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Monte Carlo calculation of the de-excitation of fission fragments of 252Cf(sf ) within multimodal
random neck rupture model
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The multimodal random neck rupture model has been employed to study the energy distribution in nuclear
fission. Monte Carlo calculations have been carried out on the de-excitation of fission fragments of 252Cf(sf )
using this model. In this study special attention has been paid to the law of conservation of energy. Results for the
neutron multiplicities and kinetic energies, average gamma energies are in good agreement with the experimental
data. Mass and charge distributions of secondary fission fragments are also well reproduced in the calculations.
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I. INTRODUCTION

An important question in fission is the partition of the total
available energy between complementary fission fragments.
There are several models in the literature that deal with the
energy partition problem in fission [1–4].

The measured saw-tooth structure of neutron multiplicities,
as a function of fragment mass, cannot be understood in the
context of the liquid drop model of fission. The small value
of average neutron multiplicity for the fragments containing
protons and/or neutrons near the magic numbers imply that the
shell effects may be important in understanding the saw-tooth
structure. In a model proposed by Terrell [1], the fissioning
system is assumed to be two spheroidal fragments touching
each other at one point at the scission. The deformation-
dependent part of the potential has been minimized, leading
to a simple expression for describing energy partition between
fragments. An important parameter is the stiffness parameter
which is influenced strongly by the shell effect. Nuclei near
the closed shell structure are resistant against deformation
and consequently less deformed than their complementary
fragments. Kildir et al. [3] proposes an empirical correlation
between the stiffness parameter, C2, and the shell correction
energy, δω, to distribute deformation energy between primary
complementary fission fragments for 252Cf(sf ). Their results
are in good agreement with experimental data. This correlation
is further successfully applied to several other fissioning
systems [5–7].

The static scission point model proposed by Wilkins et al.
[2] is good at explaining most of the fission characteristics.
This model is based on the assumption of statistical equilib-
rium among the collective degree of freedom of a system of
two nearly touching coaxial spheroids with quadrupole defor-
mations at the scission point. The scission-point configuration
from the model provides an interpretation of the saw-tooth
neutron emission curve in terms of shell correction related
fragment deformations.

Brosa, Grossman, and Müller propose a model (BGM
model) in which the assumption of statistical equilibrium
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at scission is rejected [4]. The BGM model is a synthesis
of two models; random-neck-rupture and multimodal fission.
The first model accounts for a fissioning nucleus with a rather
long neck connecting the two nascent fragment volumes. The
neck cut-up is chosen randomly. This approach, including
Rayleigh’s instability criterion, describes experimentally ob-
servable averages. The experimental distributions in A and
TKE can be obtained with high accuracy within the multimodal
fission with the random neck rupture model. Several fissioning
systems are examined within the BGM model in various other
studies [8–10].

In the recent studies [11], The Monte Carlo method is
used to study the sequential prompt neutron emission from
primary fission fragments. Here, the energy partition between
two newborn fragment pairs is calculated in two different
ways. In the first approach; identical temperatures are assumed
for the complementary fragments. However, the result of the
calculations fails to explain the average neutron multiplicity as
a function of mass. In the second method, the energy partition is
obtained using the experimental neutron multiplicity, neutron
energy and gamma energy as a function of mass.

The main purpose of this study was to examine the energy
partition in 252Cf(sf ) performing some revisions within the
multimodal random neck rupture model. In this study, special
attention was paid to the conservation of energy which was
overlooked in the previous studies [4,12]. In a few studies
[9,10], the conservation of energy is considered, in a limited
way, so that the calculations are carried out only for the most
probable charge of each fragment mass to obtain the averages
of various observable quantities. In order to take into account
the conservation of energy, the charge distribution should be
considered. In this study, emprical parameters determined
within the Wahl Zp model [13] were used to calculate the
probability of each charge for a particular mass. Isobars higher
than 10−6 fractional yields have been used for calculations.
Therefore, all isotopes formed with appreciable yields in
fission were considered in our study.

After the partition of total available energy between binary-
fission fragments using the BGM model, the Monte Carlo
method is used to calculate the neutron and gamma-ray
emission from fission fragments. The average energy and
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number of prompt neutrons and gamma rays are obtained as a
function of charge and mass of the primary fission fragments.
In addition, neutron multiplicity as a function of kinetic energy
is calculated and compared with recent measurements.

II. MODEL ASSUMPTIONS AND CALCULATIONS

A. The multimodal random neck rupture model and
determination of pre-scission shapes

According to the BGM model, after leaving the compound
or ground state, the nucleus can split into fragments by
a number of paths, referred to modes. Instead of just one
fission barrier in regular fission theories, there are different
fission barriers for each mode. A nucleus may have several
pre-scission shapes which are distinguished by their total
length and asymmetry depending on the mode followed. These
modes are named according to the total length and asymmetry
of their pre-scission shape; standard (S), superlong (SL),
supershort (SS), and superasymmetric (SA) fission modes [4].
In a recent study, fission mode probabilities as a function of
nucleus and excitation energy have been systematized in terms
of barrier transmission coefficients and bifurcation ratio [14].

