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Connection between the Strutinsky level density and the semiclassical level density
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We establish an analytical link between the level density obtained by means of the Strutinsky averaging method
and the semiclassical level density. This link occurs only in the so-called asymptotic limit. It turns out that the
Strutinsky method amounts to an approximation to the semiclassical method. This approximation contains an
unavoidable remainder that constitutes an intrinsic noise in comparison to the semiclassical method. Thus, the
problem of the dependency of the Strutinsky procedure on the two free smoothing parameters of the averaging is
intimately connected to this noise. However, we demonstrate that the noise of the method is small in the average
density of states and in the average energy, whereas it might be non-negligible in the shell correction itself. To
improve this method, we give a rule that consists simply of minimizing the relative error for the average energy.
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I. INTRODUCTION

The inclusion of Strutinsky’s shell correction [1–3] in the
liquid-drop model [4], namely, the so-called macroscopic-
microscopic method, has allowed considerable improvements
in the predictions of nuclear masses [5], and in the calculations
of the fission barriers as well [6,7]. Nowadays, despite progress
of the more basic microscopic models (such as self-consistent
models), it remains in frequent use.

This method consists essentially of combining the liquid-
drop model (macroscopic model), where the binding energy
varies slowly as a function of the number of nucleons N and
Z, with a shell correction varying abruptly with N and Z.
The latter is due to the nonuniformity of the shell structure
of the energy levels. It is extracted from a single-particle
Hamiltonian (microscopic model) according to an original idea
of Strutinsky.

The Strutinsky method is mainly based on a particular
smoothing procedure of the density of states. Although this
method is very efficient, it contains two weak points:

(1) It depends on the results of two well-known inherent
parameters (i.e., the width γ and the order M of the
smoothing).

(2) It is difficult to treat the continuum encountered with
realistic mean potentials.

The purpose of the present work is summarized in the
following points:

(1) The Strutinsky method can be derived rigorously from the
point of view of the least-squares approximation of the
level density. The equivalence between this point of view
and the well-known standard averaging appears trivial.

(2) In this work, it is proved analytically that the averaged
level density obtained by the Strutinsky method is simply
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an approximation to the semiclassical level density. In this
respect, the semiclassical level density can be considered
as the “true” (i.e., exact) smooth density.

(3) It is mainly shown that, in comparison with the semiclas-
sical method, the Strutinsky method is characterized by
a remainder that contains all the dependence on the two
smoothing (free) parameters and hence is the source of
the “noise” of the averaging procedure.

(4) Concerning the smooth density of states and the smooth
energy, it is demonstrated that the Strutinsky method
is reliable. However, the shell correction itself must be
treated with care because it is very sensitive to the choice
of the two free averaging parameters. In this context, to
improve the method, we propose the “rule of the relative
remainder.”

(5) It is explained why the Strutinsky method fails near
the zero-energy point (top of the well) for finite mean
potentials.

II. STRUTINSKY AVERAGING

A. Bases and phenomenology of Strutinsky’s method

In spite of the complexity of the nuclear forces, it appears
that most of the binding energy of the nuclei is well
described by the so-called liquid-drop model. This simple
phenomenological approach is of a classical type. This means
that the quantum effects, or more precisely, the shell effects, are
ignored by this model. This causes systematic discrepancies
between the theoretical predictions and the experimental data

However, it is known that such effects are contained in the
shell model, but the latter is unable to reproduce correctly the
general trends of the binding energy. To solve this dilemma,
Strutinsky has proposed combining the binding energy of
the liquid-drop model with a small (but essential) correction
deduced from the shell model. This can be written as

E (Binding Energy) = E (Liquid Drop Model)

+ δE (Shell Correction).
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The shell correction is calculated from a mathematical
prescription outlined by Strutinsky. It is obtained by summing
the single-particle energies of a phenomenological shell-model
potential and subtracting the average (smooth) part of this
quantity:

δE (Shell Correction) =
∑

i

εi −
∑

i

εi .

As already mentioned, this method is often called the
macroscopic-microscopic method because it mixes two very
different models. Such a duality is obviously not free from
inconsistency. Nevertheless, it is possible to give a micro-
scopic basis to this “model” within the Hartree-Fock (HF)
approximation by making some simple assumptions [2,3].

This consists essentially of expanding the HF energy around
its semiclassical approximation, thus obtaining the so-called
Strutinsky energy theorem:

E(ρ) = E(ρ̄) +
(∑

i

εi −
∑

i

εi

)
+ O2. (1)

Here ρ is the HF density matrix, and ρ is its semiclassical
approximation, which is a smooth quantity, free of shell effects.
For this reason ρ can be assimilated to the classical average
part (i.e., without quantal variations) of ρ. The sums of single-
particle energies �εi and �εi are related, respectively, to ρ and
ρ. Finally, O2 is a quantity of the second order in the operator
ρ − ρ and is generally negligible (for details see Ref. [8]).

It is clear from Eq. (1) that this macroscopic-microscopic
method described here is a “schematic” interpretation of this
theorem. The quantity E(ρ) can be replaced by the energy of
the liquid-drop formula, and the shell correction is deduced
from a phenomenological one-body Hamiltonian.

It is also to be noted that a complete microscopic approach
of this theorem remains possible. For example, in Ref. [9]
the authors use a method referred to as the extended Thomas
Fermi plus Strutinsky integral (ETFSI) method. In the latter,
the semiclassical quantity E(ρ) is deduced self-consistently
from a microscopic effective interaction (Skyrme III). The
shell correction is then added to E(ρ).

In the following, we will mainly focus on two points:

(i) the mathematical aspect of the Strutinsky smoothing and
(ii) the link between this smoothing and the semiclassical

approximation, and its consequences.

B. The exact level density

Strutinsky averaging can be derived by various formal
approaches [1–3,6,7,10,11]. In this work, we will derive it
from the point of view of the least-squares approximation.
In fact, this point was suggested earlier by Bunatian and
co-authors [12]. The least-squares approximation will help
us understand why Strutinsky averaging fails near the edge of
realistic potentials.

For an entirely discrete spectrum the level density of states
is defined by

go(ε) =
∞∑

n=0

δ(ε − εn). (2)

In the following, this density will be called the “exact quantum
level density,” or the “exact level density,” because it is
a true quantum quantity, as opposed to its semiclassical
approximation, or as opposed to the level density obtained
from go(ε) by Strutinsky averaging (see the following).

In fact, Eq. (2) concerns uniquely infinite potentials without
a continuum. Finite potentials will be treated separately at the
end of this paper.

