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We studied the fragmentation of colliding nuclei at the energy of vanishing flow and evaluated its mass
dependence throughout the periodic table. This study was performed within the framework of the quantum
molecular dynamics model, which has been reported to reproduce the experimental data at low incident
energies quite nicely. We simulated as many as 11 reactions for which the balance energy had been measured
experimentally. Our observations at the energy of vanishing flow clearly suggest the existence of a power law
system mass dependence for various fragment multiplicities. The power factor τ (∝Aτ ) is close to (−1/3), as has
also been reported for the mass dependence of the energy of vanishing flow. Experiments are needed to verify
these predictions.
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I. INTRODUCTION

The collective flow measured/predicted in a heavy-ion
collision is one of the few quantities/observables that are
sensitive to the reaction ingredients and have been investigated
extensively over the last two decades [1–25]. The study of
collective flow also gives insight into the reaction dynamics
as well as into the hot and dense nuclear matter formed in a
reaction. One also wants to shed light on the equation of state
and on the nucleonic cross section—one of the ultimate goals
of heavy-ion collisions [1–25]. The collective flow (and its
nature) depends crucially on several factors such as the size
of the system, colliding geometry (i.e., the impact parameter),
and incident energy of the projectile.

The reaction dynamics at low incident energies is governed
by the attractive mean field that prompts the emission
of particles into the backward hemisphere. Whereas the
dominance at higher incident energies is due to the binary
nucleon-nucleon collisions causing the particle emission into
the forward hemisphere. While going from the low to higher
incident energies, the collective transverse flow, at a particular
incident energy, passes through a zero balance point [1–23].
This energy point is called the energy of vanishing flow (EVF)
or, alternatively, the balance energy [1–23]. The EVF has been
assumed to be helpful in finding the equation of state and/or
the nucleonic cross sections. A connection between balance
energy and critical liquid-gas phase transition (with a power
law fragment mass dependence) has also been put forward in
the literature [24]. During the last few years, extensive efforts
have been made to measure and understand the energy of
vanishing flow [1–23].

Recently, one of us and collaborators [22–23] presented a
dynamic calculation of the EVF ranging between 12C+12C
and 238U+238U reactions. There, an A−1/3 dependence was
obtained, and some information about the nucleonic cross
sections was extracted. The experimental studies measured
the balance energy between mass 24 and mass 394 [1–23].
Recently, one study has also reported the balance energy of
197Au+197Au reactions [13]. This extraction is based on the

minimum in the excitation function of the flow which has been
interpreted as the balance between the attraction and repulsive
components of the nuclear interactions.

It is worth mentioning that only a few attempts discuss
other variables such as density, temperature, and nucleon-
nucleon binary collisions apart from the participant-spectator
matter at the energy of vanishing flow [10,15–18,21–23].
Unfortunately, no study exists in the literature so far that
sheds light on the fragment’s structure at the balance point.
This is a very important area to study, as EVF represents
the counterbalancing of the attractive and repulsive forces.
This counterbalancing had led to the mass-independent
participant-spectator matter at the balance point [23]. Since
fragmentation depends on the role of attractive and repulsive
forces, it is of interest to investigate the fragment structure at
EVF.

One should also note that the energy range of the balance
point over the periodic table is also very interesting (it varies
between 207 MeV/nucleon for 12C+12C to 43 MeV/nucleon
for 197Au+197Au) [22–23]. In this energy domain, one has
fusion-fission, onset of multifragmentation, evaporation, and
vaporization among others. For the lighter colliding systems,
the reaction time is too short for global equilibrium to occur;
whereas a longer reaction time in the heavier nuclei does allow
the matter to equilibrate. As reported in Ref. [25], a significant
portion of the colliding nucleons go into light as well as
intermediate mass fragments. The light and intermediate
mass fragments constitute about 2/3 and 1/3, respectively, at
150 MeV/nucleon, whereas they are 1/3 and 2/3 at 50 MeV/
nucleon [25]. The complexity of the above mentioned phe-
nomena [25] makes the present study further interesting. In
view of the above cited reasons, it is highly desirous to
study the fragment structure at the balance energy to see how
mass dependence of the fragment structure behaves at EVF
and whether power mass law (as obtained in the energy of
vanishing flow) also exists for various fragments. Section II
deals with the model, Sec. III is devoted to the results, and
Sec. IV summarizes our findings.
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II. THE MODEL

