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Superscaling analyses of inclusive electron scattering from nuclei are extended from the quasielastic processes
to the delta excitation region. The calculations of (e, e′) cross sections for the target nucleus 12C at various
incident electron energies are performed using scaling functions f (ψ ′) obtained in approaches going beyond
the mean-field approximation, such as the coherent density fluctuation model (CDFM) and the one based on
the light-front dynamics method. The results are compared with those obtained using the relativistic Fermi gas
(RFG) model and the extended RFG model (ERFG). Our method utilizes in an equivalent way both basic nuclear
quantities, density and momentum distributions, showing their role for the scaling and superscaling phenomena.
The approach is extended to consider scaling function for medium and heavy nuclei with Z �= N for which
the proton and neutron densities are not similar. The asymmetry of the CDFM quasielastic scaling function is
introduced, simulating in a phenomenological way the effects that violate the symmetry for ψ ′ � 0, including
the role of the final-state interaction. The superscaling properties of the electron scattering are used to predict
charge-changing neutrino-nucleus cross sections at energies from 1 to 2 GeV. A comparison with the results of
the ERFG model is made. The analyses make it possible to gain information about the nucleon correlation effects
on both local density and nucleon momentum distributions.
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I. INTRODUCTION

Over the past four decades electron scattering has provided
a wealth of information on nuclear structure and dynamics.
Form factors and charge distributions have been extracted from
elastic scattering data, whereas inelastic measurements have
allowed for a systematic study of the dynamic response over
a broad range of momentum and energy transfer. The nuclear
y-scaling analysis of inclusive electron scattering from a large
variety of nuclei (e.g., Refs. [1–10]) showed the existence
of high-momentum components in the nucleon momentum
distributions n(k) at momenta k > 2 fm−1 due to the presence
of nucleon-nucleon (NN) correlations. It was shown (see, e.g.,
Refs. [11–15]) that this specific feature of n(k), which is
similar for all nuclei, is a physical reason for the scaling and
superscaling phenomena in nuclei.

The concepts of scaling [1–9] and superscaling [10–16]
have been explored in Refs. [12,17] for extensive analyses of
the (e, e′) world data (see also Ref. [18]). Scaling of the first
kind (no dependence on the momentum transfer) is reasonably
good as expected, at excitation energies below the quasielastic
(QE) peak, whereas scaling of second kind (no dependence
on the mass number) is excellent in the same region. When
both types of scaling behavior occur one says that superscaling
takes place. At energies above the QE peak both scaling of the
first and, to a lesser extent, of the second kind are shown to
be violated because of important contributions introduced by

effects beyond the impulse approximation, namely inelastic
scattering [19,20] together with correlation contributions and
meson exchange currents [21,22].

The superscaling analyses of inclusive electron scattering
from nuclei for relatively high energies (several hundred
MeV to a few GeV) have recently been extended to include
not only quasielastic processes but also the region where �

excitation dominates [23]. A good representation of the
electromagnetic response in both quasielastic and � regions
has been obtained using the scaling ideas, importantly, with
an asymmetric QE scaling function f QE(ψ ′) (ψ ′ is the scaling
variable in the QE region) and a scaling function f �(ψ ′

�)
in the region up to inelasticities where the � contribution
reaches its maximum. Both functions were deduced from
phenomenological fits to electron-scattering data. Particularly,
for the scaling function in the quasielastic region it has been
shown in Ref. [23] that, in contrast to the relativistic Fermi gas
model scaling function, which is symmetric, limited strictly
to the region −1 � ψ ′ � + 1, and with a maximum value
3/4, the empirically determined f QE(ψ ′) has a somewhat
asymmetric shape with a tail that extends toward positive
values of ψ ′ and its maximum is only about 0.6. Of course, the
specific features of the scaling function should be accounted
for by reliable microscopic calculations that take final-state
iterations (FSI) into account. In particular, the asymmetric
shape of f QE tested in Refs. [24,25] by using a relativistic
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mean field (RMF) for the final states shows a very good
agreement with the behavior presented by the experimental
scaling function.

The superscaling analyses and the present knowledge of
inclusive electron scattering allowed one to start studies of
neutrino scattering off nuclei on the same basis. The reactions
of incident neutrino beams interacting with a complex nucleus
have offered unique opportunities for exploring fundamental
questions in different domains in physics. Recently, positive
signals of neutrino oscillations confirmed the hypothesis of
nonzero neutrino masses and triggered much interest on this
issue [26]. To better analyze the next generation of high-
precision neutrino oscillation experiments and to reduce their
systematic uncertainty both neutral- (e.g., Refs. [27–31]) and
charged-current (e.g., Refs. [23,24,29,30,32–37]) neutrino-
nucleus scattering have stimulated detailed investigations.

The neutrino-nucleus interactions have been studied within
several approaches investigating a variety of effects. Using the
superscaling analysis of few-GeV inclusive electron-scattering
data, a method was proposed in Ref. [23] to predict the
inclusive νA and νA cross sections for the case of 12C in
the nuclear resonance region, thereby effectively including
� isobar degrees of freedom. It was shown in Refs. [27,34]
that the important final-state interaction effects arising from
the use of relativistic optical potentials within a relativistic
Green’s function approach lower the cross section by at least
a 14% factor at incoming neutrino energies of 1 GeV. A
similar result has been obtained in Refs. [38,39], where the
use of random-phase approximation (RPA) to predict the
neutrino-nucleus cross section was discussed. Apart from
relativistic dynamics and FSI, other effects may influence the
neutrino-nucleus reactions. The role of Pauli blocking and FSI
in charged-current neutrino induced reactions is analyzed in
Refs. [35–37].

In this article we follow our method presented in Refs. [13–
15] to calculate the scaling function in finite nuclei first
within the coherent density fluctuation model (e.g., Refs. [40–
43]). This approach, which is a natural extension of the
relativistic Fermi gas (RFG) model, has shown how both
basic quantities, density and momentum distributions, are
responsible for the scaling and superscaling phenomena in
various nuclei. Although the scaling function obtained in Ref.
[13] is symmetrical around ψ ′ = 0, the results agree with the
available experimental data at different transferred momenta
and energies below the quasielastic peak position, showing
superscaling for ψ ′ < 0, including ψ ′ < −1, whereas in the
RFG model f (ψ ′) = 0 for ψ ′ � − 1. It was shown in Ref.
[14] that the QE scaling function can be obtained within the
coherent density fluctuation model (CDFM) in two equivalent
ways, on the basis of the local density distribution, as well
as of the nucleon momentum distribution. As pointed out in
Ref. [14], the nucleon momentum distributions n(k) for various
nuclei obtained in Ref. [44] within a parameter-free theoretical
approach based on the light-front dynamics method (e.g., Refs.
[45,46] and references therein) can also be used to describe
both y and ψ ′-scaling data. So, in our present work we explore
both methods, CDFM and light-front dynamics (LFD), to
investigate further the scaling functions and their applications
to analyses of electron and neutrino scattering off nuclei.

Our work is motivated by the fact that different models of
the nuclear dynamics (including those with RMF dynamics
and with RPA-type correlations accounted for) describe with
different success the basic size and shape of the cross sections
in studies of high-energy inclusive lepton scattering used so
far. For this reason we extend further our consideration and
calculate within the CDFM and LFD the scaling functions in
the kinematical regions of the QE and � peak on the basis of
momentum and density distributions of finite nuclear systems
in which nucleon correlations are included. This can be done
either by using available empirical data for these quantities or
theoretical calculations in which correlations are included to
some extent. Then, the obtained scaling functions are applied
to calculate electron-nucleus cross sections in QE and �

regions in the energy range from 500 MeV to 2 GeV for the
target nucleus 12C and to predict charge-changing neutrino and
antineutrino reaction cross sections from the scaling region to
the QE peak at energies of few GeV. We also make comparisons
of the results obtained using our methods with those obtained
using the RFG model and other theoretical schemes.

