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Antibound states and halo formation in the Gamow shell model
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The open quantum system formulation of the nuclear shell model, the so-called Gamow shell model (GSM),
is a multiconfigurational SM that employs a single-particle basis given by the Berggren ensemble consisting of
Gamow states and the non-resonant continuum of scattering states. The GSM is of particular importance for
weakly bound/unbound nuclear states where both many-body correlations and the coupling to decay channels
are essential. In this context, we investigate the role of � = 0 antibound (virtual) neutron single-particle states in
the shell model description of loosely bound wave functions, such as the ground state wave function of a halo
nucleus 11Li.
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I. INTRODUCTION

The theoretical description of strongly correlated open
quantum systems (OQS), such as the weakly bound/unbound
atomic nuclei or atomic clusters, requires the rigorous treat-
ment of both the many-body correlations and the continuum
of positive-energy scattering states and decay channels [1,2].
A major theoretical challenge is to consistently describe
many-body states close to particle-emission thresholds where
novel properties appear, such as, e.g., unusual radial features
of halo states or threshold anomalies in the wave functions and
associated observables. These features cannot be described in
the closed quantum system (CQS) framework of a standard
shell model (SM) which usually employs the single-particle
(s.p.) basis of L2-functions of the harmonic oscillator. Rep-
resentation of halo states in such a basis is not convenient.
Moreover, the resonance and scattering states do not belong to
the space of L2-functions.

The solution of the configuration interaction problem in the
presence of continuum states (the so-called continuum shell
model) has been advanced recently in the OQS formulation
of the nuclear SM, such as the shell model embedded in
the continuum [3,4] (real-energy continuum SM) and the
Gamow shell model (GSM) [5–14] (SM in the complex
k-plane). A variant of the real-energy continuum SM, based
on the Feshbach projection formalism and phenomenological
continuum-coupling, has been proposed in Ref. [15].

In the GSM, the multiconfigurational SM is formulated in
the rigged Hilbert space [16,17] with a s.p. basis given by the
Berggren ensemble [18,19] consisting of Gamow (resonant or
Siegert) states and the nonresonant continuum of scattering
states. In general, resonant states correspond to the poles of
the scattering matrix (S-matrix). These are the generalized
eigenstates of the time-independent Schrödinger equation,
which are regular at the origin and satisfy purely outgoing
boundary conditions. The s.p. Berggren basis is generated
by a finite-depth potential, and the many-body states are
expanded in Slater determinants spanned by resonant and

non-resonant s.p. basis states [5,9]. The configuration mixing
induced by the GSM Hamiltonian assures a simultaneous
treatment of continuum effects and inter-nucleon correlations.
Consequently, the GSM, which is a natural generalization of
the SM for OQS, gives a natural description of many-body
loosely bound and resonant states. In general, among different
poles of the one-body S-matrix, one takes into account bound
and decaying s.p. states to define the subset of resonant
states in the Berggren ensemble. These poles, together with
associated nonresonant continuum states, define the valence
space. The actual selection of resonant states depends on
the physical problem and on the convergence properties of
resulting many-body GSM states.

An important question concerning the GSM deals with
the inclusion of antibound (virtual) states in the Berggren
ensemble. Antibound states have real and negative energy
eigenvalues that are located in the second Riemann sheet of
the complex energy plane (the corresponding momentum lies
on the negative imaginary axis) [20–23]. Contrary to bound
states, the radial wave functions of virtual states increase
exponentially at large distances. As often discussed in the
literature, it is difficult to give a clear physical interpretation to
virtual states. Strictly speaking, as the second energy sheet is
considered unphysical and unaccessible through direct exper-
iments, a virtual state is not a state but a feature of the system.
If the virtual state has a sufficiently small energy, its presence
has an appreciable influence on the behavior of the scattering
cross section at low energies. Classic examples include the
low-energy 1S0 nucleon-nucleon scattering characterized by
a large and negative scattering length [22], scattering of slow
electrons on molecules [24–26], and eep Coulomb system [27].
Related to this is an increased localization of real-energy
scattering states just above threshold [28].

