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Determining (n, f ) cross sections for actinide nuclei indirectly: Examination of
the surrogate ratio method
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The validity of the surrogate ratio method for determining (n, f ) cross sections for actinide nuclei is examined.
This method relates the ratio of two compound-nucleus reaction cross sections to a ratio of coincidence events
from two measurements in which the same compound nuclei are formed via a direct reaction. With certain
assumptions, the method allows one of the cross sections to be inferred if the other is known. We develop a
nuclear reaction-model simulation to investigate whether the assumptions underlying the ratio approach are valid
and employ these simulations to assess whether the cross sections obtained indirectly by applying a ratio analysis
agree with the expected results. In particular, we simulate surrogate experiments that allow us to determine fission
cross sections for selected actinide nuclei. The nuclei studied, 233U and 235U, are very similar to those considered
in recent surrogate experiments. We find that in favorable cases the ratio method provides useful estimates of the
desired cross sections, and we discuss some of the limitations of the approach.

DOI: 10.1103/PhysRevC.74.054601 PACS number(s): 25.85.Ec, 24.60.Dr, 24.50.+g, 27.90.+b

I. INTRODUCTION

Nuclear reaction data play an important role in nuclear
physics applications. Unfortunately, for a large number of
reactions the relevant data cannot be directly measured in
the laboratory or reliably predicted by calculations. Direct
measurements of reactions on unstable isotopes are par-
ticularly affected since the relevant nuclei are often too
difficult to produce with currently available experimental
techniques or too short-lived to serve as targets in present-day
setups. Calculations are highly nontrivial since they typically
require a thorough understanding of both direct and statistical
reaction mechanisms (as well as their interplay) and a detailed
knowledge of the nuclear structure involved. It is therefore
important to explore alternative approaches for determining
reaction cross sections on unstable nuclei.

The surrogate reaction method is a specific indirect method
that combines experiment with reaction theory to obtain cross
sections for compound-nucleus reactions involving difficult-
to-produce targets. Although the surrogate method is very
general and can in principle be employed to determine cross
sections for all types of compound-nucleus reactions involving
a large variety of target nuclei, there are various challenges that
have to be addressed to validate and implement this approach
for the different regions of interest in the nuclear chart. For
applications to (n, f ) cross sections on actinide nuclei, Younes
and Britt have studied some of these issues recently [1,2].
For applications to (n, γ ) cross sections on lighter nuclei,
in particular on s-process branch points, work is currently
underway [3–7].

It is useful to consider whether certain simplifications or
approximations to the method can be utilized to determine
relevant cross sections. A simple, approximate version of the
surrogate technique, which we will refer to as the “surrogate
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method in the Weisskopf-Ewing limit,” was already used in the
1970s to estimate neutron-induced fission cross sections from
transfer reactions [8–12] and has received renewed attention
in recent years [13]. In the work presented here, we will focus
on a related approximation, the “surrogate ratio method” or
simply the “ratio method.”

The purpose of this paper is to examine the validity of the
surrogate ratio method for determining (n, f ) cross sections
for actinide nuclei. The study was motivated by recent (d, d ′f )
and (α, α′f ) surrogate experiments at Yale [14] and Berkeley
[15], respectively, which were the first to be analyzed in the
framework of the ratio approach. In the present study we will
use a nuclear-reaction-model simulation to investigate whether
the assumptions underlying the ratio method are valid, and
employ these simulations to assess whether the cross section
obtained indirectly by applying the ratio method agrees with
the expected result. We will also comment on the validity of
the surrogate method in the Weisskopf-Ewing limit, since it is
closely related to the ratio approach.

The experiments described in [14,15] investigated indi-
rectly neutron-induced fission for 235U and 237U, whereas we
choose to focus on (n, f ) reactions on 233U and 235U. This
choice has the advantage that we study nuclei that are very
similar to those considered in the recent experiments, but for
which all of the relevant cross sections are known from direct
measurements. Therefore, the results of the present study can
be used to reach conclusions about the accuracy of the ratio
technique for measuring the previously unknown 237U(n, f )
cross section.

This paper is organized as follows: In Sec. II, we will
introduce the main concepts employed in the present report.
In particular, we will explain the surrogate method, review the
Weisskopf-Ewing approximation to the method, and introduce
the ratio approach. In Sec. III we describe the simulations we
are using and outline the logic of the tests we are carrying out
to assess the validity of the ratio method. In Sec. IV we present
calculations that test the primary assumption underlying

0556-2813/2006/74(5)/054601(16) 054601-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.054601


JUTTA E. ESCHER AND FRANK S. DIETRICH PHYSICAL REVIEW C 74, 054601 (2006)

the ratio approach, the validity of the Weisskopf-Ewing
approximation. We then compare cross-section predictions of
both the surrogate method in the Weisskopf-Ewing limit and
the surrogate ratio method to predetermined reference cross
sections. Our findings and conclusions are summarized in
Sec. V.

II. SURROGATE APPROACHES

This section introduces the main concepts employed in this
study. The surrogate idea is explained and the challenges
associated with carrying out, analyzing, and interpreting a
surrogate experiment are outlined. The Weisskopf-Ewing limit
of the full Hauser-Feshbach theory is briefly reviewed in the
context of surrogate reactions, and the ratio method, which

makes use of the surrogate idea and assumes the validity of
the Weisskopf-Ewing approximation, is introduced.

A. The surrogate idea

The surrogate nuclear reaction technique is an indirect
method for determining the cross section for a particular type
of “desired” reaction, namely a two-step reaction, a + A →
B∗ → c + C, that proceeds through a compound nuclear
state B∗, a highly excited state in statistical equilibrium (see
Fig. 1).

The formalism appropriate for describing compound-
nucleus reactions is the statistical Hauser-Feshbach theory
(see, e.g., Chapter 10 of Ref. [16]). The average cross section
per unit energy in the outgoing channel χ ′ for reactions
proceeding to an energy region in the final nucleus described
by a level density is given by

dσ HF
αχ (Eα)

dEχ ′
= πλ-2

α

∑

Jπ

ωJ
α

∑

lsl′s ′I ′

T J
αls(Eα)T J

χ ′l′s ′ (Eχ ′)ρI ′(U ′)
∑′

χ ′′l′′s ′′ T
J
χ ′′l′′s ′′ (Eχ ′′ ) + ∑

χ ′′l′′s ′′I ′′
∫

T J
χ ′′l′′s ′′ (Eχ ′′ )ρI ′′(U ′′)dEχ ′′

. (1)

Here α denotes the entrance channel a + A with energy Eα

and reduced wavelength λ-α . The spin of the incident particle
is i, the target spin is I , the channel spin is �s = �ı + �I ,
and the compound-nucleus angular momentum and parity
are J, π . The excitation energy of the compound nucleus,
Eex, is related to Eα via the separation energy Sa(B) of
the particle a in the nucleus B: Eex = Sa(B) + Eα . The
transmission coefficient associated with the entrance channel
is denoted T J

αls and the statistical-weight factor ωJ
α is given

by (2J + 1)/[(2i + 1)(2I + 1)]. Quantities associated with
the exit channel of interest are denoted by primed symbols:
χ ′ = c′ + C ′, i ′ is the spin of the outgoing particle c′, I ′

is the spin of the residual nucleus C ′, �s ′ = �ı ′ + �I ′ is the
channel spin, and Eχ ′ is the energy for χ ′. The energy of
the decaying nucleus, Eex, is related to Eχ ′ via the relation
Eex = Sc′ (B) + Eχ ′ , where Sc′ (B) is the separation energy of
c′ in B. The transmission coefficients for this channel are
written as T J

χ ′l′s ′ (Eχ ′) and ρI ′(U ′) denotes the density of levels
of spin I ′ at excitation energy U ′ in the residual nucleus C ′.
All energetically possible final channels χ ′′ have to be taken
into account; thus the denominator includes contributions from
decays to discrete levels in the residual nuclei (given by the
sum

∑′) as well as contributions from decays to regions
of high level density in the residual nuclei (given by the
second sum in the denominator, which involves an energy
integral of transmission coefficients and level densities in the
residual nuclei). The relevant quantities in these final channels
χ ′′ are denoted by double-primed symbols, in analogy to
the particular channel of interest, χ ′. In writing Eq. (1),
we have suppressed the parity quantum number except for
that of the compound nucleus. The level density depends in
principle on parity (even though this dependence is weak in
practice), and all sums over quantum numbers must respect
angular-momentum and parity conservation.