In the BGM model, the fissioning nucleus of the semilength
l is represented by two spherical heads of the radii of r1

and r2 connected by a thick neck at the pre-scission point.
A schematic view of the prescission shape is given in Fig. 1.
The neck radius is r where the neck is thinnest, the thinnest
position of the neck is z, the curvature is c, and the extension
of the neck is a. The transitional points where two heads
are joined to the neck on either side are ζ1 and ζ2. These
pre-scission shapes, described by nine parameters, are subject
to fluctuations with respect to both the length and asymmetry.
When the nucleus stretches beyond the pre-scission shape, the
neck snaps randomly because of the Rayleigh instability. Even
though this process is random, the probability of the rupture
at different points of the neck can be estimated.

In our study, three of out of nine parameters, l, r , and c

together with the fission mode probabilities are determined
from the experimental mass and kinetic energy distribution,
the remaining six parameters are determined by solving six
equations simultaneously as described by Fan et al. [12]. An
initial value of l is obtained so that the calculated value of
the average total kinetic energy is approximately equal to the
experimental one. The neck radius, r , is then estimated using
Rayleigh instability criteria:

2l = 11r. (1)

The parameter, c is related to the width of the mass
distribution. It is adjusted throughout the calculation until a

FIG. 1. A schematic view of the prescission shape.

value is obtained which produces the experimental width of
the mass distribution. Consistency of the calculated values for
the average total kinetic energy and the mass distribution, with
experimental ones is finally checked to decide on a suitable set
of three parameters l, r and c. For every set of three parameters,
the remaining six parameters are obtained.

B. Energy balance and energy fractions of fragments

The total energy released in a fission event denoted by Q,
is given by the equation

Q = �mcn − �mf − �mf,c, (2)

where �mcn,�mf , and �mf,c are the mass excesses of
the compound nucleus, the fragment, and its complementary
fragment, respectively. Mass excesses were taken from the
mass table of Möller et al. [15]. Thus total excitation energy
of a complementary fragment pair, Eexc(tot), is given as

Eexc (tot) = Q + Ecn − 〈TKE(A)〉, (3)

where Ecn is the excitation energy of the compound nucleus
and 〈TKE(A)〉 is the average total kinetic energy for a given
mass division. Ecn is zero for the spontaneous fission of
252Cf(sf ). The total excitation energy for a given comple-
mentary primary fragment pair was distributed between two
fragments in the form of intrinsic excitation energy and
deformation energy. In order to obtain the excitation energy of
each fragment, the partition of total excitation energy between
complementary fragments needs to be known.

In the original version of the BGM model, the excitation
energy of fragments is calculated as a function of mass
without paying much attention to the conservation of energy
in the fission process. However, energy is conserved on the
de-excitation of fission fragments by the evaporation of prompt
neutrons and gamma rays. In this study, Eq. (2) and (3) were
strictly followed to calculate the total excitation energy of any
complementary fragment pair. The average total kinetic energy
calculated in the BGM model was subtracted from Q to obtain
Eexc(tot). We determined the total intrinsic excitation energy,
E∗

s , through the nuclear temperature of pre-scission shape of
252Cf within the BGM model. This energy was distributed
between complementary fragments proportional to the mass
number of each fragment due to its statistical nature. The
energy left after subtraction of E∗

s from Eexc(tot) was assumed
to be equal to the total deformation energy, Etot

def , at the scission
point:

Etot
def = Eexctot(Z,A) − E∗

s . (4)

We distributed the total deformation energy between comple-
mentary fragments to be proportional to the deformations of
each fragment. We obtained the following expression for the
excitation energy fraction of the fragment in this study:

F (Z,A) =
Etot

def(A) Edef (A)
Edef (A)+Edef (Ac) + E∗

s
A

Acn

Eexc(tot)
. (5)

Here, Edef is the deformation energy, A and Ac denotes the
mass numbers of a fission fragment and its complementary
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partner, respectively. The excitation energy of each fragment
is then calculated by the product of F (Z,A) and Eexc(tot).

C. Monte Carlo calculation of prompt neutron and
gamma emission

If prompt neutron and gamma emission from fragments are
assumed to be a statistical process, the Monte Carlo method
proposed by Dostrovsky et al. [16] can be used to calculate
average number of prompt neutrons emitted and the average
energies of prompt neutron and gamma rays. According to
this method, the probability of prompt neutron emission from
a fragment is given by the equation

Pn(η)dη = (2s + 1)mn

π2h̄3 σcη
W2

W1
dη, (6)

where s is the neutron spin, mn is the mass of neutron, σc is
the cross section for neutron capture, W1 is the level density of
the nucleus from which the neutron is emitted, W2 is the level
density of the nucleus formed after neutron emission, and η is
the kinetic energy of the neutron emitted in the center-of-mass
system. Level densities are calculated using the Fermi gas
model, which is given by the equation

W (Eexc) = C∗ exp
[
2
√

a′(Eexc − δ)
]
, (7)

where C is constant and a′ is the level density parameter
and δ is the pairing correction. The level density parameter
strongly depends on the shell structure of the nucleus [17].
In this study, the mass table of Möller et al. [15] was
used in Eq. (2) to calculate the total energy released in
fission. The level density parameter was correlated with the
microscopic energies given in that table even though they are
not classical shell-corrections, since they include deformation
energy. The correlation between the level density parameter
and microscopic energy was taken as

a′ = (0.142A − 2.0x10−5A2)

×
[

1 + (1 − exp(−0.051Eexc))
Emic

Eexc

]
. (8)

Here Emic is the microscopic energy and the constants in the
equation were determined from the best fit of the experimental
level density parameters [18]. Figure 2 shows that this general
trend is accounted for well by Eq. (8).