Coming back to nuclear structure, it was argued that
the neutron-unbound 10Li nucleus sustains a low-lying 1s1/2

antibound state very close to the one-neutron (1n) emission
threshold [29] as a result of the inversion of 0p1/2 and 1s1/2

0556-2813/2006/74(5)/054305(6) 054305-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.054305


MICHEL, NAZAREWICZ, PŁOSZAJCZAK, AND ROTUREAU PHYSICAL REVIEW C 74, 054305 (2006)

shells [30]. Although many theoretical calculations predict the
0p1/2-1s1/2 shell inversion, the phenomenon still remains a
matter of debate [31,32]. Experimentally, several groups have
reported evidence of the � = 0 strength at the 1n-threshold
in 10Li [33–38]; however, no evidence of a weakly bound
1s1/2 state has been found. Since, experimentally, the n + 9Li
has a large and negative scattering length, this may indicate
the presence of the antibound 1s1/2 state in 10Li close to the
1n-threshold, though the presence of a low-lying 0p1/2 state
cannot be ruled out [39].

The first attempt to explicitly include an antibound state
in a many-body calculation was in the description of giant
resonances in the Gamow basis (i.e., within the pole ap-
proximation) [40]. The GSM calculations in the Berggren
basis, including the antibound 1s1/2 s.p. state, were performed
recently [11,12] for the g.s. of 11Li. The authors argued that
the presence of an antibound state was important for the
formation of a neutron halo. They have also noted that the
bound state wave function of 11Li could be expanded in
terms of the real-energy, nonresonant � = 0 continuum, i.e.,
without explicit inclusion of the antibound state. Moreover,
a destructive interference between the 1s1/2 antibound s.p.
state and the associated complex-energy, nonresonant s1/2

background was noticed.
This work addresses the question of the � = 0 virtual

state for the description of a neutron halo by studying
several complementary Berggren basis expansions and per-
forming GSM calculations for 11Li in different s.p. bases. In
Sec. II, the one-body Berggren completeness relations with
and without the s1/2 antibound state are compared in the
� = 0 channel. Section III describes the g.s. of 11Li in the
schematic two-particle model using different s.p. Berggren
ensembles, with and without the explicit inclusion of the
antibound s.p. state 1s1/2. The comparison of convergence
properties of the corresponding GSM calculations with the
number of s1/2 scattering states is made for the g.s. energy of
11Li. A summary of results is given in Sec. IV.

II. COMPLETENESS RELATIONS INVOLVING
ANTIBOUND s1/2 STATES

One-body Berggren completeness relations with bound
and resonant states have already been extensively studied
for neutrons [6,18,19,41,42] and protons [7,43]. The standard
Berggren completeness relation consists of a discrete sum over
bound and resonant states, and an integral over non-resonant
scattering states from the contour L+

b (see Fig. 1):∑
n∈(b,d)

|un〉〈un| +
∫

L+
b

|u(k)〉〈u(k)| dk = 1, (1)

where a discrete sum runs over all bound (b) and resonant
decaying (d) states lying above the complex contour L+

b . The
continuous part takes into account the nonresonant scattering
states lying on the contour. In the particular case of the
� = 0 neutron partial wave, there are no s1/2 resonances due
to the absence of both Coulomb and centrifugal barriers.
Consequently, a real-k contour would have been sufficient to
describe the s1/2 neutron channel. However, to investigate the
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FIG. 1. Contours in the complex-k plane used in the Berggren
completeness relations for the s1/2 (Secs. II and III) and p1/2

(Sec. III) partial waves. The L+
a contour (OABC) is only used in

the s1/2 channel; it allows wielding the antibound state 1s1/2 (marked
as ‘a’). The L+

b contour (OA′B′C) is employed for s1/2 and p1/2

channels and permits expansions of bound and resonant states only.

convergence of imaginary part components of the expanded
wave functions, we take the complex-k contour L+

b close to
the real-k axis.