The article is organized in the following way. In Sec. II we
present the formalism needed in studies of scaling functions in
the quasielastic region and validate the superscaling within the
CDFM and LFD for a variety of nuclei with Z = N and Z �=
N . Then, we consider the nucleon momentum distributions and
their applications in both approaches showing the sensitivity
of the calculated scaling functions to the peculiarities of n(k)
in different regions of momenta. Section III contains the
CDFM and LFD methods to build up the scaling function
in the � region. The formalism involved in obtaining the
electron-nucleus cross sections in QE and � kinematical
regions and the results of the numerical calculations are
presented in Sec. IV A. In Sec. IV B we give our theoretical
predictions for cross sections of quasielastic charge-changing
neutrino reactions. Finally, in Sec. V we summarize the results
of our work.

II. SCALING FUNCTION IN THE QUASIELASTIC REGION

A. QE scaling function in the CDFM

As already mentioned in the Introduction, the superscaling
behavior was first considered within the framework of the RFG
model [10–12,16,17,19], where a properly defined function of
the ψ ′ variable was introduced. As pointed out in Ref. [12],
however, the actual nuclear dynamical content of the su-
perscaling is more complex than that provided by the RFG
model. It was observed that the experimental data have a
superscaling behavior in the low-ω side (ω being the transfer
energy) of the quasielastic peak for large negative values of ψ ′
(up to ψ ′ ≈ −2), whereas the predictions of the RFG model
are f (ψ ′) = 0 for ψ ′ � − 1. This imposes the consideration
of the superscaling in realistic finite systems. One of the
approaches to do this was developed [13,14] in the CDFM
[40–43] that is related to the δ-function limit of the generator
coordinate method [13,47]. It was shown in Refs. [13–15]
that the superscaling in nuclei can be explained quantitatively
on the basis of the similar behavior of the high-momentum
components of the nucleon momentum distribution in light,
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medium, and heavy nuclei. As already mentioned, the latter is
related to the effects of the NN correlations in nuclei (see, e.g.,
Refs. [40,41]).

The scaling function in the CDFM was obtained starting
from that in the RFG model [10–12,16] in two equivalent
ways: on the basis of the local density distribution ρ(r) and of
the nucleon momentum distribution n(k). This allows one to
study simultaneously the role of the NN correlations included
in ρ(r) and n(k) in the case of the superscaling phenomenon.
To explore these properties the scaling function f (ψ ′) has been
derived in two ways in CDFM in Ref. [14]. First, by means of
the density distribution ρ(r), it leads to

f QE(ψ ′) =
∫ α/(kF |ψ ′|)

0
dR|F (R)|2f QE

RFG[ψ ′(R)], (1)

with a weight function of the form

|F (R)|2 = − 1

ρ0(R)

dρ(r)

dr

∣∣∣∣
r=R

, (2)

where

ρ0(R) = 3A

4πR3
. (3)

f
QE
RFG[ψ ′(R)] with ψ ′(R) = kF Rψ ′/α is the scaling function

related to the RFG model

f
QE
RFG[ψ ′(R)]

= 3

4

[
1 −

(
kF R|ψ ′|

α

)2
]1 +

(
RmN

α

)2 (
kF R|ψ ′|

α

)2

×
2 +

(
α

RmN

)2

− 2

√
1 +

(
α

RmN

)2
 , (4)

mN being the nucleon mass and α = (9πA/8)1/3 � 1.52A1/3.
Second, by means of the momentum distribution n(k), the
scaling function is expressed by

f QE(ψ ′) =
∫ ∞

kF |ψ ′|
dkF |G(kF )|2f QE

RFG[ψ ′(kF )], (5)

where ψ ′(kF ) = kF ψ ′/kF and the weight function is

|G(kF )|2 = − 1

n0(kF )

dn(k)

dk

∣∣∣∣
k=kF

(6)

with

n0(kF ) = 3A

4πkF
3 . (7)

In Eq. (5) the RFG scaling function f
QE
RFG[ψ ′(kF )] can be

obtained from f
QE
RFG[ψ ′(R)] [Eq. (4)] by changing α/R by

kF . In Eqs. (1), (4), and (5) the Fermi momentum kF is not a
free parameter for different nuclei as it is in the RFG model,
but kF is calculated within the CDFM for each nucleus using

the corresponding expressions:

kF =
∫ ∞

0
dRkF (R)|F (R)|2

= α

∫ ∞

0
dR

1

R
|F (R)|2 = 4π (9π )1/3

3A2/3

∫ ∞

0
dRρ(R)R (8)

when the condition

lim
R→∞

[ρ(R)R2] = 0 (9)

is fulfilled and

kF = 16π

3A

∫ ∞

0
dkF n(kF )kF

3
(10)

when the condition

lim
kF →∞

[
n(kF )kF

4] = 0 (11)

is fulfilled.
As shown in Ref. [14], the integration in Eqs. (1) and

(5), using Eqs. (2) and (6), leads to the explicit relationships
of the scaling functions with the density and momentum
distributions:

f QE(ψ ′) = 4π

A

∫ α/(kF |ψ ′|)

0
dRρ(R)

×
{

R2f
QE
RFG[ψ ′(R)] + R3

3

∂f
QE
RFG[ψ ′(R)]

∂R

}
(12)

and

f QE(ψ ′) = 4π

A

∫ ∞

kF |ψ ′|
dkF n(kF )

×
{

kF
2
f

QE
RFG[ψ ′(kF )] + kF

3

3

∂f
QE
RFG[ψ ′(kF )]

∂kF

}
,

(13)

the latter at

lim
kF →∞

[
n(kF )kF

3] = 0. (14)

One can see the symmetry in both Eqs. (12) and (13) written
in r- and k-space. We also note that in the consideration up to
here the CDFM scaling function f QE(ψ ′) is symmetric under
the change of ψ ′ by -ψ ′.

In Refs. [13,14] we used the charge density distributions
to determine the weight function |F (R)|2 and f QE(ψ ′) in
Eqs. (1), (2), and (8) for the cases of 4He, 12C, 27Al, 56Fe,
and 197Au. The results for the scaling function f QE(ψ ′) agree
well with the available data from the inclusive quasielastic
electron scattering for 4He, 12C, 27Al, and 56Fe and only
approximately for 197Au for various values of the trans-
fer momentum q = 500, 1000, 1650 MeV/c [13] and q =
1560 MeV/c [14], showing superscaling for negative values of
ψ ′, including also those smaller than -1, whereas in the RFG
model f (ψ ′) = 0 for ψ ′ � − 1. One can see this in Fig. 1 for
4He, 12C, and 27Al at q = 1000 MeV/c. At the same time,
however, in Refs. [13,14] we encountered some difficulties
to describe the superscaling in 197Au, which was the heaviest
nucleus considered. We related this in Refs. [13,14] to the
particular A dependence of n(k) in the model that does not
lead to realistic high-momentum components of n(k) in the
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heaviest nuclei. We followed in Refs. [13,14] an artificial
way to “improve” the high-momentum tail of n(k) in 197Au
by taking the value of the diffuseness parameter b in the
Fermi-type charge density distribution of this nucleus to be
b = 1 fm instead of the value b = 0.449 fm (as obtained from
electron elastic-scattering experiments, see, e.g., Ref. [48]). In
this way the high-momentum tail of n(k) for 197Au in CDFM
becomes similar to those of 4He, 12C, 27Al, and 56Fe and this
leads to a good agreement of the scaling function f QE(ψ ′) with
the data also for 197Au. In Ref. [13] we pointed out, however,
that all the nucleons (not just the protons) may contribute to
f QE(ψ ′) for the transverse electron scattering and this could be
simulated by increasing of the diffuseness of the matter density
with respect to that of the charge density for a nucleus like
197Au that has much larger number of neutron than of protons.