The pairing energy, δ is taken to be consistent with the mass
table used [15] in which

δ = δp + δn Z and N are even, (9a)

δ = δp Z is even and N is odd, (9b)

δ = δn Z is odd and N is even, (9c)

δ = 0 Z and N are odd, (9d)

δp = 4.8Bs

Z1/3
if Z is even, (9e)

δn = 4.8Bs

N1/3
if N is even, (9f )

Bs = A−2/3

4πr2
0

∫
S

dS, (9g)
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FIG. 2. Experimental [18] and fitted level density parameters as
a function of mass.

where δp and δn are the pairing energies of protons and
neutrons, respectively. Bs is the ratio of the surface area of the
nucleus of the actual shape to the surface area of the nucleus
assuming a spherical shape. It can be calculated exactly at the
scission point and at the ground state in our model, since the
shape of fragment is known. Since evaporation of neutrons
and gamma rays is expected to take place after the fragment
has collapsed to its equilibrium shape, Bs is better calculated
using the shape parameters of the ground state. Correction for
pairing energy in the ground state amounts, at most, to 5%
and is neglected in this study; Bs is taken to be 1.0 for every
fragment.

A Monte Carlo rejection technique was used in order to
select both the excitation energy of a given fragment and the
kinetic energy of the emitted neutron. The energy distribution
for a primary fragment was assumed to be Gaussian in the
range of Eexc ± 3σE where σE is the width of the kinetic
energy distribution for a given mass. After emission of the
first neutron, the residual nucleus may have enough excitation
energy to evaporate more neutrons. This evaporation process
continues until no more neutron emission is possible. After all
possible neutrons have been emitted any remaining excitation
energy is assumed to be given off in the form of gamma
ray. In this calculation, it was assumed that de-excitation
of fission fragments by the emission of a neutron is always
possible, if its effective excitation energy is larger than the
neutron separation energy. Except for the very first step of
iteration, only the kinetic energy of the evaporated neutron
was selected using the Monte Carlo rejection technique [3]. At
the end of each iteration, neutron kinetic energy, the average
gamma ray energy and average number of neutrons were
weighed by independent yield of the primary fragments for
each mass. Fractional independent yields of primary fragments
were calculated using Wahl Zp model [13].

III. RESULTS AND DISCUSSION

A. Pre-scission shapes and average properties of fragments

Parameters of pre-scission shapes have been determined
for 252Cf(sf ) by Brosa et al. [4]. Calculation of potential
energy surfaces is carried out by Brosa et al. using generalized
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TABLE I. The prescission shape parameters.

Modes Standard 1 Standard 2 Standard 3 Superlong

l (fm) 16.60 17.37 19.10 19.50
r (fm) 2.25 2.50 3.47 3.00
c (fm−1) 1.1 × 10−3 3.0 × 10−3 6.9 × 10−3 2.5 × 10−3

z (fm) 0.37 0.71 1.50 0.00
r1 (fm) 6.12 6.14 5.43 5.47
r2 (fm) 5.78 5.53 4.67 5.47
ζ1 (fm) 5.15 4.80 2.16 3.27
ζB (fm) 16.51 18.95 26.78 24.79
a 0.69 1.07 3.68 1.87

Lawrence shape parametrization with five parameters. They
have minimized the potential energy of fissioning system
with respect to deformation and found that there are six
fission modes for 252Cf(sf ). Their shapes are strongly curved
therefore yielding a very narrow mass distribution. Fan et al.
[12] have determined pre-scission shapes using real flat
neck representation with nine parameters for other fissioning
systems. In these two studies, r0 = 1.15 fm was used to
determine pre-scission shapes whereas r0 = 1.2249 fm was
used to calculate deformation energy of fission fragments.
In this study, we took r0 as 1.2249 fm for all calculations.
Parameters of pre-scission shapes were determined with the
procedure outlined in Sec. II A They are given in Table I. The
parameters of pre-scission shapes were obtained excluding
supershort and superasymmetric fission modes because of the
large errors associated with the experimental results in the
mass regions in which these fission modes appear.

The ratio between the l and r values for various fission
modes in Table I does not follow Rayleigh instability criteria. It
is a fact that the values of l and r obtained from the calculation
of potential energy surfaces with Strutinsky shell corrections
[4] also disagree with this criteria. Since the Rayleigh
instability criteria are derived from the macroscopic properties
of a liquid drop, some deviations may be expected when
microscopic calculations, including single particle degrees of
freedom, are carried out.

SL is the symmetric fission mode with the longest pre-
scission shape. The length of standard fission modes (S1, S2,
and S3) increase with the average mass of heavy fragments
corresponding to that fission mode.

Calculated and experimental mass distributions were com-
pared in Fig. 3. There is an excellent agreement between the
two, although there are small discrepancies especially around
mass 142. The percent contribution of different fission modes
for each mass for two fissioning systems as a function of heavy
fragment mass are given in Fig. 4. It is obvious that S3 is the
only fission mode that contributes for larger fragment masses.
In addition to the SL mode, S3 also contributes to the mass
yield around symmetric mass division. This is due to the wide
mass distribution of S3. In the other mass regions, two or more
fission modes contribute.