C. Polynomial approximation to the exact level density

Let gM (ε) be a polynomial approximation of order M

to the “exact” level density. More precisely, we seek this
approximation in the vicinity of a point λ (which actually
represents the Fermi level) in an effective interval [−γ +
λ, λ + γ ], by using the Gaussian weight exp[−(ε − λ)2/γ 2].
For this reason, the cited polynomial must depend a priori not
only on M but also on γ and λ. Therefore, it will be denoted
gM ,γ (ε, λ). For our purpose, it will be convenient to write this
polynomial as a linear combination of Hermite polynomials
Hk:

gM,γ (ε, λ) =
M∑

k=0

ckHk

(
ε − λ

γ

)
.

Thus, we must look for the polynomial gM,γ (ε, λ) that
minimizes the integral

I (λ,M, γ ) =
∫ ∞

−∞
[go(ε) − gM,γ (ε, λ)]2e

−( ε−λ
γ

)2

dε. (3)

This procedure is a local averaging in the sense of the
least-squares fit. Minimizing Eq. (3) with respect to the
coefficients ck , and using the orthogonality property of the
Hermite polynomials, we find

gM,γ (ε, λ) =
M∑

m=0

cm(λ, γ )Hm

(
ε − λ

γ

)
,

cm(λ, γ ) = 1

m!2m
√

π

∞∑
n=0

Hm(un)
1

γ
exp

[ − u2
n

]
, (4)

un = εn − λ

γ
.

As we shall see in the next section, Eq. (4) is not the final
definition of the averaging, which thus appears somewhat more
subtle.

D. Strutinsky’s averaging as a moving average

In Eq. (4) the Fermi level λ is supposed to be fixed, and
the polynomial gM,γ (ε, λ) smoothes the exact level density
only in the vicinity of λ. Thus only a part of the spectrum is
“smoothed” (i.e., the part ε � λ). To avoid this drawback, it
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is necessary to consider λ as a variable. The averaged level
density is thus defined as gM,γ (ε, λ), making ε = λ. This
amounts to performing a moving average (i.e., λ is moved
with ε, “centering” ε on λ).

In the following, we shall call the function g
M,γ (λ, λ)

the Strutinsky’s level density, and we will note it simply by
g

M,γ (λ).
Since the coefficients cm in Eq. (4) depend on λ, the

Strutinsky’s quantity gM,γ (λ) is, in general, not a polynomial
in λ. However, it is clear that, although the Strutinsky level
density is not really a polynomial, it behaves locally (∼λ ± γ ),
like a least deviating polynomial approximation for the exact
level density go(λ) given by Eq. (2).

Explicitly, we must replace ε with λ in Eq. (4):

gM,γ (λ) =
∞∑

n=0

FM (un) , un = εn − λ

γ
,

FM (x) = P̃M (x)
1

γ
exp(−x2),

P̃M (x) =
M∑

m=0

AmHm(x), Am = Hm(0)

m!2m
√

π
, (5)

Hm(0) = (−1)m/2m!/(m/2)! if m is even,

Hm(0) = 0 if m is odd.

In Eq. (5) the polynomial P̃M constitutes the so-called
curvature correction term.

It is easy to check that the expression (5) obtained from
a least-squares fitting can be written as the usual folding
procedure of the exact level density [13,14]:

g
M,γ (λ) =

∫ ∞

−∞
go(ε)FM

(
ε − λ

γ

)
dε, (6)

which demonstrates the equivalence between the two points
of view [i.e., between the local least square smoothing Eq. (3)
and the averaging Eq. (6)].

It should be noted that if M increases to infinity and/or γ

decreases to zero, then g
M,γ tends toward go(ε). Obviously, in

practice these parameters are finite.

E. Necessary condition in the smoothing procedure

The least-square smoothing Eq. (3) or its equivalent
Eq. (6) gives an approximation to the exact level density
Eq. (2). Therefore, if the averaging is too accurate (see the
previous remarks) the procedure leads to a curve that is very
close to Eq. (2). This curve remains characterized by strong
oscillations that express shell effects. However, the aim of the
Strutinsky method is precisely to remove these shell effects.

For M = 0, the effective interval of averaging is governed
by a pure Gaussian [since P̃0(x) = 1 in Eq. (5)]. To eliminate
the shell effects from the averaging, the parameter γ must be
at least of the order of the mean spacing between the shells.
(denoted here by h̄ω) near the Fermi level:

γ �∼ h̄ω. (7)

In this way, we obtain a “true” smooth density. If relation
(7) is not satisfied, the level density remains characterized by

oscillations (quantum effects), in opposition with the character
of the semiclassical density.

For M > 0, FM is no longer a pure Gaussian, and this case
becomes more complicated. Indeed, the width of the averaging
function FM is not really γ , because in Eq. (5) the Gaussian is
modulated by the polynomial P̃M.

It turns out that to maintain this width of the order of
mean spacing shell we have to enlarge the parameter γ with
respect to the order M . Thus, the smoothing procedure implies
a “coherency” between these two parameters. Usually, the
couple (γ,M) is determined by the so-called plateau condition
[14] from the typical ranges: 6 <∼ M <∼ 20 and h̄ω <∼ γ <∼ 2h̄ω.
Because of this coherency, it is easy to notice that the plateau
is invariably moved toward the right-hand side (toward the
largest γ ), when M increases. Since in the harmonic oscillator
the spacing between the shells is constant, we have in this
simple case h̄ω = h̄ω.

Figure 1 displays the Strutinsky level density [calculated
from relation (5)] for three values of the parameter γ (with M

being fixed). Since γ is too small compared to h̄ω curve (a) is
characterized by strong oscillations (shell effects), which are
close to Dirac functions [see Eq. (2)]. By increasing γ (curve
b) one diminishes the magnitude of these oscillations. In the
third case (curve c), γ is of the order of h̄ω, the curve becomes
smooth and can be regarded as the mean behavior of the exact
level density [the so-called smooth component contained in
the exact level density (2)].

F. Averaged particle number, averaged energy, and shell
correction

The averaged particle number and the averaged energy are
defined through the average density of states gM,γ by

NM,γ (λ) =
∫ λ

−∞
gM,γ (ε)dε, (8)

EM,γ (λ) =
∫ λ

−∞
εgM,γ (ε)dε. (9)

The detailed expressions are given in Ref. [7].
In practice the upper bound of the integral giving the particle

number is deduced from the equation

NM,γ (λ) = N0, (10)

where N0 is the particle number of the system. The quantity λ is
the Fermi level of the average density gM,γ (i.e., the Strutinsky
level density)

Finally the Strutinsky shell correction to the binding energy
of the liquid drop model is defined as follows:

δEM,γ =
∫ λ0

−∞
εgo(ε)dε −

∫ λ

−∞
εgM,γ (ε)dε

=
N0∑
n=0

εn − EM,γ (λ), (11)

where go(ε) is the exact level density given by Eq. (2) and λ0 is
its Fermi level (the last occupied level). Sometimes, EM,γ (λ)
is denoted as

∑
εn.
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FIG. 1. Strutinsky density of states
gM,γ (λ) of the harmonic oscillator as a
function of the Fermi level λ. Three values
of the smoothing parameter γ are considered;
the order of the curvature correction is M = 0.
The shell gap is fixed arbitrarily at h̄ω =
10 MeV.