This Hauser-Feshbach formula neglects correlations be-
tween the incident and outgoing reaction channels that can
be taken into account formally by including width fluctuation
corrections. These correlations enhance the elastic scattering
cross section and reduce the inelastic and reaction cross
sections, although this depletion rarely exceeds 10–20%
(even at energies below approximately 2 MeV) and becomes
negligible as the excitation energy of the compound nucleus
increases [17]. In the remainder of this study we will neglect
width-fluctuation corrections and rewrite the Hauser-Feshbach

FIG. 1. Schematic representation of the “desired” (top) and
“surrogate” (bottom) reaction mechanisms. The basic idea of the
surrogate approach is to replace the first step of the desired reaction,
a + A, by an alternative (“surrogate”) reaction, d + D → b + B∗,
that populates the same compound nucleus. The subsequent decay of
the compound nucleus into the relevant channel can then be measured
and used to extract the desired cross section.
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formula as

dσ HF
αχ (Eα)

dEχ

=
∑

Jπ

σ CN
α (Eex, J, π )GCN

χ (Eex, J, π ), (2)

where σ CN
α (Eex, J, π ) denotes the cross section for forming

the compound nucleus at excitation energy Eex with angular-
momentum and parity quantum numbers J, π in the reaction
a + A → B∗. The symbol GCN

χ (Eex, J, π ) is the branching
ratio for the decay of this compound state into the desired exit
channel χ . Here and in the remainder of the paper we suppress
the prime associated with the exit channel of interest, unless it
is necessary to distinguish explicitly between all possible final
channels (χ ′′) and the particular channel of interest (χ ′).

In the limit of negligible width-fluctuation corrections
considered here, the formation and decay of the compound
nucleus are independent of each other, individually for each
angular momentum and parity value. It is this independence
that allows one to determine the desired cross section via
a combination of theory and experiment in the surrogate
approach. In many cases the formation cross section σ CN

α

can be calculated to a reasonable accuracy by using optical
potentials whereas the theoretical branching ratios GCN

χ for the
different channels χ are often quite uncertain. The objective of
the surrogate method is to determine or constrain these decay
probabilities experimentally.

In a surrogate experiment, the compound nucleus B∗
is produced via an alternative (“surrogate”), direct reaction
d + D → b + B∗ and the decay of B∗ is observed in co-
incidence with the outgoing particle b. The direct-reaction
particle is typically stopped in a detector that provides particle
identification, as well as information on the kinetic energy and
direction of b. The desired exit channel χ can be identified
(e.g., by detecting fission fragments from B∗ or γ rays
from the desired residual nucleus C). The probability for
forming B∗ in the surrogate reaction (with specific values
for Eex, J, π ) is F CN

δ (Eex, J, π ), where δ refers to the reaction
d + D → b + B∗. The quantity

Pδχ (Eex) =
∑

J,π

F CN
δ (Eex, J, π ) GCN

χ (Eex, J, π ), (3)

which gives the probability that the compound nucleus B∗
was formed with energy Eex and decayed into channel χ ,
can be obtained experimentally. The direct-reaction probabili-
ties F CN

δ (Eex, J, π ), where
∑

Jπ F CN
δ (Eex, J, π ) = 1, have to

be determined theoretically. In practice, the decay of the
compound nucleus is modeled and the GCN

χ (Eex, J, π ) are
obtained by adjusting parameters in the model to reproduce
the measured decay probabilities Pδχ (Eex). Subsequently,
the branching ratios obtained in this manner are inserted in
Eq. (2) to yield the desired reaction cross section. In this
discussion, we have omitted the angular dependence of both
the desired and the surrogate reactions on the observation angle
of the particles emitted from the compound nucleus B∗. The
extension of the Hauser-Feshbach formulas is straightforward
[16].

In practice the procedure of determining the branching
ratios is a difficult task because of several theoretical and
experimental challenges: (i) The decay probability Pδχ (Eex) =

Nδχ (Eex)/Nδ(Eex) is experimentally determined. Here Nδ

denotes the total number of d + D → b + B∗ reactions,
usually determined by observing the outgoing particle b,
and Nδχ is the number of b-χ coincidences. Both Nδχ and
Nδ need to be accurately determined. If target contaminants
are present, it becomes very difficult, if not impossible. to
determine a reliable value for Nδ . (ii) The theoretical prediction
of the direct-reaction probabilities F CN

δ (Eex, J, π ) requires a
framework for calculating cross sections of direct reactions
(stripping, pickup, and inelastic scattering) to continuum states
in B∗. (iii) Extracting the branching ratios GCN

χ (Eex, J, π )
from measured decay probabilities Pδχ (Eex) requires modeling
the decay of the compound nucleus produced in the surrogate
reaction and fitting the relevant parameters to reproduce the
experimental results. (iv) The possibility that the intermedi-
ate nucleus B∗ produced in the surrogate reaction decays
before statistical equilibrium is reached has to be excluded
or minimized.

B. The Weisskopf-Ewing limit

The Hauser-Feshbach theory rigorously conserves total an-
gular momentum J and parity π . Under certain conditions the
branching ratios GCN

χ (Eex, J, π ) can be treated as independent
of J and π and the form of the cross section (for the desired
reaction) simplifies to

dσ WE
αχ (Ea)

dEχ

= σ CN
α (Eex) GCN

χ (Eex), (4)

where

σ CN
α (Eex) =

∑

J,π

σ CN
α (Eex, J, π )

= πλ-2
α

∞∑

l=0

(2l + 1)Tαl(Eα) (5)

is the reaction cross section describing the formation of the
compound nucleus at energy Eex and GCN

χ (Eex) denotes the
Jπ -independent branching ratio for the exit channel χ . This is
the Weisskopf-Ewing limit of the Hauser-Feshbach theory. It is
applicable when the following conditions are satisfied [17,18]:

(i) The energy of the compound nucleus has to be suffi-
ciently high, so that almost all channels into which the
nucleus can decay are dominated by integrals over the
level density.

(ii) Width fluctuations have to be negligible. This will be the
case if the previous condition is satisfied.

(iii) The transmission coefficients T J
χ ′′l′′j ′′ associated with the

available exit channels have to be independent of the spin
of the states reached in these channels. This condition
is sufficiently well satisfied since the dependence of
transmission coefficients on target spin is very weak.

(iv) The level densities ρI ′′ (U ′′) in the available channels
have to be independent of parity and their dependence
on the spin I ′′ of the relevant nuclei has to be of
the form ρI ′′(U ′′) ∝ (2I ′′ + 1). It can be shown that
for sufficiently high energies U ′′, level densities are
very weakly dependent on parity, so that the first
of these conditions can be assumed to be satisfied.

054601-3



JUTTA E. ESCHER AND FRANK S. DIETRICH PHYSICAL REVIEW C 74, 054601 (2006)

The second condition, which is a prerequisite for a
rigorous derivation of the Weisskopf-Ewing limit from
the full Hauser-Feshbach theory, is satisfied if the spin
I ′′ is smaller than the spin cutoff parameter σcutoff in
the relevant level-density formula. In the actinide region
σcutoff ≈ 6–7, but it is known that the Weisskopf-Ewing
limit is still a useful approximation at higher spins.

The Weiskopf-Ewing limit provides a simple and powerful
approximate way of calculating cross sections for compound-
nucleus reactions. In the context of surrogate reactions, it
greatly simplifies the application of the method: It becomes
straightforward to obtain the Jπ -independent branching ratios
GCN

χ (Eex) from measurements of Pδχ (Eex) and to calculate the
desired reaction cross section. Calculating the direct-reaction
probabilities F CN

δ (Eex, J, π ) and modeling the decay of the
compound nucleus are no longer required. However, surrogate
experiments in the Weisskopf-Ewing limit are still challenging
since the requirement that both the number of b-χ coincidences
and the number of reaction events be accurately determined
remains. Although the cross section expressed in Eq. (4)
is differential in the outgoing-channel energy, the quantity
of interest is the cross section integrated over all final-state
energies. In the following, we will assume the quantity GCN

χ

has been integrated over the energy Eχ of the final-state
channel and will therefore remove the differentiation with
respect to energy in Eq. (4). The essential feature of this
equation remains—namely, the factorization into a formation
cross section and a branching ratio, neither of which depend
on angular momentum or parity.