In Ref. [15] we assumed that the reason why the CDFM does
not work properly in the case of 197Au is that we had used in
Refs. [13,14] only the phenomenological charge density, while
this nucleus has many more neutrons than protons (N = 118
and Z = 79) and therefore, proton and neutron densities may
differ considerably. In the case when Z �= N and the proton
and neutron densities are not similar, the total scaling function
will be expressed by the sum of the proton f QE

p (ψ ′) and neutron
f QE

n (ψ ′)-scaling functions, which are determined by the proton
and neutron densities ρp(r) and ρn(r), respectively:

f
QE
p(n)(ψ

′) =
∫ αp(n)/(kp(n)

F |ψ ′|)

0
dR|Fp(n)(R)|2f p(n)

RFG [ψ ′(R)]. (15)

In Eq. (15) the proton and neutron weight functions are
obtained from the corresponding proton and neutron densities∣∣Fp(n)(R)

∣∣2 = − 4πR3

3Z(N )

dρp(n)(r)

dr

∣∣∣∣
r=R

, (16)

αp(n) =
[

9πZ(N )

4

]1/3

, (17)∫ ∞

0
ρp(n)(�r)d�r = Z(N ), (18)

and the Fermi momentum for the protons and neutrons is given
by

k
p(n)
F = αp(n)

∫ ∞

0
dR

1

R
|Fp(n)(R)|2. (19)

The RFG proton and neutron scaling functions f
p(n)
RFG [ψ ′(R)]

have the form of Eq. (4), where α and kF stand for αp(n) from
Eq. (17) and k

p(n)
F from Eq. (19), respectively. The functions

are normalized as follows:∫ ∞

0
|Fp(n)(R)|2dR = 1, (20)∫ ∞

−∞
f

QE
p(n)(ψ

′)dψ ′ = 1. (21)

Then the total scaling function can be expressed by means of
both proton and neutron scaling functions:

f QE(ψ ′) = 1

A

[
Zf QE

p (ψ ′) + Nf QE
n (ψ ′)

]
(22)

and is normalized to unity.

The same consideration can be performed equivalently on
the basis of the nucleon momentum distributions for protons
np(k) and neutrons nn(k) presenting f QE(ψ ′) by the sum of
proton and neutron scaling functions (22) calculated similarly
to Eqs. (15)–(22) [and to Eqs. (5), (6), (10), and (11)]:

f
QE
p(n)(ψ

′) =
∫ ∞

k
p(n)
F |ψ ′|

dkF |Gp(n)(kF )|2f p(n)
RFG [ψ ′(kF )], (23)

where

|Gp(n)(kF )|2 = − 4πkF
3

3Z(N )

dnp(n)(k)

dk

∣∣∣∣
k=kF

(24)

with f
p(n)
RFG [ψ ′(kF )] containing αp(n) from Eq. (17) and k

p(n)
F

calculated as

k
p(n)
F =

∫ ∞

0
dkF kF |Gp(n)(kF )|2. (25)

The scaling functions for several examples, such as the
medium stable nuclei 62Ni and 82Kr and the heavy nuclei
118Sn and 197Au are calculated following Eqs. (15)–(22) using
the corresponding proton and neutron densities obtained in
deformed self-consistent mean-field Hartree-Fock (HF) +
BCS calculations with density-dependent Skyrme effective
interaction (SG2) and a large harmonic-oscillator basis with
11 major shells [49,50]. In Fig. 1 we give the results for the
82Kr and 197Au nuclei in which Z �= N and compare them with
the results for 4He, 12C (Z = N ) and 27Al (Z � N ), as well
as with the experimental data (presented by a gray area and
taken from Ref. [12]) obtained for 4He, 12C, 27Al, 56Fe, and
197Au. The scaling functions are in a reasonable agreement
with the data, which was not the case for 197Au calculated
in Ref. [13] by using only the Fermi-type charge den-
sity with phenomenological parameter values b = 0.449 fm
and R = 6.419 fm from Ref. [48]. At the same time we
note also the improvement in comparison with the RFG
model result in which f QE(ψ ′) = 0 for ψ ′ � − 1. Thus, it
can be concluded that the scaling function f QE(ψ ′) for nuclei

FIG. 1. The quasielastic scaling function f QE(ψ ′) at q =
1000 MeV/c for 4He, 12C, 27Al, 82Kr, and 197Au calculated in CDFM.
(Dotted line) RFG model result. The curves for 4He, 12C, and 27Al
nuclei almost coincide. (Gray area) Experimental data [11,12].
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with Z �= N for which the proton and neutron densities are
not similar has to be expressed by the sum of the proton
and neutron scaling functions. The latter can be calculated
by means of theoretically and/or experimentally obtained
proton and neutron local density distributions or momentum
distributions.

As known (e.g., Refs. [12,23]), the total inclusive electron
scattering response is assumed to be composed of several
contributions: (i) the entire longitudinal contribution that
superscales and is represented by the QE scaling function
f QE(ψ ′); (ii) a part of the transverse response, which arises
from the quasielastic knockout of nucleons and is also driven
by the scaling function f QE(ψ ′); and (iii) the additional
contribution of the transverse response from MEC effects
and from inelastic single-nucleon processes, including the
excitation of the � isobar. The effects of point (iii) break the
scaling. In Ref. [23] a universal scaling function f QE(ψ ′) has
been determined by reliable separations of the empirical data
into their longitudinal and transverse contributions for A > 4.
Such separations are available only for a few nuclei [51].
All of these response functions have been used to extract
the “universal” QE response function f QE(ψ ′) (see Fig. 1
of Ref. [23]), which is parametrized by a simple function.
This function has a somewhat asymmetric shape. Its left
tail (ψ ′ < 0) passes through the gray area of Fig. 1. The
right tail (ψ ′ > 0) extends larger toward positive values of
ψ ′. In contrast, the RFG scaling function is symmetric. The
CDFM scaling function discussed so far, which is based on
the RFG one, is also symmetric. As mentioned, the maximum
value of f QE(ψ ′) in RFG (and in CDFM) is 3/4, whereas
the empirical scaling function extracted in Ref. [23] reaches
about 0.6.

As mentioned in Ref. [23], if FSI are neglected, the RMF
theory [33,52,53] and relativized shell-model studies [54]
provide rather modest differences from the RFG predictions.
Another possible reason for the differences between the RFG
(or mean-field results) and the empirically determined scaling
function arises from high-momentum components in realistic
wave functions that may be large enough. In Ref. [23] the
scaling function was taken from the experiment. In the present
work we also limit our approach to phenomenology when
considering the asymmetric shape and the maximum value of
the quasielastic scaling function. To simulate the role of all the
effects that lead to asymmetry, we impose the latter on the RFG
scaling function (and, correspondingly, on the CDFM one) by
introducing a parameter that gives the correct maximum value
of the scaling function (c1 in our expressions given below)
and also an asymmetry in f QE(ψ ′) for ψ ′ � 0. We consider the
main parts of the RFG scaling function for ψ ′ � 0 and ψ ′ � 0
in the following forms, keeping the parabolic dependence on
ψ ′ as required in Ref. [10]:

f
QE
RFG,1(ψ ′) = c1(1 − ψ ′2)
(1 − ψ ′2), ψ ′ � 0, (26)

f
QE
RFG,2(ψ ′) = c1

[
1 −

(
ψ ′

c2

)2
]




[
1 −

(
ψ ′

c2

)2
]

, ψ ′ � 0.

(27)

The total RFG scaling function is normalized to unity:∫ ∞

−∞
f

QE
RFG(ψ ′)dψ ′ =

∫ ∞

−∞

[
f

QE
RFG,1(ψ

′) + f
QE
RFG,2(ψ ′)

]
dψ ′ = 1.