The experimental and calculated values of average total
kinetic energy as a function of heavy fragment mass were
compared in Fig. 5. There is a reasonable agreement between

the experimental and calculated data. The set in Table I was
used in the calculations. It may not be the best set since the
deformation space may not be exhausted. One of the striking
features of the 〈TKE〉 distribution is the minimum in the
symmetric mass division. This minimum is related mostly to
the SL since it has the longest length. As the contribution
of the SL mode decreases 〈TKE(A)〉 values increase. Depth of
minimum is smaller for 252Cf(sf ) than that for 235U(nth, f) [19].
This comes from the fact that SL is the only contributing mode
in the symmetric mass region of 235U(nth, f) whereas there
are two contributing modes in the same region of 252Cf(sf ).
Another reason is the fact that length of SL is not much longer
than the lengths of standard modes in the 252Cf(sf ).

S1 has the largest contribution to mass yield around A ≈
130. It is clear that this is due to the highest kinetic energy
values of the S1 mode with the shortest length. Coulomb
energy which is the major part of the kinetic energy, decreases
as the difference between charges of fragments increases due
to the Z(Zcn − Z) factor in the related equation. This results
in a decrease of kinetic energy values with increasing of mass
asymmetry in the division.

In order to compare the general trend in neutron multiplicity
with that of Brosa et al. [4], the total excitation energy in
MeV was divided by 8.0, to determine the number of neutrons
emitted, from a given primary fission fragment, as in the
original BGM model. Although there was no need for this
rough approximation, the results were compared with various
experiments in Fig. 6. The neutron multiplicity distribution

FIG. 3. Comparison of calculated and experimental [22] mass
yield distribution for 252Cf(sf ).
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FIG. 4. Percent contribution of each mode as a function of heavy
fragment mass for 252Cf(sf ).

strongly depends on the mass asymmetry and elongation of
the pre-scission shapes, because the deformation energy of
a primary fragment at the scission point contributes most to
the excitation energy of that fragment. The standard fission
modes yield saw-tooth and superlong fission mode yields
approximately, linear dependence for the neutron multiplicity
as a function of fragment mass (Fig. 7).

An interesting point in Fig. 6 is the appearance of the humps
at certain mass numbers. These humps are observed at the
mass numbers at which one contributing mode diminishes as
another one starts to build up. This effect is due to the fact
that the slopes of neutron multiplicity values with respect
to mass numbers are different for different fission modes.
However, the experimental values of neutron multiplicity seem
to have fewer humps than predicted by the BGM model.
This means that there may be a smaller number of fission
modes than expected from theoretical prediction and/or slopes
of the neutron multiplicity curves are approximately equal.
However the Monte Carlo method used in this study was a
more appropriate tool for the comparison between experiment
and calculation since the calculations take into account energy
conservation, in addition to the binding energies of emitted
neutrons. The neutron multiplicity distribution in this study
is in better agreement with experimental values, than that of
Brosa et al. [4].

FIG. 5. (Color online) Comparison of calculated and experimen-
tal values of average total kinetic energy as a function of heavy
fragment mass for 252Cf(sf ).
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FIG. 6. Comparison of experimental and calculated (BGM
recipe) average neutron multiplicities as a function of fragment mass
for 252Cf(sf ).

The values of fission mode probability, P , average fission
fragment mass, 〈A〉, width of the fragment mass distribution,
σA, average kinetic energy, 〈TKE〉, and average number of
neutrons, 〈ν〉, for each mode in this study were compared to
those of Brosa et al. [4] in Table II. It is seen that the superlong
fission mode probability is very small with respect to that of
standard modes. This low yield of the superlong mode may
be due to the higher barrier at the outer saddle point for the
superlong mode than that of standard modes.

A correlation can be seen between σA and the semilength,
l, of the fission mode. As the semilength for a given fission
mode increases the width of the fragment mass distribution for
that fission mode increases. If the ratio between l and r is kept
constant (fixed to the Rayleigh criteria), the neck between the
heads becomes more flat with a longer semilength. This results
in a higher σA value.

Average total kinetic energies are also given for different
fission modes of the fissioning system. The lion’s share of the
total kinetic energy of the fragments comes from the Coulomb
repulsion that is inversely proportional to the semi-length of
the pre-scission shape. Even though there is a small correction
term to account the ellipsoidal deformation of fragments,
the total kinetic energy for a given mode decreases as the
semilength increases as seen in Tables I and II.
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FIG. 7. The decomposition of the calculated values of average
neutron multiplicities (BGM recipe) with respect to fission modes for
252Cf(sf ).
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TABLE II. Comparison of several calculated quantities in this study with the other studies.

Author S1 S2 S3 SL Average

P this study 14.45 46.60 37.81 1.22 –
Brosa 1990 8.5 62.0 27.7 1.3 –

〈A〉 this study 135.8 143.3 146.8 126.0 –
Brosa 1990 137 147 – 128 –

σA this study 3.5 4.1 7.1 7.2 –
Brosa 1990 4.6 6.1 – 13.2 –

〈TKE〉 this study 195.5 188.9 178.1 177.5 185.6
Brosa 1990 205 194 – 173 –

〈ν〉 this study 2.8 3.5 5.23 5.25 4.1
Brosa 1990 2.5 3.5 – 6.5 –

In the BGM model, more elongated pre-scission shapes
produce more deformed newborn fragments. The number of
neutrons emitted from each fission mode is then directly related
to the semilength of its pre-scission shape. This relationship
is seen in Tables I–III. As a result, 〈ν〉 is weakly but inversely
correlated with 〈TKE〉. The larger value of r0 used in this
study gave lower eccentricity for newborn fragments and
the calculated value of 〈ν〉 was in better agreement with the
experimental value. Since there is no calculation for a fission
mode (S3) of this system by Brosa et al. [4], a comparison
could not be made.