C. The ratio approach

The “ratio method” makes use of the surrogate idea
and requires the validity of the Weisskopf-Ewing limit. An
important motivation for using the ratio method is the fact
that it eliminates the need to accurately measure Nδ , the total
number of d + D → b + B∗ reaction events, which has been
the source of the largest uncertainty in surrogate experiments
performed recently. Under the proper circumstances it also
reduces or removes dependence on the angular distribution
of fission fragments, which is not well characterized in the
present experiments.

The goal of the ratio method is to determine the ratio

R(E) = σα1χ1 (E)

σα2χ2 (E)
(6)

of the cross sections of two compound-nucleus reactions, a1 +
A1 → B∗

1 → c1 + C1 and a2 + A2 → B∗
2 → c2 + C2, where

the two reactions have to be “similar” in a sense that remains
to be specified. An independent determination of one of these
cross sections then allows one to infer the other by using the
ratio R. In the Weisskopf-Ewing limit, the ratio R(E) can be
written as

R(E) = σ CN
α1

(E) GCN
χ1

(E)

σ CN
α2

(E) GCN
χ2

(E)
, (7)

with branching ratios GCN
χ that are independent of J and π and

compound-nucleus formation cross sections σ CN
α1

and σ CN
α2

that
can be calculated by using an optical model.

To determine GCN
χ1

/GCN
χ2

, two experiments are carried out.
Both use the same direct-reaction mechanism, D(d, b)B∗, but
different targets, D1 and D2, to create the relevant compound
nuclei, B∗

1 and B∗
2 , respectively. For each experiment, the

number of coincidence events, N
(1)
δ1χ1

and N
(2)
δ2χ2

, is measured.
The ratio of the branching ratios into the desired channels
for the compound nuclei created in the two reactions is
given by

GCN
χ1

(E)

GCN
χ2

(E)
= N

(1)
δ1χ1

(E)

N
(2)
δ2χ2

(E)
× N

(2)
δ2

(E)

N
(1)
δ1

(E)
. (8)

The experimental conditions are adjusted such that the relative
number of reaction events, norm = N

(1)
δ1

/N
(2)
δ2

, can be deter-
mined by accounting for differences in beam intensities and
beam times, as well as numbers of atoms in each target. This
requires that the same setup be used in both experiments. The
ratio of the decay probabilities then simply equals the ratio of
the coincidence events and R(E) becomes

R(E) = σ CN
α1

(E) N
(1)
δ1χ1

(E)

σ CN
α2

(E) N
(2)
δ2χ2

(E)
, (9)

where we have set the experimental normalization factor norm
to unity.

The definition of the energy E in these equations remains to
be specified. Typically, the energy dependence of a compound-
nucleus formation cross section σ CN

α = σ (a + A → B∗) is
characterized by the kinetic energy of the projectile, Eα , and a
branching ratio is normally given as a function of the excitation
energy of the compound nucleus, GCN

χ (Eex). In a compound-
nucleus reaction, those two values are related via the separation
energy Sa of the particle a in B∗: Eex = Sa + Eα . Although
either Eex or Eα can be used to uniquely specify the energy
dependence of such a reaction, it is important for the ratio
method to make the comparison of the relevant reactions, a1 +
A1 → B∗

1 → c1 + C1 and a2 + A2 → B∗
2 → c2 + C2, at an

energy that minimizes uncertainties. Here, we take E to denote
the kinetic energy of the projectile.

In Refs. [14] and [15], the ratio method was used to obtain
an estimate of the 237U(n, f ) cross section. Inelastic deuteron
[14] and α [15] scattering experiments on 238U and 236U were
carried out and fission fragments from the decay of 238U∗
and 236U∗ were detected in coincidence with the outgoing
direct-reaction particle. The results were found to be in good
agreement with a theoretical estimate by Younes et al. [19].

More recently, a variant of the ratio approach described here
was explored for determining the 237U(n, γ ) and 237U(n, 2n)
cross sections [20]. Rather than comparing the decay of two
compound nuclei, B∗

1 and B∗
2 , formed with the same type of

surrogate reaction, the authors determined the ratio of decay
probabilities for two different exit channels, χ1 = c1 + C1 and
χ2 = c2 + C2, of one particular compound nucleus, B∗

1 =
B∗

2 ≡ B∗. This is an interesting approach that deserves further
study, which is outside the scope of the present paper. We will
restrict our considerations to applications of the ratio method in
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which two similar compound nuclei are formed in two separate
surrogate reactions.

III. METHOD OF THE STUDY

The purpose of the present work is to examine the validity
of the surrogate ratio method for determining (n, f ) cross
sections for actinide nuclei. In particular, we will (i) use
a Hauser-Feshbach-based nuclear reaction-model simulation
to investigate whether the principal assumptions underlying
the ratio method are valid and (ii) employ these calculations
to assess whether applying a ratio analysis to the simulated
observables yields a cross section that agrees with the expected
result. Although experimental tests can be very valuable,
employing a simulation provides several distinct advantages:
We are able to access physical quantities that are not directly
observable in an experiment, such as Jπ -dependent branching
ratios for a specific exit channel. We can also alter quantities
that are experimentally not easily modified in a controlled
manner, such as the angular-momentum distribution in a
compound nucleus before it decays, and carry out sensitivity
studies.

For our study, we need two types of reference cross
sections: The first type, σα1χ1 , appears in the denominator of
the ratio R = σα1χ1/σα2χ2 and corresponds to a known cross
section in real-world applications of the ratio method. The
second type of reference cross section corresponds to the
unknown, “desired” cross section and serves as a benchmark
for the ratio method. We employ the full Hauser-Feshbach
theory to calculate the reference cross sections relevant for
our study: 233U(n, f ), 235U(n, f ), and 235Um(n, f ). We treat
the calculated 233U(n, f ) cross section as the reference cross
section that will appear in the denominator of the ratio R,
whereas the 235U(n, f ) and 235Um(n, f ) cross sections are to
be determined from a ratio treatment. Upon extracting these
by applying the ratio prescription, we can compare the results
to the reference cross sections of the second type and gain
insights into the potential success of the ratio method.

Furthermore, to simulate a surrogate treatment, we need
to generate those quantities that are typically measured in
a surrogate experiment. In particular, we need observables
associated with the decay of a compound nucleus that was
produced in a direct (surrogate) reaction. Surrogate exper-
iments focusing on (n, f ) cross sections typically measure
fission probabilities, whereas determining (n, γ ) cross sections
involves measuring γ -ray intensities for transitions within the
residual nucleus. Both fission probabilities and γ intensities
can be calculated with a Hauser-Feshbach code, such as the
STAPRE code [21,22] used in the present work. To account for
the fact that a direct reaction produces a spin-parity distribution
in the compound nucleus that is different from the spin-parity
distribution associated with the desired reaction, we modified
this code so that it is suitable for surrogate-reaction studies.
In particular, we included an option to allow the spin-parity
distribution of the first compound nucleus to be read in from
a text file rather than calculated from the entrance-channel
transmission coefficients. It is therefore possible to select an
arbitrary Jπ distribution for a given compound nucleus and to
predict the decay of the nucleus.

In Sec. IV, we will discuss various tests of the ratio method
for fission. We begin by investigating the main assumption
of the method, the validity of the Weisskopf-Ewing limit, by
explicitly considering the branching ratios GCN

χ (Eex, J, π ) of
Eq. (2), where χ refers to the fission channel. In particular,
we study the GCN

χ (Eex, J, π ) values that result from the fitting
procedure of Sec. III A, for different spin and parity values
J, π as a function of energy. We then simulate a surrogate
fission experiment. Specifically, we study fission of 234U and
236U following excitation by a direct reaction. Rather than
attempting to predict the Jπ distributions that can result
from the various possible direct-reaction mechanisms (transfer
and inelastic reactions), we consider a few simple spin-parity
distributions for 234U and 236U and observe their effect on the
compound-nucleus decay. We carry out a surrogate analysis
under the assumption that the Weisskopf-Ewing limit is
valid and infer the σ [235U(n, f )] and σ [235Um(n, f )] cross
sections. The results are compared to the reference cross
sections obtained from the full Hauser-Feshbach calculations.
Furthermore, we use the fission simulation to carry out a
ratio analysis and compare the cross sections obtained in this
manner to the reference cross sections. This comparison gives
insight into the quality that can be achieved with the ratio
method given optimal circumstances.