(28)

If the normalization of the scaling function for negative values
of ψ ′ is equal to

a =
∫ 0

−∞
dψ ′f QE

RFG,1(ψ ′) = 2

3
c1, (29)

then, to keep the total normalization [Eq. (28)], the normaliza-
tion for positive ψ ′ has to be:

1 − a =
∫ ∞

0
dψ ′f QE

RFG,2(ψ ′) = 2

3
c1c2. (30)

From Eqs. (29) and (30) we get the relationship between c2

and c1:

c2 = 3

2c1
− 1. (31)

In the RFG c1 = 3/4 and, correspondingly, c2 = 1. In the
CDFM the QE scaling function will be:

f QE(ψ ′) = f
QE
1 (ψ ′) + f

QE
2 (ψ ′), (32)

where

f
QE
1 (ψ ′) ∼=

∫ α/kF |ψ ′|

0
dR|F (R)|2c1

×
[

1 −
(

kF R|ψ ′|
α

)2
]

, ψ ′ � 0, (33)

f
QE
2 (ψ ′) ∼=

∫ c2α/kF |ψ ′|

0
dR|F (R)|2c1

×
[

1 −
(

kF R|ψ ′|
c2α

)2
]

, ψ ′ � 0. (34)

In this approach, parametrizing the RFG scaling function
by the coefficient c1 we account for the experimental fact
that c1 �= 3/4 and take this value in accordance with the
empirical data. Then from the normalization [Eqs. (28)–(30)]
we determine the corresponding value of c2 using Eq. (31).
As in Refs. [13,14], the CDFM scaling function is obtained
[Eqs. (32)–(34)] by averaging the RFG scaling function. As an
example, we give in Fig. 2 the CDFM QE scaling function
for different values of c1 (0.75, 0.72, 0.60, and 0.50) in
comparison with the empirical data and the phenomenological
fit. We also include for reference the scaling function obtained
from calculations for (e, e′) reaction based on the relativistic
impulse approximation (RIA) with FSI described using the
RMF potential (see Refs. [24,25] for details). In this way we
simulate in a phenomenological way the role of the effects
that violate the symmetry for positive values of ψ ′ of the QE
scaling function, which in the RMF approximation are seen to
be due to the FSI.
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FIG. 2. The quasielastic scaling function f QE(ψ ′) for 12C calcu-
lated in CDFM in comparison with the experimental data (black
squares) [23]. The CDFM results for different values of c1 are
presented by solid lines. Also shown for comparison is the phe-
nomenological curve that fits the data (dash-two dots), as well as the
curve (dash-dot line) corresponding to the result for (e, e′) obtained
within the relativistic impulse approximation and FSI using the
relativistic mean field (see Refs. [24,25]).

B. QE scaling function in the LFD method

In this subsection we obtain the QE scaling function on
the basis of calculations of nucleon momentum distribution
[using Eqs. (5)–(7) or Eq. (13)] obtained within a modification
of the approach from Ref. [44]. The latter is based on the
momentum distribution in the deuteron from the LFD method
(e.g., Refs. [45,46] and references therein). Using the natural-
orbital representation of the one-body density matrix [55], n(k)
was written as a sum of contributions from hole states [nh(k)]
and particle states [np(k)] (see also Ref. [14])

nA(k) = NA[nh(k) + np(k)]. (35)

In Eq. (35)

nh(k) = C(k)
F.L.∑
nlj

2(2j + 1)λnlj |Rnlj (k)|2, (36)

where F.L. denotes the Fermi level, and

C(k) = mN

(2π )3
√

k2 + m2
N

, (37)

mN being the nucleon mass. To a good approximation for the
hole states, the natural occupation numbers λnlj are close to
unity in Ref. [44] and the natural orbitals Rnlj (k) are replaced
by single-particle wave functions from the self-consistent
mean-field approximation. In Ref. [44] Woods-Saxon single-
particle wave functions were used for protons and neutrons.
NA is the normalization factor. Concerning the particle-state
[np(k)] contribution in Eq. (35), we used in Refs. [44] and [14]
the well-known facts that (i) the high-momentum components
of n(k) caused by short-range and tensor correlations are
almost completely determined by the contributions of the
particle-state natural orbitals (e.g., Ref. [56]) and (ii) the

high-momentum tails of nA(k)/A are approximately equal for
all nuclei and are a rescaled version of the nucleon momentum
distribution in the deuteron nd (k) [9],

nA(k) � αAnd (k), (38)

where αA is a constant. These facts made it possible to
assume in Refs. [44] and [14] that np(k) is related to the
high-momentum components n5(k) of the deuteron, that is,

np(k) = A

2
n5(k). (39)

In Eq. (39) n5(k) is expressed by an angle-averaged func-
tion [44] as

n5(k) = C(k)(1 − z2)f 2
5 (k). (40)

In Eq. (40) z = cos(�̂k, �n), �n being a unit vector along the three
vector ( �ω) component of the four-vector ω that determines the
position of the light-front surface [45,46]. The function f5(k)
is one of the six scalar functions f1−6(k2, �n · �k) that are the
components of the deuteron total wave function �(�k, �n). It
was shown [45] that f5 largely exceeds other f components
for k � 2.0–2.5 fm−1 and is the main contribution to the high-
momentum component of nd (k), incorporating the main part of
the short-range properties of the nucleon-nucleon interaction.

It was shown in Fig. 2 of Ref. [14] that the calculated LFD
n(k)s are in good agreement with the “y-scaling data” for 4He,
12C, and 56Fe from Ref. [5] and also with the yCW analysis [7,8]
up to k <∼ 2.8 fm−1. For larger k the momentum distributions
from LFD exceeds that obtained from yCW analysis. We should
note also that the calculated scaling function f QE(ψ ′) using the
approximate relationship (see Eq. (75) and Fig. 4 of Ref. [14])

f QE(ψ ′) � 3π

∫ ∞

|y|
dkF n(kF )kF

2
,

(41)

|y| = 1 − √
1 − 4ckF |ψ ′|

2c
, c ≡

√
1 + m2

N/q2

2mN

,

for 56Fe at q = 1000 MeV/c is in agreement with the data for
−0.5 <∼ ψ ′ � 0, whereas in the region −1.1 � ψ ′ � − 0.5 it
shows a dip in the interval −0.9 � ψ ′ � − 0.6. This difference
is due to the particular form of n(k) from LFD shown in Fig. 2
of Ref. [14] (a dip around k ≈ 1.7 fm−1 and a very high-
momentum tail at k >∼ 2.8 fm−1). This result showed that the
assumption (39) for the particle-state contribution is a rather
rough one. In this article we consider a modification of the
approach in which we include partially in the particle-state
part np(k) not only n5(k) but also n2(k), which is related to the
angle-averaged function f2(k):

n2(k) = C(k)f 2
2 (k). (42)

Then the particle-state part can be written in the form

np(k) = β[n2(k) + n5(k)], (43)

where β is a parameter. Then the LFD nucleon momentum
distribution for the nucleus with A nucleons will be:

nLFD(k) = NA{nh(k) + β[n2(k) + n5(k)]}, (44)
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FIG. 3. The nucleon momentum distribution n(k). (Gray area)
CDFM combined results for 4He, 12C, 27Al, 56Fe, and 197Au. (Solid
line) Result of the present work for 12C using the modified LFD
approach with β = 0.80. (Dashed line) yCW-scaling result [7,8].
(Dash-dotted line) Result of LFD for 12C from Ref. [44]. (Dotted line)
Mean-field result using Wood-Saxon single-particle wave functions
for 56Fe. Open squares, circles, and triangles are y-scaling data [5] for
4He, 12C, and 56Fe, respectively. The normalization is

∫
n(k)d3k = 1.