In this work, we shall perform detailed studies of the
Berggren expansion in a more general case when an � = 0
antibound s.p. state is included in the basis. In this case, the
Berggren completeness relation takes the form [11,42]∑

n∈(a,b,d)

|un〉〈un| +
∫

L+
a

|u(k)〉〈u(k)| dk = 1, (2)

where the sum also includes antibound (a) states lying above
the complex contour L+

a (see Fig. 1). It is to be noted that, as
discussed in Ref. [42], the contour L+

a is obtained by deforming
continuously the contour L+

b placed in the fourth quadrant of
the complex-k plane so that it encompasses the antibound
states of interest. In the unlikely situation that bound states
of energies higher than antibound states (a) are present, they
must be excluded from the sum (2).

Bound states can be expanded with either of the com-
pleteness relations (1) or (2), whereas antibound states can
only be expressed through the more general completeness
relation (2). Indeed, only those poles of the S-matrix which are
situated above the contour can be expanded using the Berggren
basis [18,42]. The contour in the nonresonant continuum is
usually discretized with a finite number of points in order to
construct the Hamiltonian matrix (see Ref. [6] for details).

In this study, the s.p. states entering the completeness
relations (2) and (1) have been generated using an auxiliary
Woods-Saxon (WS) Hamiltonian:

ĥ = p̂2

2m
− V0

1 + exp
(

r−R0
d

) , (3)

where m is the reduced mass of a neutron with respect to
the 9Li core, d = 0.65 fm, and R0 = 2.7 fm. The depth
of the WS potential, V0 = 50.5, 52.5, and 60.5 MeV, was
adjusted to yield the 1s1/2 eigenstate respectively antibound at
−0.002955 MeV, loosely bound at −0.0329 MeV, and well
bound at −1.0372 MeV. The corresponding WS potentials are
denoted as WS1,WS2, and WS3 in the following.

In order to test Berggren completeness relations (2) and (1),
we expand the 1s1/2 eigenstate of a given WS potential in the
basis generated by another WS potential (WS(0)) of different
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TABLE I. Set of different WS potentials and 1s1/2 states used in
numerical tests of the Berggren completeness relation. The Berggren
ensemble generated by a potential WS(0) (second column) consists of
the 0s1/2 bound s.p. state, the contour in the non-resonant continuum
(third column), and—possibly—the 1s1/2 s.p. state (fourth column).
‘No pole’ denotes a situation where the virtual 1s1/2 state is not
included in the basis. In all the cases, the expansion has been carried
out for the loosely bound 1s1/2 s.p. state of WS2.

Case WS(0) Contour 1s1/2 (WS(0))

(i) WS1 L+
a Antibound

(ii) WS1 L+
b No pole

(iii) WS3 L+
b Well bound

depth:

|1s1/2〉 =
∑

n

cn|un〉 +
∫

L+
c(k)|u(k)〉 dk, (4)

where n is running either over bound and antibound |un〉
basis states in Eq. (2) or over bound |un〉 basis states
in Eq. (1), and L+ is L+

a or L+
b , respectively. All the

combinations of potentials studied are listed in Table I. The
contours L+

a and L+
b used in this section are defined by

vertices (all in fm−1): [O = (0.0, 0.0); A = (−0.01, 0); B =
(−0.01,−i0.02); C = (3.5, 0.0)] and [O = (0.0, 0.0); A′ =
(0.1,−i0.01); B ′ = (1.5, 0.0); C = (3.5, 0.0)], respectively.
In practical applications, the contours are discretized and
the abscissae of selected points in each straight segment are
selected by the Gauss-Legendre method.