A. Nuclear-reaction model for fission

Both the calculations of the reference cross sections and
the simulations of the surrogate experiments make use of the
Hauser-Feshbach statistical reaction theory. The former in-
volve a standard Hauser-Feshbach description of the formation
and decay of a compound nucleus, with parameters adjusted
to reproduce available experimental data. The simulations
of the surrogate experiments employ the Hauser-Feshbach
theory to describe the decay of the relevant compound nucleus
only, with parameters taken from the reference cross section
calculations. The determination of the level schemes, level
densities, γ strength functions, fission-model parameters, and
pre-equilibrium parameters is described in the following.

The following target nuclei are considered in our study:
233U, which has ground-state spin and parity Iπ = 5/2+,235U,
which has Iπ = 7/2−, and 235Um, with Iπ = 1/2+. Since
we are interested in neutron-induced reactions, appropriate
neutron-nucleus optical potentials are needed. For simplicity,
the calculations employ the same deformed neutron-nucleus
optical potential for all three systems (i.e., the neutron trans-
mission coefficients are independent of the target nucleus).
This is a suitable approximation since the optical-model
observables vary quite slowly over the range of uranium
isotopes considered. The compound-nucleus formation cross
section σ CN

n+235U = σ CN
n+235Um = σ CN

n+233U is plotted in Fig. 2. It is
expected to be accurate to approximately 5% throughout the
energy range covered.

1. Determining the reference cross sections

We began this study with the results of an earlier treatment
of 235U(n, 2n) that had been carried out with the STAPRE

code [24]. In this earlier calculation, level schemes, level
densities, γ strength functions, fission-model parameters,
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FIG. 2. (Color online) Compound-nucleus cross section obtained
from the Flap2.2 optical-model potential [23]. This is the reaction
cross section after removal of contributions from the excitation of
directly coupled states. The calculations were carried out for neutrons
incident on 234U and we assume σ CN

n+234U
= σ CN

n+235U
= σ CN

n+235Um =
σ CN

n+233U
.

and pre-equilibrium parameters had been carefully adjusted
to fit the available experimental data on γ production and
fission. For the present work, only small adjustments were
made relative to the earlier calculation. The calculation of
neutron-induced fission of 233U carried out for the present
study proceeded in a nearly identical manner. Because we
are interested in comparing reactions on the two targets, it is
important that the procedures applied to both be very similar.
The following remarks are applicable to both calculations.

(i) Level schemes and γ branching ratios were taken from
the evaluated nuclear-structure data available on the
RIPL-2 Web site [25]. Level densities were parameter-
ized in the Gilbert-Cameron form [26]. The Fermi-gas
parameter was fit to the observed average s-wave spac-
ing, or obtained from the Gilbert-Cameron systematics
if experimental data were unavailable. The constant-
temperature portion was constrained to reproduce the
number of observed discrete levels at low energy and
matched in value and slope to the Fermi-gas form at an
energy somewhat below the neutron separation energy.

(ii) Details of the deformed optical potential (Flap2.2) used
in the current calculations are given in [23]; its predicted
reaction cross section is shown in Fig. 2.

(iii) Transmission coefficients for fission were calculated
from the usual two-barrier model (see, e.g., Bjornholm
and Lynn [27]) in which the fission process proceeds
through transition states built on top of the two saddle
points. In the present calculations the transition states
were represented by a level density; no discrete transition
states were considered. For use in the fission calculations,
an additional option for calculating level densities was
added to STAPRE. This option allows four constant-
temperature segments, connected to a Fermi-gas form for

use at energies above the constant-temperature segments.
The level densities are required to be continuous at the
matching points. Separate spin-cutoff parameters may be
specified for the constant-temperature segments and for
the Fermi-gas region. The spin-cutoff parameters used
in the fits to the fission data were in the range 5–7,
consistent with those in Ref. [27]. The starting values
for the fission-barrier heights and curvatures were also
taken from Bjornholm and Lynn [27]. These as well as
the level-density parameters were varied to achieve fits
to the fission cross-section data.

(iv) The γ transmission coefficients were calculated from
a standard Brink-Axel model [28,29] using a double-
humped Lorentzian parametrization of the giant dipole
resonance, together with a small M1 component with a
Weisskopf (E3

γ ) energy dependence. Exactly the same
parameters were used in all nuclei considered; the
strength [peak giant dipole resonance (GDR) cross
section] of the E1 component was adjusted to repro-
duce the average of the experimental values for the
radiation width of the s-wave resonances in the uranium
isotopes.

(v) Pre-equilibrium neutron emission in the first (n, n′)
stage of the reaction was calculated with the exciton
model built into the STAPRE code. Its parameters were
determined in the earlier study of reactions on 235U
by requiring that the pre-equilibrium spectrum be in
approximate agreement with known (n, n′) data in the
actinide region. Exactly the same parameters were used
in all of the present calculations for both isotopes.

(vi) Width-fluctuation corrections were not included in any
of these calculations nor in any of the other results shown
in this report.

The results of the fits to the fission cross sections of 233U
and 235U are displayed in Fig. 3. The calculated first-, second-,
and third-chance fission as well as their sum are shown,
together with the evaluations to which the fission parameters
were fitted. The ENDL-99 [30] evaluation and a beta version
of the ENDF-7 [31] were used for 235U and 233U, respectively.

Based on the successful fit of the experimental (or eval-
uated) cross sections for 233U and 235U, the cross sections
for reactions on the first-excited (isomeric) state of 235U can
be predicted by changing the spin and parity of the target
from 7/2− to 1/2+ and keeping all other parameters fixed.
The prediction for 235Um(n, f ) is shown in Fig. 4, along with
the evaluation for fission of the ground state. At the lowest
energies, the cross section is lower than that on the ground state
by about 20%. This reduction is in qualitative agreement with
the results of Younes and Britt [1], even though the present
calculation does not include the discrete transition states on
top of the fission barriers that are believed to play a significant
role in the difference between the ground and isomeric cross
sections.

2. Choosing spin-parity distributions for the simulation of
surrogate experiments

To simulate the decay of the compound nuclei 234U and
236U, as produced in a surrogate experiment, we employ
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(a) (b)

FIG. 3. (Color online) Fits to the (a) 233U and (b) 235U fission cross sections.

the previously mentioned Hauser-Feshbach parameters deter-
mined in the fits to the 233U(n, f ) and 235U(n, f ) cross sec-
tions. We also need information on the spin-parity distributions
of the decaying 234U and 236U systems. In principle, one would
like to describe the direct-reaction process (transfer or inelastic
scattering reaction) leading to these compound nuclei with an
appropriate direct-reaction model and obtain information on
the resulting Jπ distribution, which in turn can be used as
input in the modified Hauser-Feshbach code. However, this is
a nontrivial task since it requires a description of transfer and
inelastic scattering reactions leading to unbound states, as well
as an understanding of pre-equilbrium decay following a direct
reaction (see Sec. III B2). Moreover, a variety of projectile-
target combinations with a range of possible incident energies
may be considered for the direct reaction that produces the
compound nucleus of interest. Different reaction mechanisms,

FIG. 4. (Color online) Prediction of 235Um fission cross section
using the parameters obtained from the fit to the 235U(n, f ) cross
section. For reference purposes, the black dots show the evaluated
235U(n, f ) cross section.

regions of the nuclear chart, and projectile energies will yield
different compound-nuclear Jπ distributions and also provide
different challenges for a proper theoretical description. For
instance, for the reactions of interest here, both inelastic α and
deuteron scattering from actinide nuclei, as well as the (3He, α)
transfer reaction, have to be considered, and a proper treatment
of the deformation is required. Thus, rather than focusing on
detailed predictions of the Jπ distributions appropriate for
these cases, we will use schematic distributions that are likely
to cover the range of relevant Jπ distributions.

Some guidance for selecting possible Jπ distributions can
be found in the literature. One-nucleon stripping reactions,
such as (α,3He), (20Ne,19Ne), etc., with intermediate-energy
projectiles, E ≈ 20–40 MeV/A, have received much interest in
recent years. Experimental [32–34] as well as theoretical [35]
work has been devoted to understanding the continuum spectra
from such single-nucleon stripping reactions on spherical
nuclei. In the reactions considered, relatively large angular-
momentum transfers (l = 5, 6, 7) resulted in the population
of high-j single-particle orbitals (1h11/2, 1i13/2, 1j15/2, etc.),
which were a major focus of those studies. Calculations
for the 239Pu(d,p)240Pu reaction at Ed = 13 MeV [36] and
for the two-nucleon stripping reaction (t, p) at Et = 15–
18 MeV for the actinide region [1] have shown smaller
angular-momentum transfers to be relevant as well. Since
reactions involving targets with large ground-state spins can
produce compound-nuclear Jπ distributions peaked at larger
angular-momentum values, it is reasonable to consider J >

10 as well. Furthermore, inelastic scattering on even-even
targets exhibits a characteristic asymmetry between natural
and unnatural parity states: In the absence of a spin-dependent
interaction only Jπ = 0+, 1−, 2+, . . . are populated [in a
distored-wave Born approximation (DWBA) description]. It
is therefore worthwhile to study the effects of Jπ distributions
that contain natural (or unnatural) parity states only.