B. Energy distribution between fragments considering energy
conservation within the BGM model

In the original version of the BGM model [4], excitation
energy of fragments as a function of mass is calculated without
paying much attention to the conservation of energy in the
process. However, it is essential to conserve energy when
performing reasonable calculations of prompt neutron, gamma
energy, neutron energy, etc. In order to make sure the energy is
conserved in our procedure, we firstly fixed 〈TKE(A)〉 values
to those calculated within the BGM model. The total excitation
energy of complementary fragments was assumed to be equal
to the energy obtained when 〈TKE(A)〉 was subtracted from
the total energy released. Naturally, the total excitation energy
of complementary fragments with the same mass number was
obtained differently because of the difference in kinetic energy
values of different fission modes. The total energy release (sum
of Q and compound nucleus excitation) and 〈TKE(A)〉 values
for different fission modes are given in Fig. 8. Total energy

release is independent of the fission modes since it depends
only on the initial and final states of the fissioning nucleus. The
total energy release calculated using Eq. (3), taking Ecn = 0,
shows a maximum around the symmetric division. This is due
to the fact that extra stable fragments, containing the neutron
and proton numbers equal or close to the magic numbers of
82 for neutron and 50 for proton, are produced in this mass
region. As a result, more energy is released in this mass region
compared to others.

Although total excitation energy as a function of mass and
fission modes may be seen from the Fig. 8, they are given
in Fig. 9 so the variations can be seen more clearly. The mass
dependence of total excitation energy, Eexc(tot) for the different
fission modes are similar because of the similar trends in the
mass dependence of their kinetic energies. The magnitudes
of the total excitation energy are quite different for different
fission modes. The SL mode has the highest Eexc(tot) value
because it has the most elongated shape and the smallest
kinetic energy. On the other hand the smallest Eexc(tot) is
S1 fission mode. As a result, Monte Carlo calculations are
expected to yield the largest and the smallest values of neutron
multiplicities for SL and S1 fission modes, respectively. The
average neutron multiplicity for a given fragment mass, 〈ν(A)〉
also depends strongly on the contribution of each fission mode
due to the averaging process.

Isobaric yields, calculated with the nuclear temperature
derived from the intrinsic excitation energy of compound
nucleus given by BGM model, are in excellent agreement
with experiment as seen in Fig. 3. Therefore, we fixed
the intrinsic excitation energy as calculated from BGM
model and the remaining energy was assumed to be the
total deformation energy of both complementary fragments.

TABLE III. Calculated and experimental average neutron multiplicity values for different modes.

S1 S2 S3 SL Average

BGM recipe 2.80 3.54 5.23 5.25 4.09
BGM (Monte Carlo) 3.58 3.46 4.43 5.73 3.87
Brosa 1990 2.5 3.5 – 6.5 –
Aarle 1994 (exp.) 3.8 ± 0.2 3.5 ± 0.4 3.9 ± 0.3 4.2 ± 0.3 –
Axton 1985 (exp.) – – – – 3.77
Kildir 1982 – – – – 3.68
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Hence, the difference between Eexc(tot) and E∗
s , is distributed

between complementary fission fragments according to their
deformations in the BGM model.

The excitation energy ratios of the light fragments to the
heavy fragments, as a function of heavy fragment mass,
are given in Fig. 10, for each mode. We assumed that the
intrinsic excitation energy was distributed proportionally to
the mass of newborn fragment. This is a natural result of
the assumption that nuclear temperature is the same for all
parts of the fissioning nucleus at the pre-scission point. On
the other hand, the distribution of the deformation energy
should depend on the degree of mass asymmetry and radius
of the neck. The difference between the number of nucleons
on two heads and number of nucleons on the neck region
should affect the deformation of the fragment. Generally,
the fragments with the same mass ratio may be formed at
two rupture points on the neck. But the heavy fragment was
formed with the larger probability containing the head with
higher number of nucleons. As a result, the neck rupture
probability with a relatively higher deformed heavy fragment
is generally negligible. This results in the sharp transitions
from the light mass region to the heavy mass region in the 〈ν〉
values of the standard modes (Fig. 7). But there is slightly
smooth transition in the same region of S3 mode due to
the relatively long pre-scission shape with long neck. In the
symmetric mass divisions of each fission mode, the ratio of
the excitation energies of complementary fragments is equal
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fragments as a function of heavy fragment mass for 252Cf(sf ).
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FIG. 10. The ratio of the excitation energy of light fission
fragment to that of heavy fragment as a function of heavy fragment
mass for 252Cf(sf ) in the BGM model.

to one. In the symmetric SL fission mode, this ratio is one
because of the equality in mass and deformation for the
complementary fission fragments. On the other hand, in the
symmetric division of standard fission modes, this ratio is
still one since the complementary fragments with the same
mass but quite different deformations have exactly the same
probability to be formed.

