed
by the Lagrangian. If the flavors of the two quarks are
the same (i = j ), corresponding to a diagonal susceptibility,
contributions emerge from both types of diagrams. Whereas
if the two flavors are different, contributions arise solely from
the second diagram.

In the interaction picture, the operator of Eq. (20), for the
off-diagonal susceptibility may be expressed in the simplified
form,

Nqi
Nqj

=
∫

d3qi

∫
d3qj

∑
r,s

[
ar

i
†
ar

i − br
i
†
br

i

]
× [

as
j
†
as

j − bs
j
†
bs

j

]
, (21)

where r, s denote the spin orientations. This expression may
then be evaluated in a basis of weakly interacting partons,
with the effect of the interaction introduced perturbatively in
the basis of states. Such a starting point for the evaluation
of the off-diagonal susceptibility is most appropriate for the
case of a weakly interacting plasma of quarks and antiquarks,
e.g., in the high temperature limit. In this weak coupling limit,
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the expectation of the susceptibility operator may be obtained
order by order in the strong coupling constant g. The leading
order contribution is vanishing:

〈χij 〉 = 〈Nqi
Nqj

〉 − 〈Nqi
〉〈Nqj

〉
V T

� 0, (22)

if i �= j as these create and annihilate different flavors. The
first nonzero correction to the off-diagonal susceptibility at
µ = 0 occurs at order g6 (see Ref. [23]).

The opposite case is that of the strong coupling limit,
where the system is composed of bound states of quarks
(or antiquarks) of flavor i with antiquarks (or quarks) of
flavor j . The operator of Eq. (20) may no longer be mean-
ingfully evaluated perturbatively starting from free particle
states. A convenient starting point is afforded by the basis
of bound states: in the interest of simplicity we focus on the
specific example of the low-temperature phase of two-flavor
QCD, i.e., a system with only u, d quarks (antiquarks) and
gluons. At vanishing baryon and charge chemical potentials,
the system may be effectively described in the basis of pions
π+, π−, π0. As derived in the appendix, in such a system, the
quark number operators assume the simplified forms,

N̂u = N̂π+ − N̂π− ,
(23)

N̂d = N̂π− − N̂π+ .

In the above, N̂π+ , N̂π− is the number operator for π+, π−.
There exists a subtle difference in the meaning of N̂q (where
q stands for either quark) and N̂π : the quark number operators
are meant to indicate the net amount of a certain quark flavor,
i.e., N̂u is the difference between the number of u quarks and
ū antiquarks, whereas the pion number operators N̂π merely
indicate the number of pions of a certain flavor and not the
difference between the π+ and π− populations.

Within the effective form of the quark number operators,
given by Eq. (23), the off-diagonal quark number covariance
in two-flavor QCD may be constructed as

σ 2
ud = 〈N̂uN̂d〉 − 〈N̂u〉〈N̂d〉

= 〈(N̂π+ − N̂π− )(N̂π− − N̂π+ )〉
− 〈N̂π+ − N̂π−〉〈N̂π− − N̂π+〉. (24)

In the case of a dilute pion gas in the grand canonical ensemble,
the various flavors may be considered to be uncorrelated. As a
result,

〈N̂π+N̂π−〉 � 〈N̂π+〉〈N̂π−〉. (25)

Incorporating the above approximation in the expression for
σ 2

ud leads to the simplified form for the off-diagonal covariance
in a dilute pion gas at low temperature and vanishing chemical
potentials [we also denote such contributions as σ 2

ud (M), where
M denotes contributions solely from the mesonic sector; at a
higher temperature, this will also include contributions from
more massive mesons, e.g., ρ, ω, etc.],

σ 2
ud = −〈

N̂2
π+

〉 + 〈N̂π+〉2 − 〈
N̂2

π−
〉 + 〈N̂π−〉2

= −(
σ 2

π+ + σ 2
π+

) � σ 2
ud (M). (26)

As the variance of either pion species is always positive,
we obtain the general result that at low temperature and

vanishing chemical potentials, the off-diagonal susceptibility
χud = σ 2

ud/V is negative. This prediction has been verified in
lattice calculations of χud in Ref. [24].