We describe the time evolution of a heavy-ion reaction
within the framework of the quantum molecular dynamics
(QMD) model [19–23,25–29] which is based on a molecular
dynamics picture. Here, each nucleon is represented by a
coherent state of the form

φα(x1, t) =
(

2

Lπ

) 3
4

e−(x1−xα (t))2
eipα (x1−xα )e− ip2

α t

2m . (1)

Thus, the wave function has two time-dependent parameters
xα and pα . The total n-body wave function is assumed to be a
direct product of coherent states:

φ = φα(x1, xα, pα, t)φβ(x2, xβ, pβ, t) · · · , (2)

where antisymmetrization is neglected. One should, however,
keep in the mind that the other quantum features have been
introduced. For instance, proper Fermi motion of nucleons is
also implemented at the ground state. The initial values of the
parameters are chosen in a way that the ensemble (AT +AP )
nucleons give a proper density distribution as well as a proper
momentum distribution of the projectile and target nuclei. The
time evolution of the system is calculated using the generalized
variational principle. We start out from the action

S =
∫ t2

t1

L[φ, φ∗]dτ, (3)

with the Lagrange functional

L =
(

φ

∣∣∣∣ih̄ d

dt
− H

∣∣∣∣φ
)

, (4)

where the total time derivative includes the derivatives with
respect to the parameters. The time evolution is obtained by
the requirement that the action is stationary under the allowed
variation of the wave function

δS = δ

∫ t2

t1

L[φ, φ∗]dt = 0. (5)

If the true solution of the Schrödinger equation is contained in
the restricted set of wave functions φα (x1, xα, pα) , this vari-
ation of the action gives the exact solution of the Schrödinger
equation. If the parameter space is too restricted, we obtain that
wave function in the restricted parameter space which comes
close to the solution of the Schrödinger equation. Performing
the variation with the test wave function (2), we obtain for
each parameter λ a Euler-Lagrange equation

d

dt

∂L
∂λ̇

− ∂L
∂λ

= 0. (6)

For each coherent state and a Hamiltonian of the form

H =
∑

α


Tα + 1

2

∑
αβ

Vαβ


 ,

the Lagrangian and the Euler-Lagrange function can be easily

calculated [26] as

L =
∑

α

ẋαpα −
∑

β

〈Vαβ〉 − 3

2Lm
, (7)

ẋα = pα

m
+ ∇pα

∑
β

〈Vαβ〉, (8)

ṗα = −∇xα

∑
β

〈Vαβ〉. (9)

Thus, the variational approach has reduced the n-body
Schrödinger equation to a set of 6n different equations for the
parameters which can be solved numerically. If one inspects
the formalism carefully, one finds that the interaction potential
which is actually the Bruckner G-matrix can be divided into
two parts: (i) a real part and (ii) an imaginary part. The real
part of the potential acts like a potential, whereas the imaginary
part is proportional to the cross section.

In the present model, the interaction potential comprises
the following terms:

Vαβ = V 2
loc + V 3

loc + VCoul + VYuk, (10)

Vloc is the Skyrme force whereas VCoul and VYuk define,
respectively, the Coulomb and Yukawa terms. The expectation
value of these potentials is calculated as

V 2
loc =

∫
fα(pα, rα, t)fβ(pβ, rβ, t)V (2)

I (rα, rβ )

× d3rαd3rβd3pαd3pβ, (11)

V 3
loc =

∫
fα(pα, rα, t)fβ(pβ, rβ, t)fγ (pγ , rγ , t)

×V
(3)
I (rα, rβ, rγ ) d3rαd3rβd3rγ

× d3pαd3pβd3pγ . (12)

Where fα(pα, rα, t) is the Wigner density which corresponds
to the wave functions (Eq. 2). If we deal with only the local
Skyrme force, we get

V Skyrme =
AT +AP∑

α=1


A

2

∑
β=1

(
ρ̃αβ

ρ0

)
+ B

C + 1

∑
β �=α

(
ρ̃αβ

ρ0

)C


 .

(13)

Here A,B, and C are the Skyrme parameters which are
defined according to the ground state properties of a nucleus.
Different values of C lead to different equations of state. A
larger value of C (=380 MeV) is often dubbed as a stiff
equation of state. The Pauli principle enters the calculations
via the collision term only. A refined version in terms of
constrained molecular dynamics has also been put forward
recently [30].