For the purposes of the present study, we consider six
different distributions. The first four, distributions a, b, c, and
d, assume equal probabilities for positive- and negative-parity
states and are plotted in Fig. 5(a). These distributions have
mean angular momenta 〈J 〉 of 7.03, 10.0, 12.97, and 3.30 for
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(a) (b)

FIG. 5. (Color online) Distributions of total angular momentum for the compound nuclei considered in this study. We assume that the Jπ

distribution produced in a realistic surrogate reaction falls within the range of the cases studied here. (a) Distributions a–d. The mean angular
momentum is 〈J 〉 = 7.03, 10.0, 12.97, and 3.30 for distributions a, b, c, and d, respectively; positive and negative parities are taken to be
equally probable. (b) Distribution e. This distribution contains natural parity states only, namely, 0+, 2+, 4+, etc. (solid line) and 1−, 3−, 5−,
etc. (dashed line). We have also considered the complementary case: Distribution f, which contains only unnatural parity states (0−, 1+, 2−, 3+,
etc.), is not shown explicitly, since it can be visualized by interchanging the parity labels (solid and dashed lines). Both distributions have the
same mean value 〈J 〉 = 3.30.

the curves labeled a, b, c, and d, respectively. The last two
distributions, e and f, with mean angular momentum 〈J 〉 =
3.30, assume that only natural parity states (0+, 1−, 2+, etc.)
or only unnatural parity states (0−, 1+, 2−, etc.) are occupied,
respectively; see Fig. 5(b). In Sec. IV, the dependence of the
calculated branching ratios and extracted cross sections on the
Jπ distributions of the relevant compound nucleus will be
investigated using the schematic forms introduced here.

B. The role of pre-equilibrium decays

Central to the surrogate approach is the assumption that the
formation and decay of the intermediate nuclear state—in both
the “desired” and the surrogate reaction—are independent of
each other (apart from conserving constants of motion). This
is only valid if the intermediate nucleus equilibrates (becomes
a compound nucleus) before it decays into the final reaction
products.

1. Preequilibrium neutron emission in the desired reaction

Pre-equilibrium neutron emission is important for neutron-
induced reactions at incident energies above a few MeV and
was therefore included in the calculations of the (n, f ) cross
sections described here. The surrogate approach provides
information on the decay of the desired compound nucleus
and thus cannot reveal cross section contributions from pre-
equilibrium effects in the desired reaction. Here we consider
the effects of pre-equilibrium emission on the (n, f ) cross
section. Figure 6 shows the full calculations of the 233U(n, f )
and 235U(n, f ) cross sections, as described earlier (solid lines),
together with the same calculation without pre-equilibrium but
identical parameters otherwise (dashed lines).

The principal effect of pre-equilibrium neutron emission is
on first-chance fission, that is, fission of the compound nucleus
formed by fusion of the incident neutron with the target.
Pre-equilibrium neutron emission corresponds to a fast (n, n′)
process that bypasses this stage and, consequently, reduces the
compound-nucleus formation cross section. This is reflected
in a reduction of first-chance fission, as seen in Fig. 6. In the
region where first-chance fission dominates (En <∼ 7 MeV), the
correction to the total fission is less than 10%. At the highest
energies (≈20 MeV), the depletion of first-chance fission is
quite large, in the neighborhood of 40%. However, second-
and third-chance fission are dominant in this region, so the
net correction to the total fission is much less, not exceeding
≈15% over the entire energy range.

The effects of pre-equilibrium on second- and third-chance
fission are much smaller than that for first-chance fission.
Although the pre-equilibrium (n, n′) process bypasses the first
compound nucleus, for sufficiently low energies of the inelas-
tically scattered neutrons the residual nucleus will be able to
undergo fission. This component of the fission cross section
originates from the same residual nucleus that is reached by
neutron emission from the first compound nucleus, and thus
it must be added to the fission component (second-chance
fission) arising from purely compound processes. The net
result is that second- and higher chance fission cross sections
are much less sensitive to the inclusion of pre-equilibrium than
the first-chance process.

In principle, it is necessary to independently determine pre-
equilibrium corrections to the cross sections extracted from a
surrogate analysis. We do not determine such corrections in our
current study. For the cases considered here, the total fission
cross sections calculated with and without pre-equilibrium
were found to be within 15% of each other. Moreover, we
expect that the corrections for pre-equilibrium should be very
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FIG. 6. (Color online) The solid lines represent the fits to 233U(n, f ) and 235U(n, f ) as shown in Fig. 3. The dashed lines are calculations with
identical parameters, except that pre-equilibrium effects are turned off. Labels indicate the contributions from first-, second-, and third-chance
fission as well as the total.

similar for targets differing only by two neutrons (233U(n, f )
versus 235U(n, f ) as shown in Fig. 6, or 235U(n, f ) versus
237U(n, f ) as presently being inferred from experiments using
the ratio method [14,15]). Therefore, the errors incurred
by omitting pre-equilibrium corrections are likely to be
significantly smaller than 15% when the ratio method is used.

2. Pre-equilibrium decay in the surrogate reaction

The objective of a surrogate reaction d + D → b + B∗ is
the production of a compound nucleus B∗, the decay of which
we observe experimentally. To infer useful information on
the desired decay probabilities, one needs to be sure that the
observed quantities (such as b-fission coincidence events) are
indeed associated with the desired nucleus B∗ and that this
nucleus was in statistical equilibrium before the decay.

Experimentally, it is often impossible to verify this: Fission
fragments might originate from the desired compound nucleus
or from a neighboring nucleus, the intermediate nucleus might
have decayed before reaching equilibrium, etc. A theoretical
assessment is also difficult, since it requires a thorough
understanding of the process by which the desired compound
nucleus is formed. For example, inelastic scattering can excite
a target nucleus by producing one-particle one-hole (1p-1h)
states, which can evolve to 2p-2h, 3p-3h, etc. configurations
and eventually to a compound nucleus. At any stage it is
possible that a particle escapes, thus preventing the formation
of the desired compound nucleus. For a stripping reaction, one
has to disentangle the contribution from various processes,
such as breakup, breakup fusion, and direct stripping to
resonances, and determine the probability that the relevant
resonance state evolves to produce a compound nucleus.
Moreover, it is insufficient to estimate the probability of
pre-equilibrium decay for a given surrogate reaction; one
also needs to determine its effect on the Jπ distribution of
the desired nucleus. It is expected that pre-equilibrium decay
proceeds predominantly through particular Jπ states; that is,
the Jπ distribution of the decaying compound nucleus is

likely to be different from the distribution that was present
immediately following the direct-reaction process.

The model employed here does not make any statements
or assumptions about possible pre-equilibrium effects in the
surrogate reaction. It starts with a given compound nucleus
and Jπ distribution and follows the decay of that nucleus in
the Hauser-Feshbach framework. The process of producing a
particular Jπ distribution for a given compound nucleus via a
direct reaction deserves additional attention in a more complete
treatment of surrogate reactions. This topic lies outside the
scope of the present study.

IV. SURROGATE METHODS FOR FISSION

For this study we carry out various tests relevant to the
surrogate method in the Weisskopf-Ewing limit and the ratio
method. We focus on applications to neutron-induced fission.
First, we calculate branching ratios for fission as a function
of the spin and parity of the initially formed compound
nucleus. We then study the validity of the surrogate method
for calculating fission cross sections for individual nuclei using
the Weisskopf-Ewing assumption. This is done by comparing
the predictions of the method with the reference cross sections
calculated from the full Hauser-Feshbach theory, as outlined in
the previous section. Finally, we study the validity of the ratio
method by the same technique. Our findings are presented in
the following.