As the temperature of the system is raised, the pion
populations (and populations of heavier mesons) as well as
the fluctuations in the populations will increase, leading to a
drop in χud . This trend will continue until substantial baryon
populations appear. The expression for σ 2

ud in the baryon sector
is quite different from that in the meson sector, owing to the
fact that there are no valence antiquarks in a baryon, nor any
valence quarks in an antibaryon. Hence, one obtains σ 2

ud in the
baryon sector as

σ 2
ud (B) = 〈(3N̂uuu + 2N̂uud + N̂udd

− 3N̂ūūū − 2N̂ūūd̄ − N̂ūd̄d̄ )

× (3N̂ddd + 2N̂udd + N̂uud

− 3N̂d̄d̄d̄ − 2N̂ūd̄d̄ − N̂ūūd̄ )〉
− 〈(3N̂uuu + 2N̂uud + N̂udd

− 3N̂ūūū − 2N̂ūūd̄ − N̂ūd̄d̄ )〉
× 〈(3N̂ddd + 2N̂udd + N̂uud

− 3N̂d̄d̄d̄ − 2N̂ūd̄d̄ − N̂ūūd̄ )〉
= 2σ 2

uud + 2σ 2
udd + 2σ 2

ūūd̄
+ 2σ 2

ūd̄d̄
. (27)

As a result, the baryon contribution to the off-diagonal sus-
ceptibility is always positive. As the temperature of the system
is raised, the contributions from mesons and baryons begin to
compensate each other. In a weakly interacting hadron gas the
two contributions are additive: σ 2

ud = σ 2
ud (M) + σ 2

ud (B). The
increasing density of states in the baryon sector relative to the
meson sector at higher energies, as well as the larger prefactors
involved in σ 2

ud (B), leads to an increasing cancellation between
the two contributions as the temperature is raised.

In lattice computations of the temperature dependence of
χud one notes an initial drop followed by a rise to zero at T →
Tc. If the picture of a weakly interacting hadron gas remained
valid past T = Tc, σ

2
ud would continue to rise to larger positive

values. The absence of such behavior is an indication of
the breakdown of the picture of a weakly interacting hadron
gas near and beyond T = Tc. Further comparisons between
the behavior of the off-diagonal susceptibility, as well as its
derivatives as computed on the lattice, with expectations within
the picture of a weakly interacting hadron gas are carried out
in the upcoming section.

IV. LATTICE VERSUS MODELS

As pointed out in the previous sections, the various
susceptibilities and their ratios may be measured on the lattice
[25] by evaluating the average of certain operators over a set
of configurations. The appropriate choice of observables and
their sensitivity to composite structures was discussed in the
previous section. Presently we focus on the results obtained
from such a calculation on the lattice and use it to isolate
the subset of models that describe the emergent degrees of
freedom at various temperatures in strongly interacting matter.
The models used are rather empirical and require very little
beyond arguments based on general symmetry principles. In
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all comparisons, the focus lies expressly on two regions: the
region below Tc, where one expects a hadronic resonance gas
to be the correct set of degrees of freedom and above 1.5Tc,
where one would expect to be firmly in the deconfined phase.

A. Hadron gas to quasiparticle plasma

In the region below Tc, the monotonic rise of the pressure
and energy density with temperature has come to be under-
stood in the picture of a weakly interacting hadronic resonance
gas [14], as originally introduced by Hagedorn. This picture
remains true for the case of the diagonal and off-diagonal
susceptibilities. The susceptibilities are computed, assuming
the condition of Eqs. (11) and (12), i.e.,

χud =
∑

f 〈nf 〉uf df

V T
, (28)

where 〈nf 〉, uf , df are the thermal average, upness, and
downness of a given hadron species f . The sum is, in principle,
over all hadrons but is usually truncated at an appropriately
chosen upper mass limit. As a comparison, we plot in
Fig. 3 the coefficients CBS and CQS as obtained from a hadronic
resonance gas spectrum, truncated at the mass of the −. As in
the case of the computation on the lattice, the plots correspond
to all chemical potentials vanishing. One notes that the hadron
resonance gas provides a good description of the behavior
of the ratio of susceptibilities up to the point of the phase
transition. Here the behavior of the truncated spectrum fails to
reproduce the sharp rise in CBS and the corresponding sharp
drop in CQS. It should be pointed out that although in the