To assess the quality of the Berggren expansion, we
calculate the rms deviation from the exact 1s1/2 halo wave
function uWS2 (r) of WS2 obtained by a direct integration of
the Schrödinger equation. The rms deviation is calculated
separately for the real and imaginary parts,

rms (Re[u]) =
√√√√ 1

N

N∑
i=1

Re2[uWS2 (ri) − uWS(0) (ri)], (5)

rms (Im[u]) =
√√√√ 1

N

N∑
i=1

Im2[uWS(0) (ri)], (6)

for N = 512 equidistant points on the real r-axis in the interval
from r = 0 to r = 15 fm. In Eqs. (5) and (6) uWS(0) (r) is the
1s1/2 halo wave function of WS2 expanded in the basis WS(0)

of Table I.
The calculated rms deviations (5) and (6) are shown in

Fig. 2. One clearly sees that the Berggren basis containing
an antibound state [case (i) in Table I] is less efficient
in expanding a loosely bound 1s1/2 state. The number of
discretized scattering states in case (i) must be two-to-four
times bigger than that in cases (ii) and (iii) in order to attain
the same precision for the real part of the wave function. For
the imaginary part, the difference is even more pronounced.

Without an antibound state in the basis, 40 to 50 nonreso-
nant scattering states are enough to obtain the precision of
order 10−6 for the calculated s1/2 wave function, whereas
150 nonresonant scattering states are necessary to reach the
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FIG. 2. Real and imaginary parts of the rms deviations (5), (6)
for the 1s1/2 halo wave function expanded in different Berggren bases
as a function of the number of s1/2 scattering wave functions on L+.
Cases (i)–(iii) of Table I are marked by dashed, solid, and dotted lines,
respectively.

same precision with this state included. In cases (ii) and
(iii), one finds similar rms deviations, because the s1/2 basis
wave functions are in both cases either bound or close to
the real (positive) k-axis; hence their contributions add up
constructively. On the contrary, in case (i), the virtual state with
exponentially increasing wave function interferes destructively
with nonresonant scattering states in order to produce the halo
state.

To illustrate this effect, Fig. 3 shows the distribution of
squared amplitudes c2

n and c2(k), Eq. (4). By construction, the
sum

∑
n c2

n + ∫
c2(k)dk is always normalized to one. As the

contribution from the 0s1/2 basis state is practically negligible,
the set of c2

n reduces to the single real amplitude c2
1s1/2

. In

case (i), the nonresonant amplitudes c2(k) are much larger
than their antibound counterpart c2

1s1/2
, whereas in case (iii) the

bound 1s1/2 pole carries half of the halo wave function. Case
(ii) lies between these two extremes, as the halo state is built
entirely from the nonresonant continuum but in an essentially
coherent way (cf. Refs. [11,28]).

The results displayed in Fig. 3 demonstrate that the
inclusion of the antibound pole in the basis enormously
enhances the role of the nonresonant continuum which has
to efface the incorrect asymptotics of an antibound pole in
order to create a bound state with decaying asymptotics.
This behavior is opposite to what is found when including
a narrow resonant state in the Berggren ensemble. Such a state
always concentrates a fairly large part of the expanded wave
function [6,7].
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FIG. 3. Real (circles) and imaginary (crosses) parts of the squared
expansion amplitudes c2

n and c2(k) (4) corresponding to the Berggren
bases (i–iii) of Table I in the complex k-plane for the 1s1/2 halo wave
function. The amplitude c2

0s1/2
is practically negligible. In cases (i)

and (iii), the amplitude c2
1s1/2

(magnified by a factor of 10) is
represented by an arrow placed arbitrarily at k = 0.

III. CONTRIBUTION OF ANTIBOUND STATES TO THE
TWO-BODY HALO STATES: EXAMPLE OF 11Li

In order to assess the influence of antibound states on many-
body halo states, we shall employ a schematic model [11,12]
of two valence particles, coupled to Jπ = 0+, moving outside
the inert core. In particular, we shall view the g.s. of 11Li in
terms of two neutrons in s and p angular momentum states
coupled to the 9Li core. Our aim is not to exactly reproduce
the structure of 11Li but to learn how antibound s.p. states enter
a two-body halo wave function.