III. RESULTS AND DISCUSSION

The literature contains a number of attempts to study the
nature of the equation of state. Following Refs. [1,6,8,10,
17–23,31,32], we shall also employ a stiff equation of state
throughout the present analysis. It should also be noted that
the success rate is nearly the same for stiff and soft equations
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of state. Furthermore, Refs. [6,10,17,18,32] have shown that
the difference between Ebal using a stiff and that using a
soft equation of state is insignificant for central heavy-ion
collisions. Following Refs. [6,10,17,21–23,32–34], we also
use a constant energy-independent cross section. As shown
by Li [15], most of the collisions below 100 MeV/nucleon
happen with nucleon-nucleon cross sections of 55 mb strength.
Keeping the present energy domain in mind, the choice of a
constant cross section is justified. It has also been shown by
Zheng et al. [31] that a stiff equation of state with a free
nucleon-nucleon cross section and a soft equation of state
with a reduced cross section yield nearly the same results.
The inclusion of momentum-dependent interactions has an
influence in peripheral collisions, but their role is marginal
in central collisions. Furthermore, the slope of the balance
energy is also insensitive to the momentum dependence of
the interaction [20]. We simulated each of the reactions
of 36Ar+27Al (b = 2 fm), 40Ar+27Al (b = 1.6 fm), 40Ar+
45Sc (b/bmax = 0.4), 40Ar+51V (b/bmax = 0.3), 64Zn+
48Ti (b = 2 fm), 58Ni+58Ni(b/bmax = 0.28), 64Zn+58Ni (b =
2 fm), 86Kr+93Nb (b/bmax = 0.4), 93Nb+93Nb (b/bmax =
0.3), 139La+139La (b/bmax = 0.3), and 197Au+197Au (b =
2.5 fm) for 1000–3000 events. As noted in Ref. [22], the
impact parameter is guided by the experimental constraints.
The incident energies, which are also the balance energies,
read as 74, 67.3, 89.4, 67.8, 59.3, 62.6, 56.6, 69.2, 57, 51.6, and
43 MeV/nucleon, respectively, for the above reactions [22].

The QMD model had been robust against the findings of
several experiments in the literature [25,35]. Interestingly,
as noted in Ref. [25], the QMD model explains the frag-
ments and charged-particle multiplicities in the symmetric
reactions of Xe+Sn (at incident energies of 25, 32, and
50 MeV/nucleon) and Kr+Au (at incident energies between
55 and 200 MeV/nucleon) as well as in the highly asymmetric
reactions of O+Br/Ag (at incident energies between 25 and
200 MeV/nucleon) [35]. One should note, however, that the
agreement between the QMD model and experimental findings
at the low energy tail is unexpected since the QMD model,
being a semiclassical approach, lacks the refined quantum
features needed at low incident energies. These examples
clearly suggest that the QMD model explains the dynamics
at the lower energy tail where a thermalized source is quite
prominent. On the other hand, the same QMD model fails badly
at higher incident energies (E � 400 MeV/nucleon) pointing
toward a low momentum transfer from hot participant matter
to spectator matter [36]. Since our present energy domain
is at the lower tail of the incident energy (between 43 and
90 MeV/nucleon), the QMD model can be applied safely.

Every dynamic model follows the trajectory of individual
nucleons only. Therefore, one has to clusterize the phase
space at the end of the reaction to get the fragments. There
are different secondary algorithms available in the literature
that range from the simple spatial correlation method to
complicated energy minimization algorithms [36]. In the
present work, we shall use the simple spatial clusterization
algorithm dubbed as the minimum spanning tree (MST)
method where nucleons are bound in a fragment if the distance
of two nucleons is smaller than 4 fm. As reported above, this
algorithm works fine at mild excitation energies.
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FIG. 1. Snapshots of a single event in the phase space (x, z), left
side, and (px, pz), right side, for the reactions 40Ar+27Al, 93Nb+93Nb,
and 197Au+197Au at their corresponding balance energies of, respec-
tively, 67.3, 57, and 43 MeV/nucleon.