FIG. 3. (Color online) A comparison of the CBS and CQS

calculated in a truncated hadron resonance gas at µB = µS = µQ =
0 MeV compared to lattice calculations at µ = 0 from Ref. [22]. The
two hazed bands for CBS and CQS for the hadron gas plots reflect the
uncertainty in the actual value of the phase transition temperature Tc,
which is assumed to lie in the range Tc = 170 ± 10 MeV.

lattice simulations exact isospin symmetry has been imposed,
no such condition has been required of the hadron spectrum:
the masses are taken directly from the particle data book.

The results from the lattice simplify in the high temperature
phase, where a general statement regarding susceptibilities
may be made: off-diagonal flavor susceptibilities are vanishing
compared to the diagonal susceptibilities [24,25]; susceptibil-
ities inclusive of strangeness are smaller compared to those
which involve lighter flavors. This may be stated as,

χus = χds � χud 	 χs � χd = χu, (29)

where the last and the first equality applies in the case of isospin
symmetry. For simulations at vanishing chemical potentials,
the mean values of the conserved flavor charges are vanishing,
as a result 〈B〉 = 〈S〉 = 〈Q〉 = 0. Using the above equalities
derived from the lattice, we may formulate the correlation ratio
CBS as

−3
〈BS〉
〈S2〉 = 〈(u + d + s)s〉

〈s2〉 ≈ χus + χds + χs

χs

≈ 1. (30)

Models of the deconfined phase must obey the above
constraint. The simplest model of deconfined matter is that
of noninteracting quark, antiquark, and gluon quasiparticles.
As has been demonstrated in Ref. [21], in such a situation,
off-diagonal susceptibilities are identically zero as the degrees
of freedom may carry only a single flavor. To wit, using the
notation n̄f = 〈nf 〉 + 〈nf̄ 〉, for the total number of quarks and
antiquarks of flavor f ,

χus + χds + χs

χs

= n̄u(1 × 0) + n̄d (1 × 0) + n̄s(12)

n̄s(12)
= 1.

(31)

The zero entries in the above equation indicate that the up and
down flavors carry no strangeness. We also work in the limit
described in Sec. II, where the masses of the quasiparticles are
large enough for classical Poisson statistics to apply. Thus
a model of quark quasiparticles presents a CBS that is in
agreement with that derived from the lattice. It should be
pointed out that the nature of the gluon sector is irrelevant
in this test. The gluons carry no conserved flavor and are thus
oblivious to any such constraints. As a result, such comparisons
yield no clues to the structure of the gluon sector.

The next independent set of ratios of susceptibilities is that
involving the covariances of Eq. (15). Expressions for CSB

may be expressed as above,

CSB = −3
χus + χds + χs

χu + χd + χs + 2χus + 2χds + 2χud

= −3
χs

χu + χd + χs

� − 1, (32)

where the last inequality holds in the general case. CSB =
−1 in the case of exact SU(3)f symmetry, i.e., when mass
of the s quark equals the mass of its lighter counterparts.
Once again, it may be demonstrated that the simplified model
of quark quasiparticles satisfies this requirement for the ratio
of susceptibilities. Thus, from this standpoint, it is a viable
candidate for the degrees of freedom of hot strongly interacting
matter. Both these conclusions may be reduced to the single
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observation that the degrees of freedom of excited matter have
to be such, as to display minimal strength in the covariance
between flavors, i.e., off-diagonal flavor susceptibilities have
to be tiny compared to the diagonal ones.

B. A plasma with colored meson and diquark bound states?

The picture of quasiparticle quarks is a rather simple
solution to the constraint of Eq. (30). Indeed, such a picture of a
quasiparticle plasma has been the subject of numerous studies
in weak coupling expansions [16,18,26]. Such approximations
do indeed obtain a similar behavior as a function of temperature
as compared to the lattice for both the off-diagonal and the
diagonal susceptibility. Recently, an alternate picture of the
QGP has been proposed: one where a tower of bound states of
quarks and gluons are present in addition to the quasiparticles
themselves [19,20]. The larger number of particles and larger
scattering cross sections that result in such a mixture is shown
to account for the pressure observed on the lattice as a
function of the temperature. The large cross sections imply
very short mean free paths and lend consistency to the macro-
scopic hydrodynamic picture henceforth used to describe the
dynamical evolution of the matter produced at RHIC.