The nuclear Hamiltonian is given by a WS potential
representing a 9Li core, to which a surface Gaussian interaction
(SGI) [7] is added, modeling the residual interaction between

the two valence nucleons:

Ĥ =
∑

i

[
p̂2

i

2m
− V0 · f (ri) − 4 Vso(�li · �si)

1

ri

∣∣∣∣df (ri)

dr

∣∣∣∣
]

+
∑
i<j

VSGI · exp

(
−

[ �ri − �rj

µ

]2
)

· δ(|�ri| + | �rj| − 2RSGI).

(7)

Here, we employ the set of WS parameters WS1 of Sec. II,
and Vso = 21.915 MeV is the strength of the spin-orbit
potential. For these parameters, the 1s1/2 state is antibound
and the 0p1/2 state is a resonance with the energy E =
0.24 MeV and the width � = 118 keV, in fair agree-
ment with experimental data [29,39]. The range of the
residual SGI interaction is µ = 1 fm, RSGI = 4.4 fm,
and VSGI = −1196 MeV fm3. These parameters have been
adjusted to reproduce the binding energy of 11Li with respect
to 9Li (EB = −0.295 MeV), and a nearly 50% weight of the
s2 component, as suggested by the data [29].

The valence space consists of s1/2, p3/2, and p1/2 neutron
wave functions, from which the 0s1/2 and 0p3/2 bound states
have been removed as they are part of the 9Li core. The
p3/2 s.p. space contains the real-energy p3/2 contour with
kmax = 2 fm−1. The p1/2 space consists of the 0p1/2 resonant
pole and the p1/2 contour of an L+

b type (see Fig. 1)
defined by the vertices (all in fm−1): [O = (0.0, 0.0); A′ =
(0.1,−i0.1); B ′ = (1.0, 0.0); C = (2.0, 0.0)]. The s1/2 space
contains either a scattering component (L+

b ) or the 1s1/2 anti-
bound pole to which the s1/2 contour of an L+

a -type is added.
The contours L+

a and L+
b in the s1/2 channel are defined by the

vertices (all in fm−1): [O = (0.0, 0.0); A = (−0.01, 0); B =
(−0.01,−i0.04); C = (2.0, 0.0)] and [O = (0.0, 0.0); A′ =
(0.1,−i0.01); B ′ = (1.0, 0.0); C = (2.0, 0.0)], respectively.
The p3/2 and p1/2 contours are discretized with 30 and
32 points, respectively. Each point represents one shell in GSM
calculations. For this level of contour discretization and the
momentum cut-off, the theoretical error on energies is about
1 keV for the real part and 0.01 keV for the imaginary part.

The convergence of the 11Li g.s. energy as a function of
the number of s1/2 nonresonant scattering shells is shown in
Table II. The number of s1/2 shells on each segment of the

TABLE II. Energy E (in MeV) and width � (in keV) of the
11Li g.s. as a function of the number Ns1/2 of the nonresonant
scattering shells in the discretized s1/2 continuum. The values of
E/�[L+

a ] (second and fourth columns) are calculated with the s1/2

space consisting of the 1s1/2 antibound state and the associated L+
a

s1/2 contour. The values of E/�[L+
b ] (third and fifth columns) are

obtained with the s1/2 space consisting of the L+
b s1/2 contour only.

See Fig. 1 for the definition of different contours.

Ns1/2 E[L+
a ] E[L+

b ] �[L+
a ] �[L+

b ]

10 −0.314 −0.291 65.274 −3.644
20 −0.292 −0.295 2.307 0.025
30 −0.294 −0.295 0.876 −0.003
40 −0.294 −0.295 −0.425 −0.007
50 −0.295 −0.295 0.075 −0.009
60 −0.295 −0.295 −0.005 −0.009
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TABLE III. Real and imaginary parts of squared amplitudes of
the GSM configurations involving neutrons in s1/2 orbits in the g.s.
of 11Li. The GSM calculations were performed using two Berggren
bases: (a) including the 1s1/2 antibound pole state and the nonresonant
scattering states s1/2 along L+

a (second and fourth columns), and (b)
including the nonresonant scattering states s1/2 along L+

b (third and
fifth columns). For the definition of contours, see Fig. 1.