A. Branching ratios and the Weisskopf-Ewing assumption

The branching ratios GCN
χ=fission(Eex, J, π ) defined in Eq. (2)

are independent of the spin and parity values Jπ if the
Weisskopf-Ewing limit of the full Hauser-Feshbach theory is
applicable. Although these branching ratios cannot be directly
measured in a fission experiment, they can be extracted from a
calculation of the (n, f ) cross section and their Jπ dependence
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FIG. 7. (Color online) Calculated branching ratios GCN
fission for fission of 234U∗, as a function of the laboratory neutron energy in the 233U + n

system (see text). Results are shown for (a) positive- and (b) negative-parity states with total angular momenta J = 0, 5, 10, 15, 20 in the
compound nucleus 234U∗.

can be studied. This allows us to assess the validity of the
Weisskopf-Ewing assumption.

In our calculation the branching ratio for one particular
Jπ combination is obtained as follows: First, all param-
eters (level densities, γ strength functions, fission-model
parameters, etc.) of the Hauser-Feshbach-plus-preequilibrium
calculation are determined as outlined in Sec. III A1. Since the
modified STAPRE code allows one to calculate the quantity∑

J,π f CN(Eex, J, π )GCN
χ (Eex, J, π ), where f CN(Eex, J, π )

is an arbitrary Jπ distribution in the compound nucleus,
we can set f CN(Eex, J, π ) = 1 for a particular (J, π ) value
(J0, π0), and f CN(Eex, J, π ) = 0 otherwise. This allows us to
obtain the individual branching ratios, GCN

χ=fission(Eex, J0, π0),
samples of which are plotted in Figs. 7–9. Note that the results
shown are the actual branching ratios (i.e., fission probabilities)
that are used in the full calculation of the (n, f ) cross section.

Figure 7 gives the branching ratios for fission proceeding
through positive- and negative-parity states of the compound
nucleus 234U∗. The GCN

fission are relevant for the calculation of
the 233U(n, f ) cross section and have been plotted as a function
of the laboratory energy in the 233U + n system, which is

En = A + An

A
[Eex(A+1U ∗) − Sn],

where A is the target mass number (233 in this case), An

is the neutron mass number, Eex is the excitation energy of
the compound nucleus A + 1, and Sn is the separation energy
of a neutron from the compound nucleus. We observe that
the branching ratios exhibit a significant Jπ dependence.
In particular, for low energies, En = 0–5 MeV, the GCN

fission
differ in both their energy dependence and their magnitude
for different Jπ values. We find variations as large as a
factor of 2 in absolute value. With increasing energy, the
differences decrease, although the discrepancies become more
pronounced as the thresholds for second-chance and third-
chance fission of 234U are crossed, at approximately 6 and
13 MeV, respectively. For energies above 5 MeV, the differ-
ences are at most 25%–30%. Comparing Figs. 7(a) and 7(b),

we also note that the dependence of the GCN
fission on parity is

much smaller than the angular-momentum effect. It is clear
that for low energies (below 2 MeV) the Weisskopf-Ewing
approach is not a good approximation, whereas the energy
regime above 5 MeV merits further study.

Figure 8 shows the branching ratios for fission proceeding
through positive- and negative-parity states of the compound
nucleus 236U∗. The GCN

fission are relevant for the calculation of
the 235U(n, f ) and 235Um(n, f ) cross sections and have been
plotted as a function of the laboratory neutron energy in the
235U(n, f ) reaction. We find trends similar to those exhibited
by the previous case. The discrepancies are more pronounced
in this case than in the 234U example, with differences of up
to a factor of 3 in the absolute values. Here as well, the GCN

fission
become more alike with increasing energy except near the
thresholds for second-chance and third-chance fission.

The calculations demonstrate that the validity of the
Weisskopf-Ewing approximation depends on the range of Jπ

values that play a role in the decay of the compound nucleus.
Although it may be possible to apply the Weisskopf-Ewing
approximation to a reaction that populates a narrow range
of Jπ states, this description will break down for cases
that involve a wide range of angular-momentum values. For
example, for reactions that populate only the J = 0, . . . , 4
states in 236U it is reasonable to expect the Weisskopf-Ewing
approximation to provide a valid description of fission of
236U, at equivalent neutron energies above En ≈ 1.0 MeV
(see Figure 9). However, if the states that are populated in
the compound nucleus before the decay have large angular
momenta (J >∼ 5 here), the condition J <∼ σcutoff required for
the Weisskopf-Ewing limit to be a good approximation to
the Hauser-Feshbach theory is no longer satisfied and the
branching ratios may depend on Jπ . It is therefore worthwhile
not only to study the dependence of the branching ratios on the
spin and parity of the decaying nucleus but also to develop and
test theories that allow for a prediction of the Jπ populations
of a compound nucleus following a variety of possible direct
reactions.
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(a) (b)

FIG. 8. (Color online) Calculated branching ratios GCN
fission for fission of 236U∗, as a function of the laboratory neutron energy in the 235U + n

system (see text). Results are shown for (a) positive- and (b) negative-parity states with total angular momenta J = 0, 5, 10, 15, 20 in the
compound nucleus 236U∗.

The findings here illustrate an important point: Restricting
one’s consideration to reactions induced by neutrons with
kinetic energies above several MeV does not guarantee
the validity of the Weisskopf-Ewing limit. The validity of
this approximation depends clearly on the energy of the
compound nucleus as well as on the range of Jπ values
that play a role in the decay of the compound nucleus.
Angular-momentum values larger than the spin cutoff factor
invalidate the Weisskopf-Ewing assumption, and we have seen
that this assumption also breaks down near the threshold for
second-chance and, to a lesser degree, third-chance fission.
We have to conclude that it is not a priori clear whether the
Weisskopf-Ewing limit applies to a particular reaction in a
given energy regime. This needs to be verified for each case
of interest.

B. Simulated surrogate fission cross sections in the
Weisskopf-Ewing approximation

Using the branching ratios discussed in the previous
section we can now simulate a surrogate fission experiment.
Although the individual branching ratios GCN

χ (Eex, J, π )
do not depend on the formation mechanism for the com-
pound nucleus, the measured decay probabilities Pχ (Eex) =∑

J,π f CN(Eex, J, π ) GCN
χ (Eex, J, π ) depend on the relative

weights f CN(Eex, J, π ), which in turn are determined by the
process that formed the compound nucleus. For example,
f CN(Eex, J, π ) = σ CN

n+A(Eex, J, π )/
∑

J ′,π ′ σ
CN
n+A(Eex, J

′, π ′)
for the neutron-induced reaction n + A → B∗, where
σ CN

n+A(Eex, J, π ) is the cross section for forming the compound
nucleus at energy Eex with angular momentum J and parity
π . However, f CN(Eex, J, π ) = F CN

δ (Eex, J, π ) for a surrogate

(a) (b)

FIG. 9. (Color online) Same as in Fig. 8, but for small total angular momenta, J = 0, 1, 2, 3, 4, and 5, of the compound nucleus 236U∗.

054601-11



JUTTA E. ESCHER AND FRANK S. DIETRICH PHYSICAL REVIEW C 74, 054601 (2006)

(a) (b)

FIG. 10. (Color online) Weisskopf-Ewing estimates for (n, f ) cross sections, using different estimates for the distribution of angular
momenta in the initial compound nucleus, compared to the calculated reference cross section. The latter were obtained from a careful
adjustment of a complete (n, f ) calculation. (a) Estimated and expected cross sections for 233U(n, f ). The crosses represent the 233U(n, f )
reference cross section. (b) Estimated and expected cross sections for 235U(n, f ) and 235Um(n, f ). The crosses represent the 235U(n, f ) reference
cross section and the circles represent the reference cross section for 235Um(n, f ). In both cases, the results for distributions e and f are almost
identical to the cross section extracted for distribution d and are not shown.

reaction, δ = d + D → b + B∗, is determined by the relative
direct-reaction cross sections for the individual Jπ values.