However, in a plasma containing bound states of quarks,
in the form of colored mesons, diquarks, and quark-gluon
bound states, the correlation between flavors is no longer
negligible compared to the diagonal susceptibility. Consider
a gas consisting solely of quark-antiquark bound states,
built from three flavors of quarks. The possible states are
ud̄, dū, us̄, sū, ds̄, sd̄ . The flavor singlets qq̄ are ignored as
they carry no conserved flavor and thus do not contribute to any
susceptibility or covariance. In such a system, the ratio CBS

must vanish, because all states have vanishing baryon number.
Expressed via the flavor (co-)variances, the numerator of CBS

is given as

〈(u + d + s)s〉 = − nus̄ − nsū − nds̄ − nsd̄

+ nus̄ + nsū + nds̄ + nsd̄

= 0. (33)

Thus the inclusion of mesonic states changes ratios such as
CBS as they cause the off-diagonal susceptibilities to become
nonvanishing (in this case χus = −χs/2).

Quark-gluon bound states contribute similarly as quark-
antiquark quasiparticles, whereas gluonic bound states make
no contribution. States such as diquarks have a somewhat
opposite effect, diquarks belonging to the flavor antitriplet
(ud, us, ds) contribute us = ds = s2 = +1, thus leading to
(we here assume µB = 0):

CBS = 2nus + 2nds + 2nus + 2nds

2nus + 2nds

= 2, (34)

whereas the states belonging to the flavor hexaplet produce a
coefficient,

CBS = 2nus + 2nds + 2nus + 2nds + 8nss

2nus + 2nds + 8nss

> 1.0. (35)

Reference [19] provides masses and degeneracies for the
various bound states. The masses of all the bound states exceed
the temperature in this model, allowing us to use a Maxwell-

Boltzmann (MB) distribution to calculate the populations of
such states. Such a computation was carried out in Ref. [21] at
a temperature of T = 1.5Tc and yielded a value CBS = 0.62,
quite different from the value of unity found on the lattice.

C. Introduction of baryonic bound states

These results have motivated the inclusion of a variety
of baryonic states into the model outlined above [27]. We
illustrate the effect of such additions on the correlation between
flavors in the following simple model. In the interest of
simplicity, the flavor group will be restricted to SU(2)f .
Lattice results for susceptibilities and their derivatives with
respect to baryon chemical potential using dynamical quarks
exist in this case [24]. The model will consist of quark
and antiquark quasiparticles u, d and ū, d̄; mesonlike bound
states uū, dd̄, ud̄, dū; diquark states uu, dd, ud and their
antiparticles; as well as baryons uuu, uud, udd, ddd and
their corresponding antibaryons. We assume that there is no
significant covariance between these quasiparticles, which are
assumed to be massive enough for MB statistics to apply.
We will compute general contributions to the off-diagonal
susceptibility and its various derivatives.

In such a situation, the off-diagonal susceptibility at
vanishing chemical potential may be decomposed as

χud = 1

V T

[ − 2n0
ud̄

+ 2n0
ud + 4n0

uud + 4n0
udd

]
, (36)

where, as before, 2n0
x includes similar contributions from both

particles and antiparticles at vanishing chemical potentials. It
is also assumed that populations of higher excited states, e.g.,
the hexaplet of diquarks, as well as states lying in the baryon
decuplet are included in the respective populations. In the
remaining, we deal with densities as opposed to the absolute
numbers:

ρ0
x = n0

x

V
. (37)

Given the off-diagonal susceptibility in a range of tempera-
tures, one obtains a temperature-dependent relation between
the baryonic and mesonic densities, i.e.,

2ρ0
ud̄

(T ) = 2ρ0
ud (T ) + 4ρ0

uud (T ) + 4ρ0
udd (T )

− T χud (T ,µ = 0), (38)

where ρ0
x (T ) represent the densities of various quasiparticle

species at temperature T and vanishing chemical potential. Un-
like the conventional use of the term baryonic density, ρ0

uud and
ρ0

udd denote the density of a certain type of baryon and not the
difference between the baryon and antibaryon densities (i.e.,
ρ0

uud, ρ
0
udd do not denote the net baryon density). Adjusting the

baryonic densities compared to the mesonic densities, one may
obtain the requisite off-diagonal susceptibility. Introducing a
large-enough baryon density, one may engineer a vanishing
χud and as an extension a vanishing χus . With such densities,
a CBS = CQS = 1 may also be achieved by a plasma of bound
states.