In Fig. 1, we display the snapshots of the final phase
space for a few reactions at the energy of vanishing flow. The
saturation time, corresponding to the saturated flow, depends
upon the reaction ingredients. We plot in Fig. 1, the (x, z)
and (px, pz) for the reactions of 40Ar+27Al, 93Nb+93Nb, and
197Au+197Au at 1000 fm/c. Interestingly, we see that the spatial
space is quite similar and homogeneous in all three reactions. A
single spherical distribution in the momentum space indicates
a nearly thermalized source. The above picture is quite similar
for a large number of different events indicating a uniform
distribution. From the figure, one also notices that the blast
mechanism is at its threshold. One may need even a higher
incident energy for the participant-spectator demarcation. One
may also conclude that a large part of the nucleons present in
various fragments are preselected due to their initial phase
space. The situation in these central collisions is pointing
toward a semitransparent regime which will, of course, turn
into a deep inelastic collision once we shift to peripheral
collisions.

The phase space obtained during each time step is then
clusterized using the MST method which yields the fragments
of different sizes ranging from the free nucleons to deep
spallation and fission residuals.

In Fig. 2, we display the time evolution of different
fragments obtained in the above cited reactions at their
corresponding theoretical balance energy. We display the
largest fragment survived Amax, emitted nucleons, light
mass fragments (LMF’s) 2 � A � 4, medium mass frag-
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FIG. 2. Time evolution of the largest fragment Amax, free
nucleons, LMF’s (2 � A� 4), MMF’s (5 � A� 11), HMF’s
(15% � A� 30%), and IMF’s (4 � A� 30%) for the collisions of
40Ar+27Al, 40Ar+51V, 58Ni+58Ni, 93Nb+93Nb, 139La+139La, and
197Au+197Au at their corresponding theoretical balance energies of,
respectively, 67.3, 67.8, 62.6, 57, 51.6, and 43 MeV/nucleon.

ments (MMF’s) 5 � A � 11, heavy mass fragments (HMF’s)
15% � A � 30% as well as the intermediate mass fragments
(IMF’s) 4 � A � 30% (of the largest between target and
projectile). The percentages given in the HMF and IMF
definitions are used to avoid unwanted and artificial heavy
fragments that can appear in lighter colliding nuclei. As has
been discussed by many authors [35], Amax has a peak around
50–100 fm/c. The excited compound nucleus decays by the
emission of nucleons and fragments. As a result, free nucleons,
LMF’s, MMF’s, and IMF’s display a constant rise in their
multiplicity. The HMF’s are unstable and decay at a later
time. It is also evident that lighter colliding nuclei saturate
much faster than heavy nuclei. In addition, since balance
energy in heavier nuclei is much smaller than that in lighter
nuclei (Ebal ∝ A−1/3), it takes longer time for heavier nuclei
to saturate. One also notices that different fragments (except
HMF’s) are quite stable at such low incident energies; this is
in contrast to high incident energies where IMF’s and MMF’s
saturate only after 800 fm/c. The phase space is restricted
in the domain of Fermi energy, and once frequent nucleon-
nucleon collisions starts, matter breaks into pieces. As noted in
Ref. [23], the average and maximal densities scale as A−0.05182

and A−0.11477 respectively, indicating that the compression
reached at the balance energy is almost mass independent.
However, the reaction time zone for ρ/ρ0 > 1 varies as A0.34,
it is around 12 fm/c for 12C+12C, whereas it is 30 fm/c for
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for the free nucleons, A = 2, LMF’s, MMF’s, HMF’s, and IMF’s for
the reactions listed in Fig. 2.

197Au+197Au. This is not surprising since incident energy as
well as initial velocity vary with same power factors. In other
words, the cracks in the compound nucleus appear after the
phase of high density. We have also examined the binding
energy of all the fragments listed in Fig. 2. Independent
of the masses of colliding nuclei, all fragments are reason-
ably bound. The average binding energy/nucleon is around
−3 MeV/nucleon for LMF’s, whereas it increases to around
−8 MeV/nucleon for IMF’s.

It would be of further interest to see the energy distribution
of various fragments emitted at the balance energy. Figure 3
shows dN

ptdpt
vs pt , where pt is the mean transverse momentum.

Here, we display the free nucleons, A = 2, LMF’s, MMF’s,
HMF’s, and IMF’s. We see that, independent of the masses of
colliding nuclei, the emitted nucleons and lighter fragments
are more energetic than the heavier fragments. Furthermore,
all the colliding nuclei emit fragments with similar endpoint
tail energies pointing toward the uniformity in the velocity
of fragments emitted at the balance energy. In addition, the
shape is quite the same in all cases, which further strengthens
homogeneity of the reaction dynamics at the balance energy.