The energy ratio values of the S1 and S2 modes have a
sharp increase and decrease, relative to the other modes due
to their thinner necks. A thin neck contains smaller mass
per unit length of the neck and gives a higher slope of the
deformation energies with respect to mass. The resulting
neutron multiplicity distribution can be seen in Fig. 6. There
is gradual decrease in these ratios for the SL fission mode
because of its symmetric pre-scission shape.

C. Results of Monte Carlo calculation

Monte Carlo calculations were carried out to treat de-
excitation of fission fragments emitting prompt neutrons
and gamma rays. 250 iterations were performed for all
isobars having primary fractional yields larger than 10−6. The
excitation energy of each isobar was selected in the range
Eexc ± 3σE for each iteration.

The experimental and calculated values of average prompt
neutron multiplicities as a function of fragment mass were
compared in Fig. 11. Our calculations produced the experi-
mentally known saw-tooth structure of neutron multiplicities.
There is good agreement between the calculated and experi-
mental values as seen in Fig. 11.

There are some differences between the results of Monte
Carlo calculations within the BGM model (MC-BGM) and
calculations with the simple-BGM model as seen in Fig. 12.
The differences are mainly due to the energy conservation was
used in the MC-BGM.

MC-BGM gives larger values of 〈ν(A)〉 in the region at
which S1 is the dominant mode. Average neutron multiplicity
value of simple-BGM is less than that of MC-BGM (Table III).
This is mainly due to the Z = 50 and N = 82 spherical shells.
The deformation energy calculated macroscopically within the
BGM model does not take into account shell and pairing
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FIG. 11. Comparison of experimental and calculated (MC-BGM)
average neutron multiplicities as a function of fragment mass for
252Cf(sf ).

corrections. When closed-shell fragments are formed in fis-
sion, more energy will be released compared to that of the for-
mation of midshell fragments. This effect is taken into account
in MC-BGM through the calculation of total energy release
using the mass equation. It is obvious that MC-BGM gives
better agreement with the experiment data [20] (Table III).
It is interesting that the experimental value of 〈ν(A)〉 for S2
is less than that for S1 (Table III) although the pre-scission
shape of S2 is longer than that of S1 resulting in a lower
〈TKE(A)〉 in S2. This may be more evidence for the shell
effect stated above. Another interesting point is the decrease
in the average neutron multiplicities after some mass asymetry
although deformations increase gradually with mass. This can
be attributed to the change in available excitation energy as a
result of a change in the deformation of fragment as a function
of mass asymmetry.

Another interesting feature is the agreement of the results
of MC-BGM for the masses between 110–124, in spite
of the disagreement of results estimated from the simple-
BGM. In this region, some humps in simple-BGM were not
seen in MC-BGM. This shows that the excitation energy
available in this region is higher than that of simple-BGM. The
higher energy than expected from the pre-scission shapes could
also be attributed to the Z = 50 shell effect as stated in the
previous paragraph. It should be stressed that the deformation
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FIG. 12. Comparison of calculated values of average neutron
multiplicities by Monte Carlo method and BGM recipe [4] within
the BGM model for 252Cf(sf ).

FIG. 13. (Color online) Comparison of experimental and calcu-
lated values of total neutron multiplicity as a function of fragment
mass for 252Cf(sf ).

energy was fixed by the ratio obtained from the pre-scission
shapes. This can be seen clearly in the MC-BGM results, in
such cases higher neutron multiplicity was obtained for both
complementary fragments. It may be noted that the higher
neutron multiplicity depends also on the binding energies of
each emitted neutron which vary with mass and charge of
the fragment. Another interesting result of BGM model in the
Fig. 11 is the lower neutron multiplicty values with respect to
experimental values in the light fragments. The reverse trend
is observed for the heavy fragments. MC-BGM results are in
good agreement with observed experiments. This is mainly
due to the better fit of the 〈TKE〉 values in the regions in
which most of the fragment yields appear. Average neutron
multiplicities for different calculations are compared with the
experimental values in Table III.

The calculated values of the sum of the neutron multi-
plicities of complementary fragments as a function of heavy
fragment mass are compared with the experimental values
in Fig. 13. The total neutron multiplicity is not the same
for each division and there is a maximum in the symmetric
mass division. There is a reasonable agreement between
the results of the calculation and experimental values. The
sizable differences between the various experimental results
are noticible around the symmetric mass division.

Average prompt neutron multiplicity as a function of
fragment charge is given in Fig. 14. The general trend, here, is

FIG. 14. Comparison of experimental and calculated prompt
neutron multiplicity as a function of fragment charge for 252Cf(sf ).
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FIG. 15. Comparison of the experimental and calculated total
neutron multiplicity as a function of total kinetic energy for 252Cf(sf ).

very similar to that of the average prompt neutron multiplicity
as a function of fragment mass, since the charge of the fragment
is proportional to the mass of the fragment with a small
deviation due to charge polarization.

It is clear that the formation of even-Z complementary
fragment results in excess energy release because of the pairing
term in the mass equation. This excess energy is approximately
2 MeV for even-Z fissioning nuclei. The odd-even effect is not
seen in the average prompt neutron emitted as a function of
Z. It may be because this energy either appears in the form of
kinetic energy in fragments and/or the energy is dissipated as
gamma rays. Experimental values of neutron multiplicity as a
function of Z are available for 252Cf(sf ) [21]. Although there
is a small discrepancy near the asymmetric and symmetric
regions, there is a good agreement between experimental and
calculated values.