In our simulation of a surrogate reaction, we consider
six possible distributions (shown in Fig. 5) for the weights
F CN

δ (Eex, J, π ) and investigate their effect on the extracted
(n, f ) cross sections. With the help of the modified STAPRE

code we determine

P
(p)
δχ (Eex) =

∑

J,π

F
CN (p)
δ (Eex, J, π ) GCN

χ (Eex, J, π ), (10)

where χ = fission, which simulates an experimentally ob-
servable b-fission coincidence probability, for each of the
selected compound-nuclear Jπ populations, p = a, . . . , e.
These distributions are normalized so that their sum over all
J and π values is unity. We then calculate the desired fission
cross section,

σ
WE (p)
(n,f ) (Eex) = σ CN

n+A(Eex) GCN (p)
fission (Eex), (11)

assuming Jπ -independent branching ratios GCN (p)
fission (Eex) =

P
(p)
δχ (Eex). This procedure corresponds to a surrogate analysis

in the Weisskopf-Ewing approximation of the simulated
(d + D → b + B∗ → b + fission) experiment, since in this
limit, we have Pδχ = GCN

fission

∑
J,π F CN

δ and, as already noted,∑
J,π F CN

δ = 1. The compound-nucleus formation cross sec-
tion σ CN

n+A(Eex) is taken to be the one shown in Fig. 2.
The deduced (n, f ) cross sections for a given target nucleus

and for Jπ distribution p can then be compared to the
calculated reference cross sections obtained as described in
Sec. III A1. In particular, the extracted cross sections should
not depend on the Jπ distribution chosen if the Weisskopf-
Ewing limit is a good approximation. However, given the
findings just presented, we should not be surprised to find
that the cross sections obtained in the manner described differ
significantly from each other as well as from the reference

cross sections, particularly for energies lower than 5 MeV and
high compound nucleus spins.

Results for the 233U(n, f ) cross section deduced from
simulated surrogate experiments are shown in Fig. 10(a). Cross
sections obtained for the four Jπ distributions p = a, b, c, and
d are given, along with the reference cross section for this
reaction. Cross sections obtained for distributions e and f are
almost identical to the result for p = d and are not plotted. We
observe that the inferred cross sections for p = a, b, and c are
too large, by up to 15%–20% for energies above 5 MeV and up
to 50% for smaller energies, whereas the results for p = d, e,
and f are within 10% of the expected cross section for all ener-
gies considered. The deduced cross sections clearly depend on
the Jπ distribution considered for the compound nucleus. This
reflects the fact that the Weisskopf-Ewing limit is not strictly
valid in this case. The uncertainties are particularly large for
energies below 3 MeV, as expected given the findings of
Sec. IV A. For energies En ≈ 0–5 MeV, the extracted cross
section for distribution d is in excellent agreement with the
reference cross section, since in this energy range the Jπ

population of the compound nucleus 236U, as produced in the
n+235U fusion process is similar to distribution d (see Fig. 11).
Identifying a surrogate reaction that produces a compound
nucleus similar to the one produced in the desired reaction
obviously yields the best results for the extracted cross section.

Figure 10(b) shows similar results for the extracted
235U(n, f ) and 235Um(n, f ) cross sections. Note that the results
are the same for both cases since we simulate the surrogate
reaction with the same six possible Jπ distributions and we
assume the compound nucleus formation cross section to be
independent of the target nucleus for the range of uranium
isotopes studied here. Here as well, we find that the results for
distribution d, e, and f are almost undistinguishable and we
plot only the cross section extracted for p = d. The findings
are similar to those for the 233U case, but the discrepancies
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FIG. 11. (Color online) Angular-momentum distribution of
positive-parity states of the compound nucleus 236U, following
neutron absorption by 235U, for various neutron energies. The
negative-parity distribution is qualitatively similar.

between the different curves are more pronounced here.
For distributions p = a, b, and c, the surrogate analysis
overestimates the cross sections by as much as 40% for
energies larger than 5 MeV and by a factor of 2.5 in the low-
energy regime. For distributions p = d, e, and f, we find that the
extracted cross sections are in very close agreement with the
expected results for En = 0–8 MeV and are too large by about
10%–15% for larger energies. The influence of the spin-parity
distribution in the compound nucleus on the extracted cross
sections is significant; again, this reflects the fact that the
Weisskopf-Ewing approximation is deficient at low energies
(below about 3 MeV) when not enough channels are open and
at higher energies when the spin-parity distribution extends
to values significantly higher than the spin-cutoff parameter
in the level densities in the decay channels. Although the
extracted cross sections are least sensitive to the underlying
Jπ distributions in the energy range En = 13–20 MeV, they
overestimate the cross section by 10–15%. These discrepancies
are primarily due to pre-equilibrium effects, which reduce the
reference cross section (see Sec. III B and Fig. 6) and are
not included in the type of surrogate reaction measurements
simulated here.

C. Simulation of the ratio method for fission

We are now in a position to carry out a ratio analysis,
using results from the simulated surrogate experiments d +
D → b + B∗ → b + χ in which the compound nuclei 234U
and 236U decay by fission. As explained in detail in Sec. II C,
the ratio method makes use of the surrogate idea and assumes
the validity of the Weisskopf-Ewing limit. Whereas a surrogate
analysis in the Weisskopf-Ewing approximation requires that
one determine the absolute probabilities Pδχ = GCN

χ for the
decay channel of interest (χ = fission in the current case),
for the ratio method it is sufficient to determine the relative

probabilities to relate the unknown desired cross section σα1χ1

to a known cross section σα2χ2 via Eq. (6).
In this study we treat the reference cross section

σ [233U(n, f )] as the known cross section and σ [235U(n, f )]
as the unknown desired cross section. We have

R(E) =
σ CN

n+235U(E) GCN
236U∗→f

(E)

σ CN
n+233U(E) GCN

234U∗→f
(E)

=
GCN

236U∗→f
(E)

GCN
234U∗→f

(E)
(12)

since σ CN
n+233U = σ CN

n+235U here. The branching ratios are those
shown in Figs. 7–9. For each Jπ distribution considered,
p = a, . . . , f we determine the ratio R(p)(E) from the
associated probabilities P

(p)
δχ and deduce the desired cross

section σ (p)[235U(n, f )] = R(p)σ [233U(n, f )]. We carry out
such an analysis for both the ground state, 235U, and the
unstable first excited state, 235Um, of the target nucleus. Since
both 235U(n, f ) and 235Um(n, f ) proceed through the same
compound nucleus, 236U, the comparison of the two cases
will provide insight into the role of the target spin in the
neutron-induced reactions.

The (n, f ) cross sections deduced from the ratio analysis
of the simulated surrogate experiments are shown in Fig. 12(a)
for 235U(n, f ) and Fig. 12(b) for 235Um(n, f ). In each case, the
inferred cross section is compared to the calculated reference
cross section.

We observe that the Jπ distributions p = a, . . . , f have a
much smaller effect on the cross sections deduced here than
on the cross sections obtained from a surrogate analysis in
the Weisskopf-Ewing limit; that is, the ratio method is less
sensitive to the details of the spin-parity distributions.

For both examples, we find relatively good agreement
between the simulated ratio results and the expected cross
sections for energies above about 3 MeV. The largest dis-
crepancies, which may be as large as 50%, occur where the
Weisskopf-Ewing approximation is no longer valid, that is,
at small energies (En � 3 MeV) and for angular-momentum
distributions with high average J values. We also find
differences of up to about 25% near the threshold for
second-chance fission. At the same time, the cross sections
associated with distribution d are in excellent agreement with
the expected results for energies up to about 7–8 MeV, where
pre-equilibrium effects set in. Overall, the agreement is slightly
better for the 235U target than for the 235Um case.

For situations in which the Weisskopf-Ewing limit provides
at least a rough approximation (e.g., for En = 5–20 MeV in
the cases considered here), the ratio method further reduces
the discrepancies between the extracted and expected cross
sections, thus providing significantly improved results. Effects
that, in the surrogate Weisskopf-Ewing approach, cause devi-
ations from the correct results seem to affect the 235U(n, f ),
235Um(n, f ), and 233U(n, f ) cross sections in a similar manner
and hence cancel in part in the surrogate ratio treatment. This is
in particular notable for the pre-equilibrium decays, the effects
of which were pronounced in the Weisskopf-Ewing approach
and are significantly smaller here.

Despite the apparent success of the ratio treatment, there
remains a dependence on the form of the initial spin-parity
distribution in the compound nucleus, which is not well known
at this time. It would be helpful to have realistic calculations
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(a) (b)

FIG. 12. (Color online) Estimates of the (a) 235U(n, f ) and (b) 235Um(n, f ) cross sections obtained from the ratio method, using different
estimates for the distribution of angular momenta in the initial compound nucleus. Distributions e and f yield results very similar to those for
case d and are not shown. The crosses represent the reference cross sections as obtained in Sec. III A1.

and experimental data that allow one to place constraints
on the possible compound-nucleus Jπ distributions. Some
information on the spins of a compound nucleus decaying via
the emission of γ rays can in principle be inferred from a
measurement of the γ -ray intensities. This will be the subject
of a separate study.