To differentiate a plasma of quasiparticle quarks and
antiquarks that naturally produces a χud → 0 from a plasma
of colored bound states with a similar property, one needs to
consider the derivatives of the off-diagonal susceptibility χus .

054901-7
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At finite baryon chemical potential, the susceptibility will vary,
as the populations of the diquarks and the baryons change
under the influence of the baryon chemical potential (quark
antiquark bound states carry no baryon number and hence
remain unaffected). One obtains:

T χud (T ,µ) � −2ρ0
ud̄

(T ) + {
2ρ0

ud (T ) + 4ρ0
uud (T )

+ 4ρ0
udd (T )

}
cosh(µβ), (39)

where β is the inverse temperature. The expression is valid
in the regime where MB statistics may be used instead of the
full quantum statistics. Differentiating Eq. (39), with respect
to µβ, one obtains the relation

T

[
∂2χud

∂(µβ)2

]
µ=0

= 2ρ0
ud (T ) + 4ρ0

uud (T ) + 4ρ0
udd (T )

= T

[
∂4χud

∂(µβ)4

]
µ=0

. (40)

The model at this stage is applicable to any situation where
there are baryonic and mesonic degrees of freedom that carry
well-defined quantum numbers of upness or downness. The
baryons and mesons may be colored or color singlets. The con-
siderations outlined above are applicable to all such models,
including the hadron resonance gas model used below Tc.

In this way, one may divide the contributions to the off-
diagonal susceptibility and its derivatives in terms of mesonic
and baryonic contributions. Using the measured susceptibility
and its derivatives, these contributions may be estimated as a
function of the temperature. In the lattice computations, results
are expressed in units of Tc; we assume Tc = 0.17 GeV for
definiteness. These are plotted as the thick solid line (mesons)
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FIG. 4. (Color online) A plot of the mesonic and baryonic
contributions to χud (T , µ = 0) and a plot of the derivatives
T ∂2χud/∂(µβ)2|µ=0 (which are equal to the baryonic contribu-
tion ρB ) and T ∂4χud/∂(µβ)4|µ=0 (which is negative beyond Tc =
170 MeV and thus is inconsistent with a bound state interpretation of
the data). See text for details.

and the solid circles (baryons) in Fig. 4. These densities
for ρB = 2ρ0

ud (T ) + 4ρ0
uud (T ) + 4ρ0

udd (T ) and ρM = 2ρ0
ud̄

(T )
satisfy Eq. (38) and the first equality of Eq. (40). The condition
imposed by Eq. (40) has to be satisfied by the derivatives
of the susceptibility in such a picture of bound states. The
fourth derivative of the susceptibility has been plotted as
the square symbols. Despite large error bars one notes that
although the baryon density or the second derivative of the
susceptibility is consistent with Eq. (40) below the phase
transition temperature, it becomes inconsistent with such
a condition above the phase transition temperature. Above
Tc, T ∂4χud/∂(µβ)4 is actually negative; hence, no composite
quasiparticle picture is compatible with such results. It has
already been pointed out in Ref. [24] that the signs of the
various derivatives of the susceptibility are consistent with the
picture of a weakly interacting quasiparticle gas.

In the above simple model, numerous approximations were
made. Maxwell-Boltzmann statistics was used throughout,
variances were replaced with the mean populations of the
various flavors, and masses of various flavors were assumed
to be independent of chemical potential. Such approximations
were made to clearly illustrate the central point of this article
that the measured values of the off-diagonal susceptibilities
and their derivatives are inconsistent with a picture of a
composite quasiparticle plasma. However, the susceptibility in
a weakly interacting model of quark quasiparticles, computed
in the hard-thermal loop approximation, has been shown to be
consistent with the diagonal and off-diagonal susceptibilities
derived from lattice simulations [23]. It has also been pointed
out that the signs of the derivatives of the susceptibilities are
consistent with the quasiparticle picture [24]. A computation
of the absolute values of the derivatives in such a picture is
currently underway.