The variation of average number of neutrons as a function
of total kinetic energy (TKE) is compared in Fig. 15. Below
TKE ≈160 MeV, the total average prompt neutron multiplicity
sharply deviates from the linear dependence observed by
Ref. [22]. An increase in total average neutron multiplicity,
〈ν tot〉, is expected with a decrease in TKE, because more of
the energy released in fission would be available as excitation
energy of the fragments as observed by Lemaire et al. [11].
Nishio et al. [23] stated that the physical explanation of
nonlinear behaviour of 〈ν tot〉 below TKE ≈ 160 MeV is not
clear. We may offer an explanation of this behavior within the
framework of BGM with the aid of Figs. 4 and 9. The more
compact fission modes of S1 and S2 are dominant in the mass
region of 102–150, contributing to the high TKE portion of
the neutron spectra in Fig. 15. The average total excitation
energy of complementary fragments reaches a maximum at
about 40 MeV. In this region, an increase in total average
neutron multiplicity, 〈ν tot〉, is expected with a decrease in
TKE, because more of the energy released in fission would
be available as excitation energy of fragments, for each of
the S1 and S2 modes. On the other hand, the more elongated
fission mode of S3 becomes dominant outside of the 102–150
mass region which contributes to the low TKE portion of
the neutron spectra. The average total excitation energy of
complementary fragments is about 28 to 34 MeV. In this mass
region, fragments with low 〈TKE〉 values also have lower
excitation energies because of the corresponding decrease in

FIG. 16. (Color online) Calculated relative yield distribution of
total kinetic energies for different fission modes of 252Cf(sf ).

the total energy released [19]. Therefore, we expect a linear
increase in total neutron multiplicity at high TKE values and
it reaches a maximum and even decreases, somewhat, at lower
TKE values due to the contribution of the S3 mode. Hence
a deviation from linearity is expected. Although calculated
values from this study do not show a good quantitative
agreement with experimental results, there is good qualitative
agreement showing deviation from linearity and a positive
slope. Poor quantitative agreement in the results mostly comes
from the disagreement between calculated and experimental
〈TKE〉 values. As stated previously, initial excitation energy
was selected by the Monte Carlo rejection technique at the
start of each iteration. Total kinetic energy values for each
iteration are obtained by subtracting selected total excitation
energy from total energy release (Q + Ecn). The distribution
of kinetic energies is given in Fig. 16. These distributions are
found to be Gaussian, because the excitation energy for each
iteration was chosen from a Gaussian distribution using the
Monte Carlo rejection technique.

Since we assumed that the gamma ray emission does not
occur when it is energetically possible to emit neutrons, frag-
ments dissipate their remaining excitation energies in the form
of gamma rays after neutron emission. Average gamma ener-
gies as a function of fragment mass are compared in Fig. 17.
There is a fine structure due to an odd-even effect. The
calculated values are generally higher than the experimental
ones. The fine structure due to the odd-even effect is observed

FIG. 17. Comparison of calculated and experimental average
gamma energies as a function of fragment mass for 252Cf(sf ).
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Z. BÜYÜKMUMCU AND M. KILDIR PHYSICAL REVIEW C 74, 054613 (2006)

FIG. 18. Comparison of calculated and experimental average
gamma ray energies as a function of fragment charge for 252Cf(sf ).

both in calculated and experimental results indicating a fairly
good agreement between the two. The excitation energy
remaining for gamma emission in the secondary fission
fragment would be between zero and the energy needed to
emit neutron (binding energy + kinetic energy of the emitted
neutron). Thus each fragment would have average excitation
energy equal to about half of the energy needed to emit neutron,
to be dissipated as gamma rays.

Average gamma energies as a function of fragment charge
are given in Fig. 18. Experimental values for the total gamma
energies as a function of light fragment mass are available
for comparison with calculated values. It is seen that the
fine structure in experimental results is reproduced, but with
a larger magnitudes, in the calculations. Similar results are
obtained in another study for the same system [3,24]. As stated
by Kildir [24], this may be mostly due to the assumption of
the constant TKE value for all the isobars of the mass chain.
The odd-even effect is observed experimentally in the same
system [21]. From such an interpretation it can be said that
extra energy release in the formation of even-even fragments
appears in the both total kinetic kinetic energy of fragments
and the energies of gamma rays.

The change of mass in fragments due to the emission of
neutrons produces a change in the mass yields. The mass yield
is decreased due to the decrease of the mass number by the
number of neutrons emitted from the fragment. At the same
time, the yield of the same mass is increased due to neutron
emission from higher mass fragments resulting in formation
of product with that mass. The experimental and calculated
values of primary and secondary mass yields are compared in
Fig. 19. There is a shift in the secondary yield distribution to
the lighter mass and a large difference between primary and
secondary yields near the symmetric region. This is because a
fragment emits a large number of neutrons in this mass region
while its complementary fragment with a little higher mass
emits a small number of neutrons. There is a good agreement
between calculated and the experiment based systematics [13]
secondary yields as seen in Fig. 19.