In Eq. (11), the shell correction should not contain any
component of the smooth energy, which is by definition already
included in the liquid-drop model. Consequently, the average
density gM,γ [or the average energy EM,γ (λ)] must not contain
any residual shell effects.

Moreover, since gM,γ is a least-squares approximation of
go, one can write go ≈ gM,γ + δgM,γ , with λ0 ≈ λ. When
condition (7) is fulfilled, gM,γ becomes smooth and the exact
density go oscillates around gM,γ making δgM,γ alternatively
positive and negative. Consequently, from Eq. (11) one can
deduce formally that

δEM,γ (λ) ≈
∫ λ

−∞
εδgM,γ (ε)dε. (12)

Thus, the oscillations of the shell correction δEM,γ (λ) as a
function of λ are due to the fluctuations of δgM,γ (ε).

Note that, in practice, owing to the finite size of the
spectrum, for the shell correction, the cutoff condition
εlast level − λ � γ is required (see Ref. [14]).

III. SEMICLASSICAL LEVEL DENSITY

A. Bohr’s correspondence principle

Although the Strutinsky level density is mathematically
well defined by Eq. (5), there is no physical basis for this
smoothing. Consequently, it is necessary to build another level
density free of shell effects that would be justified by physical
arguments.

Shell effects are the consequence of the quantum nature of
the level distribution (2). The natural way to eliminate such
effects would be to go over to the classical limit. To this end, we
will apply the Bohr correspondence principle, which states that
the behavior of quantum systems reduces to classical physics
in “the limit of large quantum numbers.”

Starting from this principle, we can deduce the semi-
classical level density by using the Euler-Maclaurin (EML)
summation formula. In practice, this amounts to obtaining an
asymptotic series that contains only three or four terms, all the
others being divergent. The first term of this series coincides
with the known Thomas-Fermi approximation.

The EML expansion used here is equivalent to the usual
standard semiclassical methods, (e.g., the Wigner-Kirkwood
expansion [15–17]), or the method of the partition function
[18]. The latter is based on asymptotic series of powers of
h̄. Indeed, in the correspondence principle, the limit of large
quantum numbers amounts to taking the classical limit h̄ → 0.

B. Asymptotic limit of large quantum numbers

In practical cases, the concept of “large quantum numbers”
must be précised by a more concrete definition. To illustrate
this point, we start from the typical example of the three-
dimensional harmonic oscillator. Such a system is very simple;
its energy levels are given by

εn = (n + 3/2)h̄ω, n = 0, 1, 2, 3, . . . ,∞.

The quantum number n defines a shell, and h̄ω represents
the gap between these shells. Thus, n is given by n =
(εn − ε0)/h̄ω, where ε0 = (3/2)h̄ω is the lowest level of the
spectrum.

The correspondence principle states that, for large values
of n = (εn − ε0)/h̄ω, the quantum physics reduces to classical
physics, in particular, the quantum (exact) level density go(λ)
defined by (2) should approach the semiclassical level density
denoted here by gsc(λ). This can be written as

if n = [(εn − ε0) /h̄ω] → ∞, then go → gsc.

As already noted, the shell effects are mainly determined
by the small part of the spectrum {εn} that is located in the
vicinity of the Fermi level λ. Consequently, for these levels,
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we have roughly εn ≈ λ, and this limit becomes

if n = [(λ − ε0) /h̄ω] → ∞, then go(λ) → gsc(λ).

Since in general the Fermi level increases with the quantum
numbers, the arguments presented for the harmonic oscillator
are also valid for any other physical system. Therefore, we will
consider the previous statement as general. However, we must
now redefine h̄ω as the mean shell spacing in the neighborhood
of the Fermi level λ. As in relation (7), we denote it by h̄ω:

if
(λ − ε0)

h̄ω
→ ∞, then go(λ) → gsc(λ). (13)

This limit is of course unphysical. Therefore, in practice, we
require the following qualitative criterion:

if
λ − ε0

h̄ω
� 1, then go(λ) ≈ gsc(λ). (14)

We understand by Eq. (14) that [(λ − ε0)/h̄ω] is sufficiently
large compared to unity so that go(λ) can be considered as
close as possible to gsc(λ) with “satisfactory accuracy.”

Finally, the “asymptotic limit of large quantum numbers”
can be defined theoretically by (13), or practically by Eq. (14).

In practical cases, λ � ε0; therefore the previous require-
ment can be replaced with λ/h̄ω � 1. In this case, the Fermi
level λ must be measured from the bottom of the well.

C. Two well-known analytical cases

The procedure just described is applied in Appendix B to
two simple cases.

1. Semiclassical level density of the harmonic oscillator

The eigenenergies of the isotropic oscillator are

Enx,ny ,nz
=

(
nx + ny + nz + 3

2

)
h̄ω0,

nx, ny, nz = 0, 1, 2, . . . ,∞.

The semiclassical level density of the harmonic oscillator is a
simple parabola (see Appendix B):

gsc(λ) = 1

2

λ2

(h̄ω0)3 − 1

8

1

h̄ω0
. (15)

This result is well known and was established very early by
means of the partition function [18], or more recently by the
Wigner-Kirkwood expansion [19].

2. Semiclassical level density of the infinitely deep cubic box

For the case of a cubic box with totally reflecting walls the
spectrum is given by

Enxnynz
= (

n2
x + n2

y + n2
z

)
E0,

(16)
E0 = π2h̄2/(

2ma2
0

)
,

a0 = side of thecubic box, nx, ny, nz = 1, 2, . . . ,∞.

The semiclassical level density of the infinite cubic box (see
Appendix B) is also an “old” result [18,20]:

gsc(λ) ≈ 1

E
3/2
0

π

4

√
λ − 3π

8

1

E0
+ 3

8

1

E
1/2
0

1√
λ

. (17)

D. Semiclassical shell correction

We define the semiclassical energy by relations very similar
to Eqs. (8)–(11), replacing the Strutinsky level density by the
one of the semiclassical density, with the corresponding Fermi
level is denoted as λsc:

Nsc(λsc) =
∫ λsc

−∞
gsc(ε)dε, (18)

Esc(λsc) =
∫ λsc

−∞
εgsc(ε)dε, (19)

Nsc(λsc) = N0, (20)

δEsc =
∫ λ0

−∞
εgo(ε)dε −

∫ λsc

−∞
εgsc(ε)dε

=
N0∑
n=0

εn − Esc(λsc). (21)

Unlike δEM,γ (λ), the quantity δEsc does not depend on any
free parameter.