with nh(k) from Eq. (36) and

NA =
4π

∫ ∞

0
dq q2


F.L.∑
nlj

2(2j + 1)λnljC(q)|Rnlj (q)|2

+β[n2(q) + n5(q)
]

−1

. (45)

In Fig. 3 we present the nucleon momentum distribution for
12C calculated within the LFD method using Eqs. (35)–(37),
(40), and (42)–(45) with the parameter value β = 0.80. It is
compared with the band of CDFM momentum distributions
for 4He, 12C, 27Al, 56Fe, and 197Au (gray area), with nCW(k)
from the yCW analysis [7,8] and with the y-scaling data [5]
for 4He, 12C, and 56Fe. It can be seen that up to k � 2.8 fm−1

nLFD curve is close to the results of Refs. [5,7,8]. For the region
1 � k � 2.5 fm−1 it is between them and for k � 2.8 fm−1 it is
close to nCW(k), in contrast to our previous results in Fig. 2 of
Ref. [14] (see also Ref. [44]), which were based on Eq. (39) and
which are also shown for comparison in Fig. 3. This behavior of
nLFD(k) reflects in the result of the calculation of the QE scaling
function using Eq. (41) given in Fig. 4. It can be seen that
both momentum distributions nCW [7] and nLFD(k) [Eq. (44)]
give a good agreement with the experimental data for the QE
scaling function at least up to ψ ′ � −1.2. This result is an
improvement of that for LFD shown in Fig. 4 of Ref. [14],
where only the contribution n5 was used in the calculation of
np(k) (39) and nLFD(k).

FIG. 4. The quasielastic scaling function f QE(ψ ′) calculated
using Eq. (41) at q = 1000 MeV/c with nCW(k) from the yCW-scaling
analysis [7,8] for 56Fe (solid line) and nLFD(k) from the modified LFD
approach [Eq. (44)] for 12C (dashed line).

III. SCALING FUNCTION IN THE QUASIELASTIC
DELTA REGION

In this section we extend our analysis within both CDFM
and LFD to the �-peak region, which is not too far above the
QE peak region and is the main contribution to the inelastic
scattering. Dividing the cross section by the appropriate
single-nucleon cross section, now for N → � transition, and
displaying the results versus a new scaling variable (ψ ′

�)
(in which the kinematics of resonance electroproduction is
accounted for) it is obtained in Ref. [23] that the results
scale quite well. This is considered as an indication that the
procedure has identified the dominant contributions not only
in the QE region, but also in the � region.

The shifted dimensionless scaling variable in the �-region
ψ ′

� is introduced (see, e.g., Ref. [23]) by the expression:

ψ ′
� ≡

[
1

ξF

(
κ

√
ρ ′

�
2 + 1/τ ′ − λ′ρ ′

� − 1

)]1/2

×
{

+1, λ′ � λ′0
�

−1, λ′ � λ′0
�

, (46)

where

ξF ≡
√

1 + η2
F − 1, ηF ≡ kF

mN

, (47)

λ′ = λ − Eshift

2mN

, τ ′ = κ2 − λ′2, (48)

λ = ω

2mN

, κ = q

2mN

, τ = κ2 − λ2, (49)

λ′0
� = λ0

� − Eshift

2mN

, λ0
� = 1

2

(√
µ2

� + 4κ2 − 1

)
, (50)

µ� = m�/mN, (51)

ρ� = 1 + β�

τ
, ρ ′

� = 1 + β�

τ ′ , (52)

β� = 1

4

(
µ2

� − 1
)
. (53)
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The relativistic Fermi gas superscaling function in the �

domain is given by Ref. [23]:

f �
RFG(ψ ′

�) = 3
4 (1 − ψ ′

�

2)
(1 − ψ ′
�

2). (54)

Following the CDFM application to the scaling phe-
nomenon, the �-scaling function in the model will be:

f �(ψ ′
�) =

∫ ∞

0
dR|F�(R)|2f �

RFG[ψ ′
�(R)]. (55)

In Eq. (55):

ψ ′
�

2(R) = 1[√
1 + k2

F (R)
m2

N

− 1

] (
κ

√
ρ ′2

� + 1

τ ′ − λ′ρ ′
� − 1

)

≡ t(R) · ψ ′2
�, (56)

where

t(R) ≡

(√
1 + k2

F

m2
N

− 1

)
(√

1 + k2
F (R)
m2

N

− 1

) and kF (R) = α

R
. (57)

In the CDFM kF can be calculated using the density
distribution [Eqs. (8) and (9) or (19) and (16)] or the
momentum distribution [Eqs. (10) and (11) or (25) and
(24)]. The weight function |F�(R)|2 is related to the density
distributions [Eqs. (2) or (16)]. In the equivalent form of the
CDFM, the scaling function can be written in the form:

f �(ψ ′
�) =

∫ ∞

0
dkF |G�(kF )|2f �

RFG[ψ ′
�(kF )], (58)

where G�(kF ) is determined by means of the momentum
distribution [Eqs. (6) or (24)] and

ψ ′2
� (kF ) ≡ t̃(kF ) · ψ ′2

� (59)

with

t̃(kF ) ≡

(√
1 + k2

F

m2
N

− 1

)
(√

1 + k
2
F

m2
N

− 1

) . (60)

Here we note that though the functional forms of f �(ψ ′
�)

[Eq. (55)] and the weight function |F�(R)|2 [Eqs. (2) or (16)]
are like before, i.e., as in the case of the QE region, the
parameters of the densities (e.g., the half-radius R� and the
diffuseness b� when Fermi-type forms have been used) may
be different from those (R and b) in the QE case. Along this
line, we calculated first the scaling function f �(ψ ′

�) by means
of Eqs. (55)–(57) using the Fermi-type density for 12C. We
found the values of R� and b� fitting the scaling data at the �

peak extracted from the high-quality world data for inclusive
electron scattering (given in Fig. 2 of Ref. [23]). Our results are
presented in Fig. 5. As mentioned in the QE case, the empirical
data require to use a value of the coefficient in the right-hand
side of Eq. (54) for the RFG scaling functions f �

RFG(ψ ′
�)

different from 3/4. In our calculations in the � region we
use the value 0.54. We found that reasonable agreement

FIG. 5. The f �(ψ ′
�)-scaling function for 12C in the � region.

(Dashed line) CDFM result (with R� = 1.565 fm, b� = 0.420 fm,
kF = 1.20 fm−1). (Solid line) Result of modified LFD approach (β =
0.80, kF = 1.20 fm−1). The coefficient c1 = 0.54 in both CDFM and
LFD cases. Averaged experimental values of f �(ψ ′

�) are taken from
Ref. [23].

with the data can be achieved using the parameter values
R� = 1.565 fm and b� = 0.420 fm [the Fermi momentum
value is taken to be kF = 1.20 fm−1 and this choice leads
to normalization to unity of f �

RFG(ψ ′
�)]. The value of R� is

smaller than that used in the description of the QE superscaling
function for 12C [13,14] (R = 2.470 fm), whereas the value of
b� is the same as b in the QE case. Second, we calculated
f �(ψ ′

�) using Eqs. (58), (59), and (60). In Eq. (58) the
weight function |G�(kF )|2 was determined by means of Eq. (6)
and the nucleon momentum distribution nLFD [Eqs. (44) and
(45)] calculated with the parameter value β = 0.80 (shown
in Fig. 3). We note that the use of nLFD(k) with this value of
β gives simultaneously a reasonable agreement both with the
results for the momentum distribution from the y-scaling data
shown in Fig. 3, as well as with the QE scaling function shown
in Fig. 4.