In Fig. 4, we display the spectrum of rescaled longitudinal
momentum in terms of rapidity distribution of fragments,
where rapidity is defined as

Y (i) = 1

2
ln

E(i) + pz(i)

E(i) − pz(i)
, (14)

and E(i) and pz(i) are, respectively, the total energy and
longitudinal momentum of the i-th particle. We shall rather
use a reduced rapidity Yred(i) = Y (i)/Ybeam. We see, in part
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energy, which is different for every reaction. (a) Incident energy
corresponds to theoretical balance energy. (b) Incident energy is fixed
at 63.4 MeV/nucleon corresponding to the mean energy taken as the
average of all theoretical balance energies.

(a) of the figure, that the rapidities of nucleons emitted in the
reactions of 40Ar+27Al, 40Ar+51V, 58Ni+58Ni, 93Nb+93Nb,
139La+139La, and 197Au+197Au are quite similar, which again
indicates similar dynamics at the balance point. If we perform
a similar analysis at the average balance energy (taken as
the average of different balance energies), we see in part
(b) differences at the midrapidity region from where most
of the fragments are emitted. It is worth mentioning that the
nucleon-nucleon collisions causing the midrapidity emission
follow a power law Aτ with τ close to unity.

Before coming to the energy of vanishing flow (EVF), let us
examine the change in the multiplicity of different fragments
with incident energy. We display, in Fig. 5, the emission of the
largest fragments Amax, free nucleons, LMF’s, and IMF’s at the
final stage of the reaction. We see well-accepted trends; with
the increase in the incident energy, Amax starts downsizing; at
over 120 MeV/nucleon (in the case of 40Ar+45Sc), it reduces to
half its value. As a result, LMF emissions increase. This is also
understandable since light mass fragments are created in the
midrapidity region following the nucleon-nucleon collisions.
However, the IMF emission either is due to the spectator matter
or serves as a counterbalancing of the attractive and repulsive
forces; therefore, after reaching a boiling off point in the
40Ar+45Sc reaction (typical IMF’s are the remnant of projectile
and target), it again drops down. This behavior is very
prominent at higher incident energies where a clear rise and fall
in the multiplicities of IMF’s is observed with an increase in the
incident energy as well as impact parameter. However, we do
not see any typical structural changes at the energy of vanishing
flow (marked by arrows in the figure). From the figure and also
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FIG. 5. Mean multiplicities of free nucleons, LMF’s, and IMF’s,
and masses of the largest surviving fragments in simulations of
40Ar+45Sc, 58Ni+58Ni, and 197Au+197Au as a function of incident
energy. Arrows show the balance energy in each case.

from other studies [25,35,37], it is clear that the variation of
incident energy has a uniform and linear effect on the emission
of fragments. As noted earlier, at low incident energies, the
attractive mean field dominates; whereas at higher incident
energies, repulsive nucleon-nucleon scattering dominates. The
formation of complex fragments also results because of their
mutual competition. If the attractive mean field dominates,
it will produce very heavy fragments, whereas dominance of
repulsive scatterings will shatter the matter into small pieces.
At the balance energy, both these forces are counterbalanced;
however, it is not reflected sharply in the emission of complex
fragments.

Let us now understand the relation of multiplicities of
different fragments with the mass of the colliding nuclei.
For this study, we analyzed all the above cited reactions
ranging between mass 63 and mass 394 at their corresponding
theoretical balance energies and also at an average balance
energy of 63.4 MeV/nucleon (calculated by averaging over all
balance energies).

In Fig. 6, we display the free nucleons, A = 2, LMF’s,
MMF’s, HMF’s, and IMF’s as a function of the system mass
at their corresponding balance energies as well as at the fixed
incident energy of 63.4 MeV/nucleon. All quantities except
HMF’s show increasing trends. In this low incident energy
range (43–90 MeV/nucleon), all quantities (except HMF’s)
increase monotonically. If we merge both HMF’s and IMF’s,
the new quantity will also increase monotonically with the size
of the system. At very low incident energies, the Pauli principle
hinders the opening of the phase space. As incident energy
increases, the phase space opens up for binary nucleon-nucleon
collisions, allowing the cracks to form, and then fragments
of different sizes are produced. The point to note is that free
nucleons as well as A = 2 show no energy dependence over the
entire mass range. Whereas LMF’s, MMF’s, HMF’s and IMF’s
do not show energy dependence for lighter colliding nuclei,
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IMF’s (4 � A� 30%) as a function of composite mass of the
colliding nuclei (AT + AP ) for the reactions 36Ar+27Al, 40Ar+27Al,
40Ar+45Sc, 40Ar+51V, 64Zn+48Ti, 58Ni+58Ni, 64Zn+58Ni,
86Kr+93Nb,93Nb+93Nb, 139La+139La, and 197Au+197Au at the
energy of vanishing flow (solid squares) and at a fixed energy
63.4 MeV/nucleon (open squares). The power law fits (∝ Aτ ) are
also displayed in both cases as solid and dashed lines, respectively.