IV. CONNECTION BETWEEN STRUTINSKY’S LEVEL
DENSITY AND THE SEMICLASSICAL LEVEL

DENSITY

A. Assumptions and quantitative approach of the asymptotic
limit

We know from the Bohr principle given in Sec. III B that in
the “asymptotic limit” (14) we must have the approximation
go(λ) � gsc(λ). Since Strutinsky averaging (6) gives an ap-
proximation to the exact level density go(λ), normally in this
limit it should also give an approximation to the semiclassical
level density gsc(λ). The role of the curvature correction term
would be to improve the approximation.

We start from the averaging (6), substituting gsc(λ) for go(λ)
in the “asymptotic limit” (14). In Strutinsky averaging the
parameter γ must be of the order of the mean shell spacing h̄ω

near the Fermi level [see Eq. (7)]. Consequently, in Eq. (14)
we should replace h̄ω with γ :

g
M,γ (λ) ≈

∫ ∞

−∞
gsc(ε)P̃M

(
ε − λ

γ

)
1

γ

× exp

[
−

(
ε − λ

γ

)2
]

dε, (22)

with

λ − ε0

γ
� 1 and γ �∼ h̄ω. (23)

054302-5



B. MOHAMMED-AZIZI AND D. E. MEDJADI PHYSICAL REVIEW C 74, 054302 (2006)

Setting X = (ε − λ)/γ , we obtain

g
M,γ (λ) ≈

∫ ∞

−∞
gsc(λ + γX)P̃M(X) exp(−X2)dX, M even.

Now, one replaces the semiclassical density gsc(λ + γX)
by its (M + 2) first terms of the Taylor expansion around λ

[M must be even in P̃M (X)]. The last term gives an estimation
of the remainder:

g
M,γ (λ) ≈

∫ ∞

−∞

[
gsc(λ) +

M+1∑
k=1

(γX)k

k!

dkgsc(λ)

dλk

+ (γX)M+2

(M + 2)!

dM+2gsc(λ)

dλM+2

]
P̃M (X) exp

(−X2
)
dX.

It is easy to show that P̃M (X) exp(−X2) behaves like a delta
function with respect to any polynomial of order k � M .
Consequently the first term gives back gsc(λ), and the second
has no contribution (notice that XM+1 is odd). The remaining
integral,

I (M) =
∫ ∞

−∞
XM+2P̃M (X) exp

(−X2
)
dX,

is obtained from Appendix A.
Finally,

g
M,γ (λ) ≈ gsc(λ){1 + R

M,γ (λ)},

R
M,γ (λ) = γ M+2 CM+2

(M + 2)!

1

gsc(λ)

dM+2gsc(λ)

dλM+2
,

CM+2 = (−1)M/2 1 · 3 · 5 · · · (M + 1)

2(M+2)/2
,

M even, with λ − ε0 � γ �∼ h̄ω. (24)

Equation (24) is fundamental and gives the straightforward
link between the semiclassical level density gsc(λ) and the
Strutinsky level density g

M,γ (λ) in the asymptotic limit
λ − ε0 � γ , with the necessary condition of the smoothing
procedure γ �∼ h̄ω.

It should be noted that it is g
M,γ (λ) that is deduced from

gsc(λ) and not the opposite. Moreover, gsc(λ) does not depend
on any free parameter. Therefore gsc(λ) must be considered
as the “true” smooth level density [the so-called smooth
component of the quantum density (2)], and λ is its Fermi level.

The quantity R
M,γ (λ) is the remainder of the averaging.

From Eq. (24), it can easily be identified with the relative
error:

|RM,γ (λ)| ≈
∣∣∣∣gsc(λ) − g

M,γ (λ)

gsc(λ)

∣∣∣∣
and represents the noise (for the density of states) of the
Strutinsky method. In actual calculations, it is implicit, and
thus unknown. It is contained intrinsically in g

M,γ (λ).
It is easy to check from Eq. (24) that the coefficient

CM+2/(M + 2)! in the remainder decreases theoretically to
zero as M increases to infinity (with λ, γ being fixed), provided
that gsc(λ) is sufficiently regular. This in principle improves
the average. Nevertheless, we have seen in Sec. II E that
large values of M involve a necessary slight increase of γ in

the smoothing procedure, which in turn increases somewhat
the remainder, as can easily be seen from Eq. (24). Thus, it is
not possible to further reduce the remainder. In practical cases,
the “optimal choice” M ∼ 16–30 leads to very good precision
(i.e., |R

M,γ (λ)| < 0.01).
From Eq. (24) it is clear that the dependency on the

two parameters (M,γ ) becomes weaker and weaker as
the remainder decreases to zero. The only special case where
the remainder vanishes rigorously is where gsc(λ) is a pure
polynomial of degree less than or equal to M . This happens
in the harmonic oscillator case. For this reason, the Strutinsky
method must not be “judged” in this example when M >= 2.

Fundamentally, the Strutinsky level density appears in
Eq. (24) only as an approximation (and thus is not strictly
equivalent as is often claimed) to the semiclassical level
density. Consequently, the smooth Strutinsky energy of
Eq. (9) and the Strutinsky shell correction of Eq. (11)
must also be considered as approximations to the respective
semiclassical quantities given by Eqs. (19) and (21).

In fact, we shall see in the next section that the remainder
tends also to zero with λ like (γ /λ)M+2, and thus it becomes
negligible only in the “asymptotic limit” (γ /λ) 	 1.

B. The relative error for the Strutinsky level density in two
special cases

It is instructive to apply our result (24) for the cases seen
previously, that is, the harmonic oscillator (15) and the cubic
box (17), with the previous assumptions λ − ε0 � γ �∼ h̄ω.
For these calculations we choose M = 0 and M = 2 (M must
be even).

For the harmonic oscillator case, using gsc(λ) from Eq. (15),
we find for M = 0

g
M=0,γ

(λ) ≈ gsc(λ)

[
1 + 1

2

γ 2

λ2

]
, with λ � γ �∼ h̄ω

(25)

(where, of course, the mean spacing between the shells is
constant, and we have simply h̄ω = h̄ω), and for M = 2

gM=2,γ (λ) ≈ gsc(λ) [1 + 0] , with λ � γ �∼ h̄ω. (26)

Since the semiclassical level density is a parabola, the
derivative that appears in the remainder R

M,γ in Eq. (24)
cancels for M � 2; therefore one obtains the exact result (the
remainder is 0). However, one should not be too impressed by
this case (see Sec. IV A).

For the infinite cubic box, using gsc(λ) from Eq. (17) we
get for M = 0 and M = 2

g
M=0,γ

(λ) ≈ gsc(λ)

[
1 − 1

16

γ 2

λ2

]
, with λ � γ �∼ h̄ω,

(27)

g
M=2,γ

(λ) ≈ gsc(λ)

[
1 + 15

512

γ 4

λ4

]
, with λ � γ �∼ h̄ω.