Configuration Re[c2]{L+
a } Re[c2]{L+

b } Im[c2]{L+
a } Im[c2]{L+

b }
(1s1/2)2 0.0990 − −9.6033·10−6 −
(1s1/2 s1/2) −0.5887 − 2.3369·10−5 −
(s1/2)2 1.0034 0.5137 −8.0720·10−6 −1.4650·10−5

contours L+
a and L+

b is chosen so as to minimize a spurious
width of the g.s. It is seen that the energy converges much faster
when the antibound state is not present in the s.p. basis. In this
case, the calculated g.s. energy of 11Li attains a precision of
0.1 keV with 20 shells included, whereas as many as 50 shells
are necessary to obtain the same level of precision if the
antibound pole is present.

It is instructive to inspect the g.s. wave function of 11Li
expressed in different Berggren bases. Table III compares
the GSM results obtained in the Berggren basis including
the 1s1/2 antibound pole and s1/2 non-resonant scattering
states from the L+

a contour [case (i) of Table I] with those
obtained using the contour L+

b for the s1/2 part [case (ii)].
(The p3/2 and p1/2 spaces are defined as above.) To determine
precisely the valence neutron configurations, 60 shells were
taken along each of the scattering contours: s1/2, p1/2, and
p3/2. The expansion amplitudes of the p components are
identical in both cases and tote up to about 49%. As expected,
important cancellations appear in case (i). Here, about 50%
of the sum of squared amplitudes for configurations with two
neutrons in s1/2 non-resonant scattering states is canceled by
contributions from configurations involving one neutron in a
scattering state and another one in the 1s1/2 antibound state.
The antibound-antibound configuration (1s1/2)2 contributes
only ∼10%. In case (ii), however, all scattering two-neutron
configurations add up coherently.

IV. CONCLUSIONS

The GSM has proven to be a powerful approach for the
microscopic description of loosely bound and resonant states.
The fact that the underlying Berggren basis directly incor-
porates one-particle continuum and the proper treatment of
many-body correlations through configuration mixing makes

it a perfect tool for a theoretical description of loosely bound
many-body states such as nuclear halos.

In this study, we investigated the importance of including
the virtual � = 0 state in the s.p. basis for a modeling of
one-body and two-body neutron halos. This question has
experimental relevance: the data seem to suggest that the
presence of the s1/2 antibound state in 10Li is correlated with
the appearance of the two-neutron halo in 11Li.

Our calculations for the halo states suggest that there
is no advantage in including the antibound states in the
Berggren ensemble for the description of bound many-body
wave functions. The use of antibound states in a Berggren
basis can only be justified if the many-body state has a virtual
character.

Different complete s.p. bases containing either loosely
bound or virtual s1/2 poles are obviously equivalent in
many-body calculations. On the other hand, depending on
physics case, the use of a specific Bergrren ensemble can
be advantageous. For instance, in both one- and two-particle
cases considered in this work, it is always desirable to use a
s.p. basis which contains non-resonant scattering states and,
possibly, a bound s1/2 pole. As the halo wave function has a
decaying character at large distances due to the exponentially
increasing asymptotics of the virtual state, its inclusion in
the basis always induces strong negative interference with the
scattering states and worsens spurious effects due to continuum
discretization. Therefore, adding antibound states to the
basis is not computationally beneficial, as more discretized
scattering s1/2 states are necessary to reach a required precision
without providing any new information about the many-body
wave function.

In summary, we have demonstrayed that the g.s. halo in
11Li is well described by using the Berggren basis solely
involving the s1/2 nonresonant scattering continuum and
choosing the integration contour close to the real-k axis. While
the presence of an antibound state does require an increased
density of discretized states around k = 0, this can be handled
efficiently by employing the density matrix renormalization
group approach [8]. The resulting procedure yields much
better numerical precision by suppressing the cancellations
and leaving all the physical properties unchanged.
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