Charge to mass ratio (Z/A) of fragments deviates from
that of the fissioning nucleus. Since the charge of all isobars
are not the same because of motion of both protons and
neutrons through the fissioning nucleus at the pre-scission
point. At the time of rupture, there is some probability for

FIG. 19. Calculated primary and calculated and experimental
(evaluated [13]) secondary mass yield distribution for 252Cf(sf ).

the existence of any nucleon of the fissioning system at any
part of the system. This results in distribution of charge for
isobars rather than having a unique value of charge. This
distribution may be assumed to be Gaussian with constant
width which is particular for each fissioning system [13].
The width parameters for primary and secondary yields are
shown in Fig. 20. Isobaric charge distribution widths, σz of
secondary yields are calculated after Monte Carlo calculations
of prompt neutron emission in the same code. It is clearly seen
that the widths of secondary yield distributions are higher
than that of primary yields. This is because the charge range
of the mass chain is extended due to neutron evaporation
of fragments with the higher mass. If charge density of
fragments may be assumed to be approximately the same
with that of fissioning system, charge of fragments is directly
related to the mass number of fragment. Therefore fragments
with the high atomic and mass number produces fragments
with the smaller mass number but with the same atomic number
due to neutron evaporation. The result is the broadening of the
widths of the secondary mass chains with respect to that of the
primary. This broadening can easily be seen in Fig. 20.

There is a minimum in the width around A ≈ 130. This is
due to the fact that neutron multipliciy is very low in this mass
region and as a result the broadening in the charge distribution
is reduced.

The most probable charge for each isobar chain is symbol-
ized as Zp in the Wahl model [13]. If the charge-to-mass ratio
of the fissioning nucleus were preserved in the fragments in

FIG. 20. Widths of charge distribution calculated with BGM
model for secondary yields of 252Cf(sf ).
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FIG. 21. Comparison of charge polarization, �Z of secondary
fragments calculated with the BGM and Wahl models in 252Cf(sf )

the fission process, the most probable charge can be predicted
with the assumption of unchanged charge distribution (Zucd).
The Zucd can easily be obtained from the product of fragment
mass with the charge-to-mass ratio of the fissioning nucleus.
Z′

ps are observed to be slightly different than Zucd. This
phenomenon is called charge polarization and it is denoted
by �Z = Zp − Zucd. These �Z values for primary fragments
calculated from the Zp model of Wahl are shown in Fig. 21.
It has a positive value for light fragments and a negative one
for heavy fragments. This is related to the ratio of the surface
energy to the Coulomb energy of nucleus. At equilibrium,
the surface energy balances the Coulomb energy. At this
equilibrium, the ratio between these two energies increases
as the volume of the nucleus increases. Surface energy and
Coulomb energy are proportional to the terms A2/3 and
Z2/A1/3. Therefore surface-to-Coulomb energy ratio would
be proportional to Z2/A and so the charge density (Z/A) of
heavy nuclei is smaller than that of light nucleus to keep Z2/A
constant. Charge polarisation phenomena is the reflection of
this fact coming from the surface-to-Coulomb energy ratio
differences at different regions of fissioning systems (heavy
head, light head and neck region). As a result the charge density
of the heavy fragments is smaller than that of light ones. This is
clear from the values calculated using the empirical Zpmodel
of Wahl, which are given in Fig. 21.

The emission of the neutron causes an increase in the charge
density of fragments since the mass number decreases by one
with no change in their charge. It is clear that this causes
an increase in charge polarization values as seen from Fig. 21.
This effect results in positive charge polarization values for the
most of the secondary heavy fragment region. As seen from
Fig. 21, there is a good agreement between the experiment
based systematics [13] and calculated values.

IV. CONCLUSION

In conclusion, we have employed a tool to study the
emission of neutrons and gamma rays from fission fragments
using the Monte Carlo method within the BGM model [4].
The pre-scission shape for each fission mode is determined
by employing the experimental mass and kinetic energy
distributions in the spontaneous fission of 252Cf. As a result
of the good agreement obtained between the calculated and
experimental values of several important quantities in the
spontaneous fission of 252Cf, it is concluded that the BGM
model may be used to study quantitatively, mass, kinetic
energy, mode probability and excitation energy distributions of
primary fission fragments in the nuclear fission. The sequential
emission of neutrons and gamma rays from primary fission
fragments is taken as a statistical process and treated by a
Monte Carlo method. The mass dependence of the average
number of prompt neutrons is shown in Fig. 11. The saw-tooth
structure is well reproduced indicating that the partition of
excitation energy in the fission process is accounted for well
within the BGM model. The total kinetic energy dependence
of the total neutron multiplicity shows saturation behavior at
lower TKE values, as seen in Fig. 15. Such behavior may
be expected as a result of multimodal fission. In the recent
study by Lemaire [11] it was concluded that the partition of
total excitation energy between light and heavy fragments was
treated adequately neither by assuming the fragments have
the same temperature nor by using experimental values of
emitted neutrons and gamma rays. Failure of equal temperature
hypothesis had been concluded also by Kildir [24]. In this
paper, we offer a new hypothesis based on the BGM model.
Here, the pre-scission shape determined by employing the
experimental mass and kinetic energy distributions in a given
fissioning system could represent a relatively stable state,
which ruptures due to Rayleigh instability, forming two
deformed fragments touching each other at the scission point.
Calculational results obtained on the mass, kinetic energy,
neutron and gamma ray multiplicity distributions are directly
dependent on the pre-scission shapes. This study will be
extended to other fissioning nuclei to investigate the validity
of the model.
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