(28)

Here also, for both cases, we obtain very similar relations.
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Thus, in these four cases, the Strutinsky level density
approaches the semiclassical level density, and the relative
error (remainder) tends to zero only in the asymptotic limit
γ /λ 	 1. Moreover, it is clear that, in this limit, the Strutinsky
densities become practically independent of the smoothing
parameters (γ,M).

In realistic cases, the Fermi level λ is fixed for a given
nucleus. It turns out that for medium and heavy nuclei,
the quantity λ lies several units of h̄ω above the bottom
of the well; since h̄ω ≈ γ , the quotient γ /λ is thus small
and the remainder is practically negligible. Consequently, for
these cases, the Strutinsky density of states is very close to the
semiclassical level density.

The relative error of the Strutinsky density for the cubic
box is illustrated in Fig. 2. In Fig. 2 (top) we compare the
“numerical” Strutinsky level density (curve a) calculated by
means of Eq. (5) to the semiclassical density (curve b) given
by Eq. (17). Apart from the region near zero (very small λ), and
in spite of the “low” order M = 0 of the curvature correction, it
is clear that the two densities are practically indistinguishable.
The theoretical link between both densities is given by
Eq. (27).

In Fig. 2 (bottom), we can see that the “numerical” relative
error (gsc − g

M=0,γ
)/gsc of the Strutinsky density [denoted by

(b − a)/b] with respect to the semiclassical density (regarded
as the true smooth density) is very small, especially in
the asymptotic limit (γ /λ 	 1). In the latter, this error
becomes close to the theoretical value γ 2/16λ2 given by
Eq. (27).

C. The relative error for the Strutinsky energy in the two
previous cases

The average energy EM,γ (λ) can be deduced by combining
Eq. (9) and Eq. (24) with the assumptions of the asymptotic

limit and the necessary condition of smoothing made in
Eq. (24):

EM,γ (λ) ≈ Esc(λ)[1 + ρM,γ (λ)], (29)

ρM,γ (λ) = SM,γ (λ)

Esc(λ)
, (30)

SM,γ (λ) = γ M+2CM+2

(M + 2)!

∫ λ

−∞
ε
dM+2gsc(ε)

dεM+2
dε, (31)

with λ − ε0 � γ �∼ h̄ω, (32)

where ρ
M,γ (λ) and S

M,γ (λ) are, respectively, the relative and
the absolute errors on the smooth (Strutinsky) energy EM,γ (λ).

We know from Eq. (24) that EM,γ (λ) must be considered
as an approximation to Esc(λ). Besides, unlike EM,γ (λ), the
quantity Esc(λ) does not depend on any unphysical parameter.
As before, the remainder ρ

M,γ (λ) of the Strutinsky energy must
be related to the relative error:

∣∣ρ
M,γ (λ)

∣∣ ≈
∣∣∣∣∣Esc (λ) − EM,γ (λ)

Esc (λ)

∣∣∣∣∣ . (33)

Once again, to illustrate some features of the Strutinsky
method we apply this result for the harmonic oscillator and for
the cubic box with M = 0 and M = 2.

For the harmonic oscillator,

EM=0,γ (λ) ≈ Esc(λ)

[
1 + γ 2

λ2

]
,

with λ � γ �∼ h̄ω, (34)

EM=2,γ (λ) ≈ Esc(λ) [1 + 0] ,

with λ � γ �∼ h̄ω, (35)

FIG. 2. (Top) Strutinsky density of states
gM,γ (λ) (curve a) and semiclassical density
of states gsc(λ) (curve b) of the cubic box
as a functions of the Fermi level λ. The
Strutinsky level density is calculated with
the order M = 0, and the smoothing param-
eter γ = 25E0 (for the definition of E0 see
Sec. III C). The two level densities are prac-
tically indistinguishable. (Bottom) Relative
error of the Strutinsky density of states de-
fined by (b − a)/b compared to the theoretical
value (see text).
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where Esc(λ) of the harmonic oscillator is given in
Appendix B.

In the same way, we obtain for the cubic box

EM=0,γ (λ) ≈ Esc(λ)

[
1 − 5

16

γ 2

λ2

]
,

with λ � γ �∼ h̄ω, (36)

EM=2,γ (λ) ≈ Esc(λ)

[
1 − 25

512

γ 4

λ4

]
,

with λ � γ �∼ h̄ω, (37)

where Esc(λ) of the cubic box is also given in Appendix B.
Thus, in the asymptotic limit (γ /λ) 	 1 (i.e., for medium

and heavy nuclei), as for the density of states (24), the
relative error is small, and we have also EM,γ (λ) ≈ Esc(λ).
Thus, for the smooth energy, the Strutinsky method is a good
approximation of the semiclassical method. A straightforward
consequence is that the smooth (Strutinsky) energy EM,γ

becomes practically independent of the smoothing parameters
(M,γ ) in this limit.

We give in Fig. 3 an illustration of the relative error for the
Strutinsky energy for the cubic box. In the top panel, we reach
the same conclusions as in Fig. 2 (top), that is, EM=0,γ (λ) and
Esc(λ) are indistinguishable. In Fig. 3 (bottom), we see that
the relative error on the Strutinsky energy (with respect to the
semiclassical energy) tends toward zero in the asymptotic limit
(γ /λ) 	 1 and approaches the theoretical value 5γ 2/16λ2

given by Eq. (36).

D. A new understanding of the plateau condition on the average
(Strutinsky) energy

As seen before, the relative error plays a major role in the
Strutinsky energy. From Eq. (33), it is clear that, if |ρ

M,γ (λ)| 	
1, the relative variations of the Strutinsky energy EM,γ (λ) are

small compared toEM,γ (λ) itself [or to Esc(λ)]. For instance,
if one plots EM,γ (λ) as a function of the parameter γ (with M

and λ being constant) a “plateau” appears in the graph. This
means that EM,γ (λ) is “practically constant at the scale of its
own value” (at least in the interval λ � γ �∼ h̄ω); that is,(

	EM,γ (λ)

EM,γ (λ)

)
λ�γ�∼ h̄ω

	 1 (38)

[which is close to Eq. (33)]. This does not necessarily mean that
the derivative of EM,γ (λ) cancels as in the traditional plateau
condition [14]. The same remark holds for the Strutinsky
density.

We must point out that the relative error is proportional to
the quantity (γ /λ)M+2, so that the plateau is improved at large
values of M.