V. EXPERIMENTAL OBSERVABLES

In the previous sections, a theoretical study of various
diagonal and off-diagonal susceptibilities has been carried
out and their relations with the degrees of freedom in heated
strongly interacting matter has been elucidated. In the present
section, our focus lies on the possible measurement of such
correlations in heavy-ion experiments. Our considerations are
restricted to the measurement of the ratio CBS, which in the
view of the authors is the most favorable from an experimental
point of view.

It is believed that thermalized, strongly interacting, and
deconfined matter is transiently produced in central heavy-ion
collisions at RHIC. If one divides the whole system into small
rapidity bins, then the fluctuations of conserved charges within
a given rapidity bin are controlled by the degrees of freedom
prevalent at the temperatures achieved. As the system expands
and cools, it reconverts to a hadronic gas prior to freeze-out.
If the transition to the confined phase is sudden, as in the case
of a continuous transition and the longitudinal expansion is
sufficiently large, then the net charge in the rapidity bin, set
in the deconfined phase, is maintained through the hadronic
phase up to freeze-out. Such fluctuations may then be measured
event by event. The two major hurdles in the survival of such
fluctuations through the hadronic phase are the contamination
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by hadronic fluctuations and measurability of the particles
sensitive to the partonic fluctuations. The first issue is of lesser
importance for an observable such as CBS, as the lightest
carriers of strangeness are the kaons that are much heavier than
the temperatures reached in RHIC collisions in the hadronic
phase. They are produced in far fewer number than pions
and hence do not manage to diffuse through multiple rapidity
bins in the short time available in the hadronic phase. The
measurement of baryon number is the primary problem in the
estimation of CBS.

The detector most suitable to measurements of bulk
fluctuations at RHIC is the STAR detector. In the measurement
of baryon-strangeness correlations, the detector has to accu-
rately assess the baryon number and strangeness in a given
rapidity bin in each event. As the STAR detector is blind
to stable uncharged particles it cannot measure the neutron
and antineutron populations. As a result, a measurement of
σBS may become rather difficult. Based on the discussion of
Sec. II, we present the following recourse. A new quantum
number is constructed,

M = B + 2I3, (41)

and fluctuations of M with respect to S are studied. In
theoretical calculations of the the quantity σMS as outlined
in Secs. II and IV, one notes that the assumption of isospin
symmetry [see Eq. (13)] reduces the covariance σMS to simply
σBS, i.e.,

σMS = 〈(B + 2I3)S〉 − 〈B + 2I3〉〈S〉
= σBS + 2σI3S � σBS. (42)

As a result, in all theoretical models with isospin symmetry
CMS = CBS.

In the experimental determination, M has the advantage
that it is vanishing for all particles that do not carry charge
or strangeness, thus M = 0 for neutrons, antineutrons, neutral
pions, and so on. The experimental measure is thus

CMS = −3

∑
n M (n)S(n) − (

∑
n M (n))(

∑
n S(n))∑

n(S(n))2 − (
∑

n S(n))2
. (43)

In the above equation M (n) and S(n) are the total M and
total strangeness within the given rapidity bin in event (n).
One may not make the simplification of counting the product
quantum number MS for individual flavors as in Eq. (11) as
the fluctuations in M and S are set in the partonic phase and
the final hadrons are the result of decay from the deconfined
phase. Hence, the different flavors are no longer uncorrelated
as assumed in the derivation of Eq. (11).

The presence of I3 in the observable, introduces a new prob-
lem in the experimental measurement. The lightest carriers of
M are the charged pions that are numerous in the hadronic
phase and may lead to contamination of the conserved charge
in the chosen rapidity bin from neighboring bins. However,
as the central rapidity bins at RHIC are practically charge
neutral, the possibility of contamination by charged pion
fluctuations is greatly reduced. One may divide the measured
correlation between I3 and S into a genuine correlation and a
contamination,

σI3S = σ act
I3S

+ σ cont
I3S

. (44)
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FIG. 5. (Color online) A comparison of the two related ratios of
variances CBS, CMS as a function of the acceptance in rapidity from
−|ymax| to |ymax|.