IV. SCALING FUNCTIONS AND INCLUSIVE LEPTON
SCATTERING

A. Scaling functions and (e, e′) reaction cross sections

In the beginning of this subsection we give some basic
relationships concerning inclusive electron scattering from
nuclei. An electron with four-momentum kµ = (ε, k) is scat-
tered through an angle θ to four-momentum k′µ = (ε′, k′). The
four-momentum transfer is then

Qµ = (k − k′)µ = (ω, q), (61)

where ω = ε − ε′, q = |q| = |k − k′| and

Q2 = ω2 − q2 � 0. (62)

In the one-photon-exchange approximation, the double-
differential cross section in the laboratory system can be

054603-8



SUPERSCALING ANALYSIS OF INCLUSIVE ELECTRON . . . PHYSICAL REVIEW C 74, 054603 (2006)

written in the form (e.g., Ref. [10]):

d2σ

d�k′dε′ = σM

[(
Q2

q2

)2

RL(q, ω)

+
(

1

2

∣∣∣∣Q2

q2

∣∣∣∣ + tan2 θ

2

)
RT (q, ω)

]
, (63)

where

σM =
[

α cos(θ/2)

2ε sin2(θ/2)

]2

(64)

is the Mott cross section and α is the fine structure constant.
In Eq. (63) RL and RT are the longitudinal and transverse
response functions that contain all the information on the
distribution of the nuclear electromagnetic charge and current
densities, being projections (with respect to the momentum
transfer direction) of the nuclear currents. They can be
separated experimentally by plotting the cross section against
tan2(θ/2) at fixed (q, ω) (the so-called Rosenbluth plot). These
functions can be evaluated as components of the nuclear tensor
Wµν . In Ref. [10] this tensor is computed in the framework of
the RFG model, and RL(T ) for the QE electron scattering are
expressed by means of the RFG scaling function (Eq. (9) of
Ref. [10]).

At leading order in the parameter kF /mN the QE responses
have the form [23]:

R
QE
L (κ, λ) = �0

κ2

τ
[(1 + τ )W2(τ ) − W1(τ )] × f

QE
RFG(ψ ′),

(65)

R
QE
T (κ, λ) = �0[2W1(τ )] × f

QE
RFG(ψ ′), (66)

with

�0 ≡ N ξF

mNκη3
F

, (67)

where N = Z or N and W1, W2 are the structure functions for
elastic scattering that are linked to the Sachs form factors

(1 + τ )W2(τ ) − W1(τ ) = G2
E(τ ), (68)

2W1(τ ) = 2τG2
M (τ ). (69)

In Refs. [23,57] the electroproduction of the � resonance is
considered computing the nuclear tensor also within the RFG
model and analytical expressions for the response functions are
obtained. The latter contain the RFG �-peak scaling function
(54) and read [57]:

RL(κ, λ) = 3N ξF

2mNη3
F κ

κ2

τ
[(1 + τρ2)w2(τ ) − w1(τ )

+w2(τ )D(κ, λ)] × f �
RFG(ψ ′

�), (70)

RT (κ, λ) = 3N ξF

2mNη3
F κ

[2w1(τ ) + w2(τ )D(κ, λ)]f �
RFG(ψ ′

�),

(71)

where N = Z or N ,

D(κ, λ) ≡ τ

κ2

[
(λρ + 1)2 + (λρ + 1)(1 + ψ ′2

� )ξF

+ 1

3
(1 + ψ ′2

� + ψ ′4
� )ξ 2

F

]
− (1 + τρ2). (72)

The single-baryon structure functions can be expressed by
means of the electric (GE), magnetic (GM ), and Coulomb
(GC) � form factors [57]:

w1(τ ) = 1
2 (µ� + 1)2(2τρ + 1 − µ�)

(
G2

M + 3G2
E

)
, (73)

w2(τ ) = 1

2
(µ� + 1)2 2τρ + 1 − µ�

1 + τρ2

×
(

G2
M + 3G2

E + 4
τ

µ2
�

G2
C

)
. (74)

These form factors are parametrized as follows [57]:

GM (Q2) = 2.97f (Q2), (75)

GE(Q2) = −0.03f (Q2), (76)

GC(Q2) = −0.15GM (Q2), (77)

where

f (Q2) = GP
E(Q2)

1[
1 − Q2

3.5(GeV/c)2

]1/2 (78)

with

GP
E = 1

(1 + 4.97τ )2
(79)

being the Galster parametrization [58] of the electric form
factor.

In the CDFM the longitudinal and transverse response
functions can be obtained by averaging the RFG response
functions in the QE region [Eqs. (65) and (66)] and � region
[Eqs. (70) and (71)] by means of the weight functions in
r-space |F (R)|2 and k-space |G(kF )|2, similarly as in the case
of the QE and �-scaling functions [Eqs. (1), (5), (15), (23)
and (55), (58), respectively]. As a result, accounting for the
different behavior of the RFG scaling functions and terms
containing ηF (R) = kF (R)/mN as functions of R or kF =
α/R in Eqs. (65), (66), (70), and (71), the CDFM response
functions RL(T ) in QE and � regions have approximately
the same forms as in the equations just mentioned, in which,
however, the RFG scaling functions are changed by the CDFM
scaling functions obtained in Secs. II and III.

In Figs. 6–15 we give results of calculations within the
CDFM of inclusive electron scattering on 12C at different
incident energies and angles. The QE contribution is calculated
using the Fermi-type density distribution of 12C with the same
values of the parameters as in Refs. [13,14]: R = 2.47 fm and
b = 0.42 fm (which lead to a charge rms radius equal to the
experimental one) and Fermi momentum kF = 1.156 fm−1.
The � contribution is calculated using the necessary changes
of the parameter values of the Fermi-type density (used in
Fig. 5): R� = 1.565 fm, b� = 0.42 fm, and kF = 1.20 fm−1.
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FIG. 6. Inclusive electron scattering on 12C at ε = 1299 MeV
and θ = 37.5◦ (qQE

exp = 792 MeV/c > 2kF ). The results obtained using

c
QE
1 = 0.72 in the CDFM scaling function for the QE cross section and

the total result are given by dashed and thick solid lines, respectively.
(Dotted line) Using CDFM �-scaling function; (thin solid line) total
CDFM result with c

QE
1 = 0.63. (Dash-dotted line) Result of ERFG

method [19,23]. The experimental data are taken from Ref. [59].

The coefficient c1 used in the �-region scaling function is
fixed to be equal to 0.54 so that the maximum of the scaling
function to be in agreement with the data. The scaling function
f �(ψ ′

�) is symmetric, its maximum is chosen to be 0.54 (but
not 0.75) and it is normalized to unity by means of the fixed
value of kF = 1.20 fm−1. The inclusive electron-12C scattering
cross sections shown in Figs. 6–15 are the sum of the QE
and � contribution. The results of the CDFM calculations are
presented for two values of the coefficient c1 in the QE case
(noted further by c

QE
1 ), namely for c

QE
1 � 0.72 and c

QE
1 = 0.63.

This is related to two types of experimental data. In the first
one the transferred momentum in the position of the maximum
of the QE peak extracted from data (ωQE

exp) is qQE
exp � 450 MeV/c

FIG. 7. Inclusive electron scattering on 12C at ε = 2020 MeV and
θ = 20.02◦ (qQE

exp = 703 MeV/c > 2kF ). The results obtained using

c
QE
1 = 0.73 in the CDFM scaling function for the QE cross section and

the total result are given by dashed and thick solid lines, respectively.
(Dotted line) Using CDFM �-scaling function. (Thin solid line) Total
CDFM result with c

QE
1 = 0.63. The experimental data are taken from

Ref. [60].