Figure 4 shows an illustration of the plateau [defined by
Eq. (38)] for the energy in the cubic box case. In the top panel
the Strutinsky energy EM,γ of the cubic box is plotted as a
function of γ for four values of the order M . The particle
number is fixed arbitrarily at N0 = 200 with a Fermi level
λ = 64.255E0. It is clear that the fluctuations 	EM,γ are small
compared to EM,γ . At this scale a clear plateau is noticed.

The bottom panel of Fig. 4, at a reduced scale, shows the
important variations of the plateau, especially on the right-hand
side of the figure. If we continue to zoom on in the curve,
several minima and maxima appear (i.e., ∂EM,γ /∂γ = 0).
Some of them have nothing to do with a plateau. For example,
in the vicinity of γ ≈ 154E0 a minimum occurs for the order
M = 16 that does not really belong to any plateau. Thus our
“macroscopic” definition of the plateau seems more “adapted”
than the old version based on the “stationarity” of EM,γ with
respect to γ . In fact, it contains implicitly the concept of the
relative error, which plays a central role in the numerical
applications in the method. Indeed, the minimization of the
relative error (see following) avoids the ambiguity of the (old)

FIG. 3. (Top) Strutinsky smooth en-
ergy EM,γ (λ) (curve a) and semiclassical
energy Esc(λ) (curve b) of the cubic box as
a functions of the Fermi level λ. The two
free parameters are given in the graph. As
in Fig. 2 (top), the two smooth energies are
indistinguishable. (Bottom) Relative error
of the Strutinsky smooth energy compared
to the theoretical value (see also text).
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FIG. 4. (Top) The new understanding of
the plateau condition is that the relative varia-
tions of the Strutinsky energy EM,γ (λ) are so
small compared to EM,γ (λ). This means that, at
the scale of the plateau’s value, the fluctuations
are negligible. (Bottom) Same as Fig. 4 (top),
but at a reduced scale. Here, the fluctuations of
the plateau are obvious.

plateau condition, because a stationary point is not necessarily
a plateau, whereas the minimization of the relative error leads
indisputably to the true value (at the very least to the optimal
value) of the smooth energy and hence of the shell correction
(see the following).

E. Strutinsky shell correction

1. Critical point of the Strutinsky method

First, one must recall that the Strutinsky shell correction
and the semiclassical shell correction are, respectively, defined
through Eqs. (11) and (21), that is,

δEM,γ =
∑

occupied

εn − EM,γ (λ),

δEsc =
∑

occupied

εn − Esc(λ).

Subtracting the second equation from the first, and using
Eq. (29), one obtains a straightforward relation between these
two quantities.:

δEM,γ (λ) ≈ δEsc(λ) − S
M,γ (λ ) (39)

Since EM,γ (λ) is considered as an approximation to
Esc(λ) (see previous section), the Strutinsky shell correction
δEM,γ (λ) must also be regarded as an approximation to the
semiclassical shell correction δEsc(λ). In this respect, S

M,γ (λ)
represents the same absolute error in both formulas (29) and
(39). However, the essential point is that this error does not
have the same importance in these two results.

Indeed, the two shell corrections δEM,γ (λ), and δEsc(λ) are
obtained as the difference between two close large numbers
(i.e., the sum of single-particle energies and their averages);
therefore they are significantly smaller compared to these
quantities (i.e., EM,γ or Esc). For example, Ref. [21] gives
for the case of 154Sn (neutrons) the typical “realistic” values

∑
εi = −1122.5 MeV, EM,γ = −1132.0 MeV (where the

order M is not précised in that work), and hence the shell
correction δEM,γ = 9.5 MeV is thus much smaller than
EM,γ . Consequently, the same absolute error S

M,γ (λ), which
is relatively small in Eq. (29), might become non-negligible in
Eq. (39) for the Strutinsky shell correction.

In addition, in a number of cases the shell correction
might also become so small that the relative error (in the
shell correction) no longer makes sense. Thus, for the shell
correction, the relative error does not play the same leading
role as for the Strutinsky energy (or the Strutinsky density), so
that the (Strutinsky) shell correction might become strongly
dependent to the choice of the parameter γ . This means that
the error could exceed the shell correction itself if this error is
not optimized (i.e., minimized).

2. Optimization of the method with the rule of the relative
remainder

The shell correction is defined as the difference between
two quantities,

∑
εi and EM,γ (λ). Only the latter depends

on the parameter γ (and also M) through the remainder
ρ

M,γ (λ) from Eq. (29). By minimizing this remainder (i.e.,
the relative error) with respect to γ , we make EM,γ (λ) as
close as possible to Esc; therefore we make δEM,γ (λ) as
close as possible to δEsc(λ) (i.e., the true shell correction).
Thus, the minimization of the relative error made on EM,γ (λ),
should lead to the independence (or at least to a weak
dependence) of δEM,γ (λ) on the parameters (γ,M). Hence
we can affirm that it is the minimization of this relative error
that is the source of the plateau, not the opposite. This should
be the most appropriate way for finding the true (or the best)
value of the shell correction. Figure 5 displays a practical
illustration of this minimization (the so-called ‘rule of relative
remainder).
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FIG. 5. (Top) Minimization of the mean
relative error (see text). The minimum occurs
approximately at γ ≈ 28.5E0. (Bottom) Com-
parison between the semiclassical energy and
the different values of the Strutinsky smooth
energy used in Fig. 5 (top). Note that the
optimization [see Fig. 5 (top)] is made on the
smooth energy and not on the shell correction
itself as in the old method of the plateau.

We show in Fig. 5 (top) how to find the optimal value for
the parameter γ in the cubic box case. We again consider in
Fig. 5 (top) the case given in Fig. 4 (top).

The steps are the following:

(i) First we calculate the Strutinsky energy at the Fermi level
EM,γ (λ) as a function of the parameter γ (λ being fixed),
for some close values of the order M .

(ii) We must minimize the remainder of Eq. (33) as follows:∣∣∣∣ ∂

∂γ
ρM,γ (λ)

∣∣∣∣ =
∣∣∣∣∣ ∂

∂γ

Esc(λ) − EM,γ (λ)

Esc(λ)

∣∣∣∣∣ ≈ 0

=
∣∣∣∣∣∣

∂EM,γ (λ)
∂γ

Esc (λ)

∣∣∣∣∣∣ ≈
∣∣∣∣∣∣

∂EM,γ (λ)
∂γ

EM,γ (λ)

∣∣∣∣∣∣ .
(iii) Then, this quantity is plotted as a function of γ for each

value of M . We then should look for the minimum of this
function (relative error).

However for a fixed M , this function has an oscillatory
behavior (around zero), which leads to several local minima.
Nevertheless, because these curves do not cancel simultane-
ously, it is possible to remove these unpleasant oscillations by
considering the mean relative error over some (relative close)
values of M .