As the fluctuations that result in σ cont
I3S

are driven by pions in the
hadronic phase, a sum over a relatively large number of events
will lead to this quantity becoming rather small compared to
the actual correlation σ act

I3S
if violations of isospin symmetry

are negligible. This condition should hold for the produced
hadronic phase over a range of rapidities at RHIC. This effect
is illustrated in Fig. 5 where both CBS and CMS are calculated
from model simulations using the HIJING code [28].

In Fig. 5 the correlations CBS and CMS are estimated in a
central Au − Au event at

√
s = 200 AGeV. The acceptance

in rapidity ranges from −|ymax| to |ymax|, hence a larger ymax

indicates a larger acceptance. In an effort to further mimic
the experimental acceptance, KL mesons are ignored, and
KS mesons are identified either as a K0 or a K̄0 with 50%
probability for either case. The results are presented as a
function of ymax. One notes that over the range of ymax the two
correlations CBS and CMS are rather similar. The increased
fluctuations in isospin are the cause of the slightly larger
value of CMS as compared to CBS. This bodes well for the
measurement of CBS in RHIC experiments via a measurement
of the quantity CMS over a range of rapidity intervals.

VI. CONCLUSIONS

Both heavy-ion collisions and lattice simulations of QCD at
finite temperature present components in the study of heated
strongly interacting matter. In this article we demonstrated
that off-diagonal susceptibilities and ratios of susceptibilities
have the ability to discern the prevalent flavor-carrying degrees
of freedom in heated strongly interacting matter. The latter
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quantity may be measured on the lattice as well as in
heavy-ion collisions, under the assumption that event-by-event
fluctuations in a heavy-ion collision are set in the deconfined
phase and are maintained through the hadronic phase.

In this article, the behavior of a number of observables
based on the ratio of susceptibilities CBS, CQS , etc., was
explored both in the confined as well as the deconfined phase.
Under the assumption of isospin symmetry, simplifying
relations between such observables were derived that reveal
the interdependence of such ratios, e.g., Eqs. (16) and (18).
Results of the computations of such quantities in a hadronic
resonance gas as well as in a non-interacting plasma of quarks
and gluons were compared with calculations on the lattice
(Fig. 3). Such comparisons demonstrate that the
flavor-carrying sector of QCD is consistent with a deconfined
plasma of weakly interacting quarks and antiquarks above Tc.
Below Tc the behavior of CBS and CQS is consistent with that
of a hadron resonance gas.

The various relations between the ratios of susceptibilities
relate the behavior of CQS to that of CBS. The behavior of CBS

above and below Tc is caused primarily by the vanishing of
the the off-diagonal susceptibility χus = χds at T � Tc and the
negative value of its expectation below Tc. A similar behavior
is shown by other off-diagonal susceptibilities such as χud .
The remainder of our study focused on the behavior of the
two flavor off-diagonal susceptibility χud , as calculations of
the temperature dependence of χud as well as its various
derivatives have been carried out in full unquenched lattice
simulations.

In Secs. III and IV, it was demonstrated that the behavior
of χud as well as its various derivatives is consistent with
that of a hadron gas below Tc and a weakly interacting
plasma of quarks and antiquarks above Tc. The behavior of
the various derivatives of χud with baryon chemical potential
was shown to be inconsistent with a bound-state picture above
T = Tc. Such an inconsistency remained even if baryonic
bound-state populations above Tc were artificially enhanced
to be consistent with the CBS and CQS measured on the lattice.

Finally, we proposed a new experimental observable CMS

related by isospin symmetry to CBS. This observable is
blind to uncharged and nonstrange particles. We showed
that it is equivalent to CBS and may be measurable in
experiments at RHIC. Estimates of CMS and CBS in HIJING
simulations demonstrate the similarity of the two quantities
over a range of rapidities at RHIC. This bodes well for its
use as an experimental proxy for CBS. Such measurements
offer the possibility to directly probe the degrees of freedom
in the deconfined matter produced in high-energy heavy-ion
collisions.