they have a strong energy dependence for heavier colliding
nuclei. The energy-independent (or weakly dependent) nature
points toward fewer nucleonic hard collisions (and available
free phase space). One also notices that the multiplicities of
LMF’s, MMF’s and IMF’s are greater at 63.4 MeV/nucleon
than at the balance energy for system masses �110 units,
whereas HMF’s show a reverse trend. The balance energy for
masses �110 is around 40–60 MeV/nucleon, which is smaller
than 63.4 MeV/nucleon. With an increase in the incident
energy, more and more nucleon-nucleon binary collisions
happen, leading to more medium mass fragments. It seems
that the energy of 63.4 MeV/nucleon is too large for the
emission of HMF’s. These results agree with other theoretical
and experimental findings [25,35,37]. As reported in Ref. [37],
the mass dependence at a fixed incident energy yields a power
law ∝ Aτ . We also obtain a similar dependence for the present
case. Interestingly, even at the balance energy, a similar power
law behavior can be seen with the power factor τ being
less sensitive to the mass dependence. This is a remarkable
observation. The present energy range (at balance point) varies
from 89.4 MeV/nucleon for 40Ar+45Sc to 43 MeV/nucleon for
197Au+197Au. In spite of the difference of 46 MeV/nucleon,
the power law dependence still holds.

In Fig. 7, we display the rescaled multiplicities of A = 2,

LMF’s, 7 � A � 9, MMF’s, along with masses 2 � A � 30%
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FIG. 7. Normalized multiplicities of A = 2, LMF’s (2 �
A � 4), (7 � A � 9), MMF’s (5 � A� 11), (2 � A� 30%), (3 � A�
30%), and IMF’s (4 � A� 30%) as a function of composite size of
the system (AT + AP ) for all the reactions listed in Fig. 6. The power
law fits are also conducted and displayed by lines in each case.

and 3 � A � 30% as well as IMF’s. Interestingly, in all cases,
a power law close to (−1/3) is obtained. The deviation for
heavier system masses points toward the exceeding role of
Coulomb interactions in heavier colliding nuclei. It has been
shown and discussed extensively in the literature that the
mass yield curve approximately obeys a power law behavior
∝ A−τ

frag, i.e., the mass of different fragments [38]. It has
been conjectured (though controversially) that this behavior
(which has also been called “accidental” [38]) is an indication
of the phase transition between gaseous and liquid phases
of the nuclear matter. The power law dependence that we
are discussing is something very different. The above power
law function is for the multiplicity of a “given fragment”
which scales with the size of the system. One should note
that this power law (∝ −1/3) for the emission of different
fragments at the energy of vanishing flow depicts the same
mass-dependence trends as the energy of vanishing flow, for
which the power factor is also close to (−1/3). This factor
emerges from the mutual dominance of the surface of the
mean field ∝ (A2/3) and nucleon-nucleon scatterings ∝ A,
thus giving us a unique dependence ∝ (A−1/3) in all cases.

IV. SUMMARY

We presented the first-ever study of the emission of
fragments at the energy of vanishing flow, i.e., a point in the
energy scale where the attractive mean field (dominating at
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the lower end of the energy scale) and repulsive nucleon-
nucleon collisions (dominating at higher incident energies)
counterbalance each other. This study was performed within
the framework of the QMD model, which is reported to work
well at low incident energies. Our findings clearly point toward
a power law dependence of different fragment multiplicities
at the energy of vanishing flow. This power factor τ (∝ Aτ )
is close to (−1/3) suggesting again the mutual roles of the
mean field and collisions in the formation of fragments at

the balance point. This dependence is similar to the one
reported for the mass dependence of the energy of vanishing
flow.
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