The mean relative error (over M = 16, 20, 24, 28) on the
Strutinsky energy is plotted against γ . The minimum (optimal)
value is found to be about γopt ≈ 28.6E0 and corresponds
effectively to the best value [see Fig. 5 (bottom)]. Note
a good agreement between the true value (semiclassical)
given by the upper straight line Esc ≈ 8093.97E0 and the
Strutinsky values [Fig. 5 (bottom)]. In fact, for the optimized
γ , the calculated values are E16,γopt ≈ 8094.52E0, E20,γopt ≈
8094.64E0, E24,γopt ≈ 8095.21E0, and E28,γopt ≈ 8096.31E0,
for M = 16, 20, 24, and 28, respectively.

The sum of single-particle energies is
∑

occ. states εi ≈
7842E0.

The true shell correction δEsc ≈ −251.97E0 and the
corresponding Strutinsky shell corrections are thus δE16,γopt ≈
252.52E0, δE20,γopt ≈ 252.64E0, δE24,γopt ≈ 253.21E0, and
δE28,γopt ≈ 254.31E0, which are in good agreement with the
true (exact) value. Without optimization the results of the
Strutinsky shell correction will certainly be random.

F. Case of realistic wells

1. Strutinsky level density

First, we must note that the spectrum of the finite potential
is composed of discrete negative levels plus a continuum. For
this potential, the definition of the exact level density (2) must
be modified by adding an appropriate continuous expression
gc(ε):

go(ε) =
∑

n

δ(ε − εn) + gc(ε). (40)

For spherical potentials, the continuum is defined by the
scattering phase shift, whereas for the deformed case it can
be solved by the more complicated S-matrix method (see
Ref. [22]).

Next, one recalls that the result (24) (which is the basis of
the present work) comes from Eq. (6) The latter is valid for
any smooth potential regardless of whether it is infinite or not.
Indeed, it is to be noted that the interval of averaging in Eq.
(6) goes from −∞ up to +∞, so the preceding demonstration
remains valid for a finite well. One simply has to add the
continuum of Eq. (40) to the discrete spectrum in this integral.
As for infinite potentials, it is clear that the Strutinsky’s level
density should also be an approximation to the semiclassical
level density for finite wells.

In practice, a rigorous treatment of the continuum is not an
easy task. The standard recipe consists of using the discrete
positive energies to “simulate” this continuum [7]. These
energies are usually obtained by diagonalizing the Hamiltonian
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FIG. 6. Semiclassical and Strutinsky
level densities for a finite well (here
the Woods-Saxon potential). The main
differences occur at the top of the well, near
the singularity of the semiclassical density.

matrix in a truncated harmonic oscillator basis. In fact, this
delicate problem seems now to be solved by the so-called
Green’s function oscillator expansion (GFOE) method [21,25],
which improves upon the standard method.

2. Semiclassical level density

It is well known that the level density of the finite potential
becomes singular at the top of the well [22,23]. For this reason,
it is not possible to find a local polynomial approximation to
the semiclassical level density in the vicinity of this singularity.
In other words, the least-squares averaging (3) does not hold
in this case, precisely because gsc(λ) → ∞−, as λ → 0 (i.e.,
at zero energy). This explains why the two methods do not
lead to the same results, especially for weakly bound nuclei.
Far from the zero-energy point there is no problem.

3. Comparison between the two level densities

It would be interesting to determine the limit where
the Strutinsky level density deviates significantly from the
semiclassical density. To this end, we will be comparing
numerically the Strutinsky level density to the semiclassical
(Wigner-Kirkwood) level density by employing the result of
Ref. [24]:

gsc(λ) = dNsc(λ)

dλsc
, (41)

with

Nsc = 1

3π2

(
2m

h̄2

)3/2 ∫ rsc

0
d3r

[
(λsc − U )3/2 +

(
2m

h̄2

)−1

�

]
,

� =
[

3

4
κ2

(

�fso

)2
(λsc − U )1/2 − 1

16
�2 U (λsc − U )−1/2

]
.

(42)

This formula contains the “classical” Thomas-Fermi term
plus an h̄2 Wigner-Kirkwood correction. In this formula
U (
r) is the central mean potential and also contains the
Coulomb interaction for the protons, and fso(
r) is the spin-orbit
interaction. The classical turning points rsc are defined by
U (
rsc) = λsc, where λsc is the Fermi level.

The numerical integration giving Nsc is made with the help
of an “improved” Gauss-Legendre quadrature formula. The
eigenvalues used in the Strutinsky level density are calculated
by the code published in Ref. [26].

In the two methods we employ strictly the same Hamil-
tonian and the same set of parameters; that is, we use the
Woods-Saxon potential with spin-orbit term and the Coulomb
potential for the protons. For this test we work with 208Pb
(neutrons) with a spherical nuclear shape. The parameters are
V0 = −47.083 MeV and av = 0.66 fm, RV = 7.36 fm,� =
12.0 Mev fm2, aso = 0.55 fm, and Rso = 6.698 fm. Their
definition is given in Ref. [26].

In Fig. 6, we have drawn the semiclassical level density
(denoted by semicl.) and the Strutinsky density as function
of the Fermi level for three cases (with the numerical values
of the smoothing parameters given in the figure).

(i) We can check in the three cases that the Strutinsky level
density is practically equal to the semiclassical density in
the “intermediate” region (between the top and the bottom
of the well) irrespective of the order M of the smoothing
procedure. Indeed, we have shown in Sec. IV B that in
the asymptotic limit (i.e., for medium and heavy nuclei)
the Strutinsky density of states (not the Strutinsky shell
correction!) should be rather insensitive to the two free
parameters of the method. However, although with M =
0 one obtains a good relative error on the density of states,
one improves this error more at sufficient large values
of M .

(ii) As expected, for the reason previously invoked, Fig. 6
shows that the Strutinsky densities differ from the
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semiclassical result essentially at the top of the well. In
the “intermediate region” there is no difference. Near the
singularity, it is more advantageous to choose high values
for the order M . With M = 30, the Strutinsky calculation
seem to work reasonably well up to about −2.5 MeV;
beyond this limit the precision is lost.

(iii) However, we should not forget that it is the semiclassical
density that is the “true” quantity. Because of the
importance of the difference between the two methods
near the zero-energy point, the semiclassical method
must in principle be preferred for the weakly bound
nuclei.

V. CONCLUSION

Although this paper explains a number of aspects and
subtleties of the Strutinsky method, we will insist on some
essential points:

(i) The Strutinsky level density appears in the fundamental
relation (24) only as an approximation (and is not strictly
equivalent as is often claimed) to the semiclassical level
density. Consequently, the shell correction calculated by
Strutinsky’s method should also be considered as an
approximation to the semiclassical shell correction.