ACKNOWLEDGMENTS

The authors thank S. Bass for helpful discussions. A. M.
thanks V. Koch and J. Randrup for stimulating collaboration.
Part of the results of Sec. III represent an alternate derivation
of the results to appear in Ref. [29]. This work was supported
in part by the U.S. Department of Energy under grant DE-
FG02-05ER41367.

APPENDIX

In this appendix, we outline the derivation of Eq. (23).
Imagine strongly interacting matter at low temperature, con-
fined in a box of volume V . The temperature is assumed to low
enough for the prevalent degrees of freedom to be a dilute gas
of pions. The state vector representing a pion with momentum
p = 2npπ/V 1/3 may be expressed as

|π+
�p 〉 =

∑
{n},{n̄},{m},{m̄},{l}

�
�p

1 ({n}, {n̄}, {m}, {m̄}, {l})

× |{n}, {n̄}, {m}, {m̄}〉

× δ

(∑
i

ni − n̄i − 1

)
δ

(∑
i

m̄i − mi − 1

)
⊗ |{l}〉. (A1)

In the above equation, the vectors of integers
{n}({n̄}), {m}({m̄}), represent the set of occupation numbers
in different momentum states of u quarks ( ū antiquarks) and
d quarks (d̄ antiquarks), i.e.,

{n} ≡ {n1, n2, n3, · · ·}. (A2)

Values for ni may be 0 or 1. The vector {l} represents the
occupation numbers of the gluon sector and is a vector of
integers li � 0. In Eq. (A1), |{n}, {n̄}, {m}, {m̄}〉 represents
the general state vector of the quark (antiquark) sector.
The function �

�p
1 ({n}, {n̄}, {m}, {m̄}, {l}) represents the wave

function of the one pion state with the constraint that the total
momentum residing in this sector is �p. Hence,

�
�p

1 ({n}, {n̄}, {m}, {m̄}, {l}) = �̃({n}, {n̄}, {m}, {m̄}, {l})

× δ

(
�p −

∑
i

�pu,ini + �pū,i n̄i + �pd,imi + �pd̄,im̄i + �pg,i li

)
,

(A3)

where, �pu,i is the momentum of the ith u-quark state with
occupation ni . Although not explicitly pointed out, the wave
function �

p

1 also maintains over all color neutrality.
Given the form of the one-pion state, it is a trivial matter

to formulate general expressions for multiple-pion states.
In this way, an effective basis of states at low temperature
is constructed: |0〉, |π+

p1
〉, |π+

p1
π+

p2
〉, |π+

p1
π−

p2
〉, etc. Interactions

between these various states, is assumed to be small enough
to be estimated in a perturbative formalism. The reader will
note that the various states outlined above are orthogonal,
given the orthogonality of the various states in the quark-gluon
occupation number basis used in Eq. (A1). Such n-pion states
may also be expressed in an occupation number basis as above,
e.g.,

|π+
p1

〉 ≡ |01, 02, · · · , 0p1−1, 1p1 , 0p1+1, · · ·〉. (A4)

One may now express the quark number operators as a matrix
in the occupation number basis of pion states, i.e.,

N̂u =
∑

{n},{m}
|n1, n2, · · ·〉

× 〈n1, n2, · · · |N̂u|m1,m2, · · ·〉〈m1,m2, · · · |. (A5)

Using the expression for the one-pion state from Eq. (A1), we
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obtain the simple relation,
N̂u|01, 02, · · · , 0p1−1, 1p1 , 0p1+1, · · ·〉. = N̂u|π+

p1
〉

= |π+
p1

〉. (A6)
Similarly, the action of the upness operator on the one π− state
may be computed to be

N̂u|π−
p1

〉 = −|π−
p1

〉. (A7)

Generalizing to the n-pion states, one obtains the general
relations for the quark number operators in the basis of pions
(in the limit that the pion gas is dilute, i.e., the interactions
between the different states are small),

N̂u = N̂π+ − N̂π− ,

(A8)
N̂d = N̂π− − N̂π+ .
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