≈ 2kF , roughly corresponding to the domain where scaling
is fulfilled [19,23]. Such cases are presented in Figs. 6–12.
In these cases we found by fitting to the maximum of the
QE peak the value of c

QE
1 to be 0.72–0.73, i.e., it is not the

same as in the RFG model case (case of symmetry of the RFG
and of the CDFM scaling functions with c

QE
1 = 0.75), but

is slightly lower. This leads to a weak asymmetry of the
CDFM scaling function for cases in which qQE

exp � 450 MeV/c.
In the second type of experimental data qQE

exp is not in the
scaling region (qQE

exp < 450 MeV/c). Such cases are given in
Figs. 13–15. For them we found by fitting to the maximum
of the QE peak extracted from data the value of c

QE
1 to be

0.63. For these cases the CDFM scaling function is definitely
asymmetric. So, the results in Figs. 6–15 are presented for both
almost symmetric (cQE

1 � 0.72) and asymmetric (cQE
1 = 0.63)

CDFM scaling functions. One can see that the results for
the almost symmetric CDFM scaling function agree with the
electron data in the region close to the QE peak in cases
where qQE

exp � 450 MeV/c and overestimate the data for cases
where approximately qQE

exp < 450 MeV/c. The results with
asymmetric CDFM scaling function agree with the data in
cases where qQE

exp < 450 MeV/c and underestimate the data
in cases where qQE

exp � 450 MeV/c. Here we emphasize that,
in our opinion, the usage of an asymmetric CDFM scaling
function is preferable, though the results in some cases can
underestimate the empirical data, because other additional
effects, apart from QE and � resonance (e.g., meson exchange
currents effects) could give important contributions to the cross
section for some specific kinematics and minor for others. A
similar situation occurs for the results obtained within the RMF
approach [25] particularly when the CC2 current operator is
selected.

In Table I we list the energies, the angles, the values of
c

QE
1 obtained by fitting the magnitude of the QE peak, and the

energy shifts in the QE and � case, as well as the approximate
values of the transfer momentum qQE

exp in the position of
the maximum of the QE peak (ωQE

exp) for different cases. The

values of the energy shifts ε
QE(�)
shift for the QE and � regions

TABLE I. Values of energies ε, angles θ , the coefficient c
QE
1

obtained by fitting the magnitude of the QE peak, energy shifts
ε

QE
shift and ε�

shift, and transferred momenta qQE
exp for the cases of inclusive

electron-scattering cross sections considered. Energies are in MeV,
angles are in degrees, and momenta are in MeV/c.

Figure ε θ c
QE
1 ε

QE
shift ε�

shift ≈qQE
exp

6 1299 37.5 0.72 30 30 792
7 2020 20.02 0.73 25 20 703
8 1108 37.5 0.73 30 30 675
9 620 60 0.73 20 0 552

10 2020 15.02 0.72 20 30 530
11 500 60 0.72 30 0 450
12 730 37.1 0.72 20 20 442 � 2kF

13 1650 13.5 0.63 20 30 390
14 1500 13.5 0.63 20 20 352
15 537 37.1 0.63 20 20 326
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FIG. 8. The same as described in the legend to Fig. 7 for ε =
1108 MeV and θ = 37.5◦ (qQE

exp = 675 MeV/c > 2kF ). (Dot-dashed
line) Using QE and �-scaling functions obtained in the LFD
approach. The experimental data are taken from Ref. [59].

are generally between 20 and 30 MeV. In the figures we also
present the QE contribution (as well as the � contribution) for
the value of c

QE
1 that fits approximately the magnitude of the

QE peak.
In Figs. 8 and 11 we present also the calculations of the elec-

tron cross sections using QE- and �-scaling functions obtained
by using the nucleon momentum distributions obtained in the
LFD approach (Sec. III) that give a reasonable agreement with
the empirical electron scattering data. In Figs. 6 and 14 we also
give for comparison the results of the cross sections obtained
within the ERFG method [19,23]. In this method the response
functions and differential cross sections are calculated using
the scaling function fitted to the data.

It is interesting to note that for those kinematics where the
overlap between the QE and � peaks is bigger (Figs. 6, 7,
and 8), the asymmetric CDFM model (cQE

1 = 0.63) gives rise
to an excess of strength in the transition region. This makes
a difference with the ERFG model (see Fig. 6), which fits
nicely the data in that region. This discrepancy between the
two models, asymmetric CDFM and ERFG, can be explained

FIG. 9. The same as described in the legend to Fig. 7 for ε =
620 MeV and θ = 60◦ (qQE

exp = 552 MeV/c > 2kF ). The experimental
data are taken from Ref. [61].

FIG. 10. The same as described in the legend to Fig. 6 for ε =
2020 MeV and θ = 15.02◦ (qQE

exp = 530 MeV/c > 2kF ) for the CDFM
results. The experimental data are taken from Ref. [60].

by noting the different behavior presented by the two scaling
functions in the region of ψ ′ between 0.5 and 1.5, being the
asymmetric CDFM one significantly larger.

Note that in the cases where the overlap between the QE and
� peaks is weaker (Figs. 9–12), the asymmetric CDFM model,
compared to the almost symmetric CDFM one, reproduces
better the data in the transition region although, importantly,
it underpredicts the maximum of the QE peak. Concerning
results in Figs. 13–15 (it can be also applied to Figs. 11 and 12),
one observes that both CDFM approaches do not reproduce
the strength of data located in the region between the QE
and � peaks. This is not the case for the ERFG model (see
Fig. 14), which fits nicely the experiment for ω � 180 MeV.
This result is connected with the much bigger strength of the
scaling function provided by the ERFG model for larger values
of the scaling variable, ψ ′ � 2 (see Fig. 2).

From this whole analysis, one may conclude that the
phenomenological procedure introduced in the CDFM model
to get an asymmetric scaling function gives rise to an excess of

FIG. 11. The same as described in the legend to Fig. 6 for ε =
500 MeV and θ = 60◦ (qQE

exp = 450 MeV/c � 2kF ). Here the dot-
dashed line shows the result using QE and �-scaling functions
obtained in the LFD approach. The experimental data are taken from
Ref. [62].
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FIG. 12. The same as described in the legend to Fig. 6 for ε =
730 MeV and θ = 37.1◦ (qQE

exp = 442 MeV/c � 2kF ) for the CDFM
results. The experimental data are taken from Ref. [63].

strength in the region 0.5 � ψ ′ � 1.5, whereas the model lacks
strength for larger ψ ′ values, ψ ′ � 2.

B. Scaling functions and charge-changing neutrino-nucleus
reaction cross sections

In this subsection we present applications of the CDFM
and LFD scaling functions to calculations of charge-changing
neutrino-nucleus reaction cross sections. We follow the de-
scription of the formalism given in Ref. [23]. The charge-
changing neutrino cross section in the target laboratory frame
is given in the form(

d2σ

d�dk′

)
χ

≡ σ0F2
χ , (80)

where χ = + for neutrino-induced reactions (e.g., ν� + n →
�− + p, where � = e, µ, τ ) and χ = − for antineutrino-
induced reactions (e.g., ν� + p → �+ + n),

σ0 ≡ (G cos θc)2

2π2
(k′ cos θ̃/2)2, (81)

FIG. 13. The same as described in the legend to Fig. 6 for ε =
1650 MeV and θ = 13.5◦ (qQE

exp = 390 MeV/c � 2kF ) for the CDFM
results. The experimental data are taken from Ref. [64].

FIG. 14. The same as described in the legend to Fig. 6 for
ε = 1500 MeV and θ = 13.5◦ (qQE

exp = 352 MeV/c � 2kF ). The
experimental data are taken from Ref. [64].

G = 1.16639 × 10−5 GeV−2 being the Fermi constant, θc

being Cabibbo angle (cos θc = 0.9741),

tan2 θ̃/2 ≡ |Q|2
v0

, (82)

v0 ≡ (ε + ε′)2 − q2 = 4εε′ − |Q|2. (83)

The quantity F2
χ , which depends on the nuclear structure,

is written in Ref. [23] as a generalized Rosenbluth decomposi-
tion having charge-charge, charge-longitudinal, longitudinal-
longitudinal, and two types of transverse responses. The
nuclear response functions are expressed in terms of the
nuclear tensor Wµν in both QE and � regions using its
relationships with the RFG model scaling functions. Following
Ref. [23], in the calculations of the neutrino-nucleus cross
sections the Höhler parametrization 8.2 [65] of the form factors
in the vector sector was used, whereas in the axial-vector sector
the form factors given in Ref. [23] were used.