(ii) Semiclassical quantities such as the level density, the
energy, and the shell correction must be considered
as the “true” quantities compared to those obtained
with the Strutinsky method. Moreover, they do not
depend on any free parameter. Unlike the semiclassical
method, the Strutinsky method contains an intrinsic noise
(remainder). The ambiguity of the method comes from
the dependence on the two free parameters through this
remainder.

(iii) It turns out that the remainder is proportional to (γ /λ)M+2

and is defined in this paper as the relative error. In the
asymptotic limit (γ /λ) 	 1 (i.e., for medium and heavy
nuclei), the relative error is small, especially for higher
M . Therefore, it is found that the Strutinsky method
gives good results for the average level density and the
average energy. In these cases the dependency on the free
parameters is weak. In contrast, in the shell correction
the relative error is no longer small. The shell correction
might become strongly (γ,M) dependent. The choice of
these two free parameters must be treated with care. In
this context, to minimize the relative error, we propose
the “rule of the relative remainder.”

(iv) For realistic potentials, the semiclassical level density
admits a singularity at the top of the well. Since the
Strutinsky method is a least-squares approximation to
the semiclassical level density (demonstrated in this
paper), the averaging fails near this singularity. In this
case, the two densities are different, and it is not
surprising to note a strong dependence on the param-
eters (γ,M) in this region, even if the continuum is
treated properly. Consequently, for the weakly bound
nuclei (drip line) it is better to use the semiclassical
method.

Our personal conclusion is that the semiclassical method
with a good numerical treatment should, in theory, be quite
superior to the Strutinsky method. The latter can be considered
only as a good palliative method.

APPENDIX A: CALCULATION OF THE INTEGRAL I(M)

In this Appendix we calculate the value of

I (M) =
∫ ∞

−∞
xM+2P̃M (x) exp(−x2)dx

(see Sec. IV A).
First, one must note that P̃M (x) of Eq. (5) can be expressed

as

P̃M (x) = HM (0)

2M+1M!
√

π

HM+1 (x)

x
.

Indeed, with the help of the Christoffel-Darboux formula
(Chap. 22 of Ref. [27])

n∑
k=0

Hk(x)Hk(y)

2kk!
= Hn+1(x)Hn(y) − Hn+1(y)Hn(x)

2n+1n!(x − y)

one finds for our case

P̃M (x) =
M∑

m=0

Hm(0)

m!2m
√

π
Hm(x)

= HM+1(x)HM (0) − HM+1(0)HM (x)

2M+1M!
√

π (x − 0)
.

Since M is even, HM+1(0) = 0, which gives the cited
expression.

To calculate the integral I (M), we have to replace P̃M (x)
by the preceding result. We obtain

I (M) = HM (0)

2M+1M!
√

π

∫ ∞

−∞
xM+1HM+1 (x) exp(−x2)dx.

Now we use the following property [27]:∫ ∞

−∞
t kHk (st) exp(−t2)dt = √

πk!Pk(s),

where Pk(s) is a Legendre polynomial. For our purpose,
we choose s = 1, with Pk(1) = 1. Setting k = M + 1 in the
previous result, one finds∫ ∞

−∞
xM+1HM+1 (x) exp(−x2)dx = √

π (M + 1)!,

so that

I (M) = HM (0)

2M+1M!
√

π

√
π (M + 1)! = HM (0)

2M+1
(M + 1) ,

where HM (0) is given in Sec. II D. Finally, the result can be
cast into the following form:

I (M) =
(

(−1)M/2

2(M+2)/2
1 · 3 · 5 · · · (M + 1)

)
.
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APPENDIX B: TWO APPLICATIONS OF THE EULER
MACLAURIN FORMULA

In the present work, to obtain some analytical results we
employ the Euler-MacLaurin formula [27]

n−1∑
k=1

F (k) =
∫ n

0
F (k)dk − 1

2
[F (0) − F (n)]

+ 1

12
[F ′(n) − F ′(0)]

− 1

720
[F ′′′(n) − F ′′′(0)] + · · · .

Of course this formula can be used to calculate discrete
finite sums. But here our interest lies in this formula’s
application to determining the asymptotic behavior (n → ∞)
of the discrete sum. In explicit terms, if we take a few terms
(integral plus a few derivatives) in this formula, we obtain a
quantity that is equivalent to the discrete sum. This means
that the error (difference between the discrete sum and its
equivalent from the EML formula) tends to zero as n increases
to infinity.

In general, the higher orders of this formula are divergent
and must be simply ignored. For this reason, an asymptotic
expansion does not exceed three or four terms.

We apply this formula for two cases:

(i) The harmonic oscillator: Here we take just the integral
in the EML formula, thus neglecting the divergent terms
(Dirac delta functions) in the result

∞∑
n=0

D(n)δ [ε − (n + 3/2)h̄ω] ≈ 1

h̄ω

∫ ∞

0
D(n)δ

[ ε

h̄ω

− (n + 3/2)
]
dn = gsc(ε),

where D(n) = (n + 1)(n + 2)/2 is the degeneracy of the
level n, and we find

gsc(ε) ≈ 1

2h̄ω

[( ε

h̄ω

)2
− 1

4

]
.

Now, it is easy to deduce the semiclassical energy

Esc(λ) ≈
∫ λ

0
εgsc(ε)dε = λ4

8 (h̄ω)3 − λ2

16h̄ω
.

(ii) The cubic box: Here the degeneracy is unknown, and we
have to evaluate a threefold integral. We work with a
“basic” EML formula, that is, without derivatives:

∞∑
k=1

F (k) ≈
∫ ∞

0
F (k)dk − 1

2
F (0).

Starting from that, we apply this formula in the case of the
threefold sum. Because all axes are equivalent, we obtain
∞∑

nx=0

∞∑
ny=0

∞∑
nz=0

F (nx, ny, nz) =
∫ +∞

0

∫ +∞

0

∫ +∞

0
F (nx, ny, nz)

× dnxdnydnz − (3/2)

×
∫ +∞

0

∫ +∞

0
F(nx,ny,0)dnxdny

+ (3/4)
∫ +∞

0
F (nx, 0, 0)dnx

− (1/8)F (0, 0, 0)

= I3 + I2 + I1 + I0,

respectively, where F (nx, ny, nz) = δ[ε − (n2
x + n2

x +
n2

x)E0].
Using spherical coordinates we find

I3 = π

4

√
ε

E
3/2
0

, I2 = − 3π

8E0

,

I1 = 3

8E
1/2
0

√
ε
, I0 = −1

8
δ(ε).

Here also we omit I0 (the delta function) and so

gsc(ε) = π

4

√
ε

E
3/2
0

− 3π

8E0

+ 3

8E
1/2
0

√
ε
.

Therefore

Esc(λ) ≈
∫ λ

0
εgsc(ε)dε = π

10

1

E
3/2
0

λ5/2

− 3π

16E0

λ2 + 1

4E
1/2
0

λ3/2.
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