D. Fission fragment angular distributions and
surrogate analyses

Nuclear fragments resulting from fission of a nucleus
B∗ that has been excited in a direct reaction, such as a
transfer reaction or an inelastic excitation, are in general
not isotropically distributed. This then implies that it is not
straightforward to infer the total number of fission fragments
from a realistic experiment in which the fission detectors cover
only a portion of 4π . In a surrogate reaction, fission fragments
are detected in coincidence with the outgoing particle from the
direct reaction.

Angular correlations between the outgoing direct-reaction
particle and fission fragments were studied in the 1960s for
(d, pf ), (t, pf ), (t, df ), and (α, α′f ) reactions [37–43]. For a
given projectile-target combination, the distributions W(θ, φ)
were found to depend on a variety of parameters: (i) the energy
Eex to which the nucleus B∗ was excited in the direct reaction;
(ii) properties of the transition states populated in B∗, such
as the parity π of the relevant state, as well as the angular
momentum J and its projections K and M on the body-
fixed and laboratory-fixed axes, respectively; and (iii) the
angle ψ of the outgoing direct-reaction particle with respect
to the beam direction. Both the stripping and the inelastic
scattering studies found the anisotropies in the fission fragment
distribution to be particularly large near the fission threshold.
In fact, the dependence of the angular distribution near the
fission barrier on the J,K,M , and π quantum numbers of the
transition states was exploited to study the structure of these
states.

These findings imply that, for a proper application of
the surrogate method, the angular correlations have to be
known. A detailed description of the spatial anisotropies is
required if one needs to determine the total number of fission
fragments from a measurement at a particular location in space.
Petit et al. [13], in a recent surrogate experiment, measured
angular distributions of fission fragments and accounted for
the anisotropies explicitly.

Alternatively, it might be possible to carry out the fission
fragment measurements in coincidence with the outgoing
direct-reaction particle at an angle that is associated with only
minor anisotropies in the fission-fragment distribution. The
latter strategy was followed by Cramer and Britt [8], who
detected outgoing protons from (t, pf ) reactions on several
actinide targets at back angles to minimize the effects of the
angular correlations on their results. It is not obvious that such
angles can be found for all cases of interest.

Similarly, knowledge of the angular correlations is impor-
tant for a successful application of the ratio method. The two
strategies outlined here for surrogate applications, correcting
the measured fission counts or restricting the coincidence mea-
surements to selected angles for the direct-reaction particle,
can be pursued in this case as well. However, the treatment
of the anisoptropies greatly simplifies in the ratio approach
when the angular correlations for the two compound nuclei
that are being compared are very similar. In this case, the ratio
of the angular distribution functions for the two nuclei can be
approximately set to unity, as was seen in Ref. [15].

V. SUMMARY AND CONCLUSIONS

We have examined the validity of the surrogate ratio
method for determining (n, f ) cross sections for actinide
nuclei. The study was motivated by recent (d, d ′f ) and
(α, α′f ) surrogate experiments at Yale [14] and Berkeley
[15], respectively, that were analyzed in the framework of
the ratio approach. Both experiments determined the ratio
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σ [237U(n, f )]/σ [235U(n, f )], which made it possible to obtain
the (n, f ) cross section for the short-lived (τ1/2 = 6.8 d)
isotope 237U [14,15,44], since the 235U(n, f ) cross section was
already known. We investigated the assumptions underlying
the ratio method and carried out simulations to assess whether
the cross sections that are obtained indirectly by applying the
ratio method agree with the expected results.

More specifically, we carried out statistical calculations
for (n, f ) reactions on 233U, 235U, and 235Um targets and
examined the resulting fission branching ratios. We found
the individual fission branching ratios GCN

fission(E, J, π ) to be
clearly dependent on the Jπ values of the compound-nuclear
states. Both the energy of the decaying compound nucleus as
well as the range of angular momentum (and parity) values
of the states populated in the reaction place limitations on the
validity of the Weisskopf-Ewing approximation.

We simulated physical quantities that can be measured in
a surrogate experiment and carried out a surrogate analysis
that made use of the Weisskopf-Ewing approximation. The
extracted cross sections were seen to deviate from the expected
reference cross sections by up to 40% for neutron energies
above 5 MeV, and larger deviations, as much as a factor
of of 2.5, were found at lower energies. For energies below
about 10 MeV, the discrepancies between the inferred and
reference cross sections can to a large extent be attributed to
the differences in the spin-parity distributions. The effect is
particularly striking for the energy regime En ≈ 0–3 MeV.
Pre-equilibrium effects, which were included in the reference
cross sections, but not in the simulated surrogate reactions,
were seen to contribute to the deviations at higher energies
(En >∼ 13 MeV).

We also applied a ratio analysis to the simulated physical
quantities and compared the results to the reference cross
sections. The fission cross sections inferred in this manner
were found to be in much better agreement with the expected
results than the cross sections inferred from the previous
(surrogate Weisskopf-Ewing) analysis. The ratio analysis
yielded deviations of less than 50% at low energies (En ≈
0–3 MeV) and no more than 25% for the larger energies
investigated. Variations in the Jπ distributions had a much
smaller effect effect on the extracted cross section and the
deviations caused by pre-equilibrium effects were diminished
as well.

It needs to be emphasized that these findings apply to
the ratio analyses of the experiments simulated here. In
actual experiments, additional uncertainties are introduced;
for example, determining the total number of fission fragments
requires, in principle, a quantitative understanding of the fis-
sion fragment angular distribution associated with the chosen
surrogate reaction. Furthermore, we have concentrated here
on a region of the nuclear chart for which it is empiri-
cally known that many of the relevant properties, such as
transmission coefficients, vary only very slowly with mass
number. Carrying out benchmark experiments, in which the
ratio approach is used to extract a known cross section, could
help shed light on these issues.

The experiments required for a ratio analysis are simpler
than those that need to be carried out if a full surrogate
analysis (or a surrogate analysis in the Weisskopf-Ewing limit)

is planned. The primary advantage of considering relative
branching ratios and relative cross sections lies in the fact
that the number of direct-reaction events, Nδ , does not need
to be determined for a ratio analysis. Furthermore, unlike in
the full surrogate treatment, it is not necessary to calculate the
direct-reaction probabilities, F CN

δ (E, J, π ), or to model the
decay of the compound nucleus.

The ratio method is based on the Weisskopf-Ewing as-
sumption and is therefore, in principle, only valid in this
limit. We have seen that it is not a priori clear whether the
Weisskopf-Ewing limit applies to a particular reaction in a
given energy regime. This needs to be verified for each case
of interest. At the same time, our calculations indicate that
in situations where the Weisskopf-Ewing limit provides at
least a rough approximation, the ratio method can give useful
results. It seems that small to moderate deviations from this
assumption cancel in the ratio approach. Thus, a ratio analysis
of a surrogate experiment is a useful tool for obtaining a
first estimate of an unknown cross section. Moreover, such
an analysis can provide a valuable test for a result obtained
from a complete surrogate analysis.

The ratio method is limited by the requirement that for
obtaining an absolute result for an unknown cross section
σ (a1 + A1 → B∗

1 → c1 + C1) a reliable independent cross-
section measurement for a similar reaction, a2 + A2 → B∗

2 →
c2 + C2, must be available. Furthermore, it is required that
a direct-reaction mechanism, D(d, b)B∗, and target-projectile
combinations can be identified that make it possible to produce
the compound nuclei, B∗

1 and B∗
2 , respectively.

One can expect reliable cross-section estimates from the
ratio approach only when the two reactions that are analyzed,
D1(d, b)B∗

1 and D2(d, b)B∗
2 , are sufficiently similar. When

small systematic errors or small violations of the prerequisite
assumptions, such as the validity of the Weisskopf-Ewing
approximation or the absence of pre-equilibrium decays,
affect both reactions in the same manner, it is likely that
the effects cancel in part in the ratio analysis. Uncorrelated
errors and deviations, however, will increase the overall
uncertainty in the final result. A reasonable definition of
similarity might require that (i) the same projectile initiates the
compound-nucleus reactions that are compared (i.e. a1 = a2)
and the same kind of decay (γ emission, charged-particle
emission, or fission) is considered in both cases; (ii) the
decays of the compound nuclei B∗

1 and B∗
2 have similar

properties (number and kind of open channels, separation
energies for the various channels, level densities in the residual
nuclei, etc.); and (iii) the direct (surrogate) reactions that
produce the compound nuclei employ the same mechanism,
D(d, b)B∗, and projectile-ejectile combination, d − b, in
both cases. All three conditions apply to the cases studied
here.
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