In our work, instead of the RFG scaling functions in the
QE and � regions, we use those obtained in the CDFM
and LFD approach (Secs. II and III). In Fig. 16 we give
the results of calculations for cross sections of QE neutrino
(νµ, µ−) scattering [Figs. 16(a) and 16(c)–16(f)] on 12C and

FIG. 15. The same as described in the legend to Fig. 6 for ε =
537 MeV and θ = 37.1◦ (qQE

exp = 326 MeV/c � 2kF ) for the CDFM
results. The experimental data are taken from Ref. [63].
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(a) (b)

(c) (d)

(e) (f)

FIG. 16. The cross section of quasielastic charge-changing (νµ, µ−) reaction [(a) and (c)–(f )] and of (νµ, µ+) reaction (b) on 12C for
ε = 1, 1.5, and 2 GeV using QE scaling functions in CDFM [(thin solid line) with c1 = 0.63; (thin dashed line) with c1 = 0.72)]. The results
using QE scaling functions in LFD [(thick solid line) with c1 = 0.63; (thick dashed line) with c1 = 0.72] are presented in (b) and (f ). The RFG
model result and ERFG result [19,23] are shown by dotted and dash-dotted lines, respectively.

also antineutrino (νµ, µ+) scattering [Fig. 16(b)] for energies
of neutrino εν = 1, 1.5, and 2 GeV and of antineutrino εν =
1 GeV. The presented cross sections are functions of muon
kinetic energy. The energy shift is equal to 20 MeV. The
calculations of the neutrino-nucleus cross sections in the �

region will be a subject of a future work.
We give the results of our calculations using the CDFM

scaling function that is almost symmetric (with c1 = 0.72),
as well as those of the asymmetric CDFM scaling function
(with c1 = 0.63). These values of c1 correspond to the cases
of inclusive electron scattering considered. As can be seen the
results obtained by using the almost symmetric CDFM scaling
function are close to the RFG model results. However, the
results obtained with the use of asymmetric CDFM and LFD

scaling functions are quite different from those in the RFG
model but are close to the predictions of the ERFG model
[19,23]. The basic difference from the ERFG model result is
observed in the tail extended to small muon energy values,
where the ERFG model gives more strength.

V. CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) In Ref. [14] we extended the CDFM description of the
quasielastic ψ ′-scaling function from Ref. [13] by expressing
it explicitly and equivalently by means of both density and
nucleon momentum distributions. In Refs. [13,14] our results
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on f QE(ψ ′) were obtained on the basis of the experimental
data on the charge densities for a wide range of nuclei.
In the present work we extended our approach to consider
the scaling function f QE(ψ ′) for medium and heavy nuclei
with Z �= N for which the proton and neutron densities are
not similar. In this case f QE(ψ ′) is a sum of the proton
and neutron scaling functions calculated by means of the
proton and neutron densities obtained from nonrelativistic self-
consistent mean-field calculations. This concerns calculations,
as examples, of nuclei like 197Au, 82Kr, as well as 62Ni and
118Sn [15]. The comparison with the data from Refs. [11,12]
shows superscaling for negative values of the QE ψ ′, including
ψ ′ < −1, whereas in the RFG model f (ψ ′) = 0 for ψ ′ � − 1
(see Fig. 1).

(ii) We introduce the asymmetry in the CDFM QE scaling
function using the fact that the maximum value of f (ψ ′) in
RFG model is 3/4, whereas the empirical scaling function
reaches values smaller than 0.6. In relation with this and
the normalization, we parametrize the RFG scaling function
for ψ ′ � 0, thus simulating the role of all the effects that
lead to asymmetry and imposing this on the CDFM QE
scaling function. In this way, simulating phenomenologically
the effects that violate the symmetry of f QE(ψ ′) for ψ ′ � 0,
including the role of the FSI, one can obtain in the CDFM a
reasonable agreement of f QE(ψ ′) with the empirical data also
for positive values of ψ ′ (Fig. 2).

(iii) We obtain the QE scaling function also on the basis of
calculations of nucleon momentum distribution n(k) within an
approach based on the LFD method [44–46] that improves that
used in Ref. [14]. Here we include in the particle-state part of
n(k) not only a contribution of the function f5 (as in Refs. [44]
and [14]) but also a contribution of the function f2. f5 and f2

are two of the six scalar components of the deuteron total wave
function in the LFD [45,46] and are the main contributions
to the tail of nd (k). It can be seen in Fig. 3 the reasonable
agreement of n(k) in LFD with the yCW-scaling data [7,8].
This result made it possible to obtain a good description of
the experimental QE scaling function (Fig. 4) at least up to
ψ ′ � −1.2.

(iv) We extend our analysis within the CDFM and LFD
to the �-peak region, which is the main contribution to
the inelastic scattering. Here we emphasize that reasonable
agreement with the experimental data (Fig. 5) was obtained
using the empirical value of the coefficient in front of the RFG
scaling function (0.54 instead of 0.75) in both CDFM and
LFD. Also, the parameter R� used in the Fermi-type density
for 12C [necessary to calculate the weight function |F�(R)|2
and thus the scaling function f �(ψ ′

�)] has a smaller value
(1.565 fm) than that (R = 2.42 fm) in the QE case, whereas
the value of the diffuseness parameter b� remains the same

as b in the QE case. We note that the use of nLFD(k) with the
same values of β and of kF (β = 0.80, kF = 1.20 fm−1) gives
a reasonable agreement with results for both QE and �-region
scaling functions (Figs. 4 and 5).

(v) The QE and �-region scaling functions obtained in the
CDFM and in the LFD approach are applied to description of
experimental data on differential cross sections of inclusive
electron scattering by 12C at large energies and transferred
momenta (Figs. 6–15). The CDFM results are presented for
both almost symmetric (cQE

1 � 0.72) and asymmetric (cQE
1 =

0.63) scaling functions. We observe that there are two regions
of the value of qQE

exp in different experiments at which the
above mentioned (almost symmetric and asymmetric) scaling
functions work better. The almost symmetric scaling function
leads to results in agreement with the data in the region of
the QE peak in cases when the transferred momentum (qQE

exp)
in the position of maximum of the QE peak (ωQE

exp) is in the
scaling region (qQE

exp � 450 MeV/c ≈ 2kF ), whereas the data are
overestimated in cases where qQE

exp < 450 MeV/c. The results

obtained when asymmetric scaling function (cQE
1 = 0.63) is

used agree with the data in cases when qQE
exp < 450 MeV/c

and underestimate them when qQE
exp � 450 MeV/c in the region

close to the QE peak, but differences emerge in the transition
region. In our opinion, the latter case is preferable because
additional effects (apart from QE and � resonance), e.g., of
the meson exchange currents could give additional important
contributions to the inclusive electron cross sections for some
specific kinematics and minor for others.

(vi) The CDFM and LFD scaling functions are applied to
calculations of QE charge-changing neutrino-nuclei reaction
cross sections. We present in Fig. 16 the predicted cross
sections for the reactions (νµ, µ−) and (νµ, µ+) on the 12C
nucleus for energies of the incident particles from 1 to 2 GeV.
Our results are compared with those from the RFG model and
from the ERFG model [19,23]. The results obtained by using
the asymmetric CDFM scaling function are close to those of
ERFG and are quite different from the RFG results, whereas
the almost symmetric CDFM scaling function leads to cross
sections that are similar to the results of the RFG model.
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