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Renormalization of the N N interaction with a chiral two-pion-exchange potential:
Central phases and the deuteron
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We analyze the renormalization of the NN interaction at low energies and the deuteron bound state through the
chiral two-pion-exchange potential assumed to be valid from zero to infinity. The short distance van der Waals
singularity structure of the potential as well as the requirement of orthogonality conditions on the wave functions
determine that after renormalization, in the 1S0 singlet channel and in the 3S1–3D1 triplet channel, one can use
the deuteron binding energy, the asymptotic D/S ratio, and the S-wave scattering lengths as well as the chiral
potential parameters as independent variables. We use then the asymptotic wave function normalization AS of
the deuteron and the singlet and triplet effective ranges to determine the chiral constants yielding c1, c3, and c4.
The role of finite cutoff corrections, the loss of predictive power due to uncertainties in the input data, and the
connection to one-pion-exchange distorted wave perturbative approaches is also discussed.
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I. INTRODUCTION

The possibility suggested by Weinberg [1] and pioneered
by Ray, Ordõnez, and Van Kolck [2–4] of making model-
independent predictions for NN scattering using effective
field theory (EFT) methods and, more specifically, chiral
perturbation theory (ChPT) has triggered a lot of activity in
recent years (for a review, see, e.g., Ref. [5]). In addition to the
previous works, most subsequent calculations dealing with the
specific consequences of ChPT have been focused on making
predictions for NN scattering phase shifts and deuteron
properties based on the genuine two-pion-exchange (TPE)
chiral potentials [6–27], although some incipient work has
also recently been started implementing three-pion-exchange
effects [14,15,18,28,29]. In a given partial wave (coupled)
channel with good total angular momentum, the reduced
NN renormalized potential [U (r) = MV (r)] in configuration
space can schematically be written in local and energy-
independent form [7,11,12] (see Refs. [2–4] for an energy-
dependent representation) for any distances larger than a finite
short distance radial regulator rc,

U (r) = Mm3

f 2
WLO(mr, g) + Mm5

f 4
WNLO(mr, g, d̄)

+ m6

f 4
WNNLO(mr, g, c̄1, c̄3, c̄4) + · · · , (1)

where the potential is written as a low energy expansion, in
which LO means the Leading Order contribution, NLO the
Next-to-Leading Order, NNLO the Next-to-Next-to-Leading
order, and so on. Here, W (x) are known dimensionless
functions which are everywhere finite except for the origin
where they exhibit power law divergencies, which demand the
use of some regularization. In writing the previous expression,
we have disregarded distributional contact terms (deltas and
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derivatives of deltas) localized at the origin which strengths
are scheme dependent but do not contribute for r � rc > 0.
The renormalized potential is completely specified by the pion
mass m, the pion weak decay constant f , the nucleon mass
M , the axial coupling constant g, the Goldberger-Treimann
discrepancy d̄18, and three additional low energy constants
c̄1 = c1M, c̄3 = c3M , and c̄4 = c4M which can be deduced
directly from the analysis of low energy πN scattering within
ChPT [30–33]. Given this information, one can then solve
the single or coupled channel Schrödinger equation imposing
a regularity condition of the wave function at the origin for
each separate channel. In this paper, we will work under
the assumption that the long-range pieces of the potential
should be iterated to all orders, but some perturbative analysis
will also be done. Our motivation is to describe long-range
correlations between observables in the NN problem in
a model-independent way. As we will see below, some
additional physical information is still required in the form
of either counterterms or short distance boundary conditions
to make the problem well posed if one indeed wants to
remove the regularization. They depend exclusively on the
short distance behavior of the renormalized potential through
phases of the wave function. The number of phases depends
crucially on the repulsive or attractive character of the potential
close to the origin. In this sense, the power counting for the
short distance interactions cannot be regarded as independent
of the power counting of the singular chiral potentials.
Nonperturbatively, this materializes, after renormalization, in
noninteger power counting for physical observables. This
imposes severe limitations on the admissible structure of coun-
terterms and the corresponding renormalization conditions
of the quantum mechanical problem. We must emphasize
that our approach is not the conventional EFT one of
allowing all possible short distance counterterms consistent
with the symmetry, and to a certain extent, our viewpoints are
admittedly heterodox within the conventional EFT framework.
However, based on the physical requirement of having small
wave functions in the short-range unknown region, the basic
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and orthodox quantum mechanical requirements of complete-
ness and orthogonality of states are deduced, providing a
justification for the additional restrictions. We recall here
the series of works by Phillips and Cohen [34,35] (see
also Ref. [36]), where restrictions on zero-range interactions
were deduced for nonsingular potentials based on the Wigner
causality conditions. Here, we extend their results also to the
singular NN interactions of Eq. (1).

The theorem underlying the EFT developments is that
if chiral symmetry is spontaneously broken down in QCD,
the true NN potential at long distances is embedded in
the parameter envelope of the general chiral NN potential,
Eq. (1), and the chiral expansion provides a reliable hierarchy
at those long distances. The hope is that compatible and
perhaps accurate determinations of both πN and NN low
energy data, bound states, and resonances can be achieved
with the same sets of parameters. The problem is that in order
to make truly model-independent predictions, short distance
ambiguities should be under control and their size smaller
than the experimental data uncertainties used as input to the
calculation. Only then can the renormalization program be
carried out satisfactorily as it was done in the OPE case
[37–42], although, as recognized by Nogga, Timmermans, and
van Kolck, this may be done at the expense of modifying
the power counting [42] of the counterterms in favor of
renormalizability (see also Ref. [41] for a complementary
formulation in terms of boundary conditions). The present
work analyzes this problem extending our previous OPE
renormalized calculations to NNLO TPE and its implication
in the values of the chiral constants.

The determination of the chiral constants c1, c3, and c4 (in
units of GeV−1 from now on) from πN scattering has been
undertaken in several works and shows significant systematic
discrepancies depending on the details of the analysis. In
heavy baryon ChPT for low energy πN scattering [30],
the values c1 = −1.23 ± 0.16, c3 = −5.94 ± 0.09, and c4 =
3.47 ± 0.05 were deduced with a σ term of σ (0) = 70 MeV.
In Ref. [31], the analysis of low energy πN scattering in-
side the Mandelstam triangle yields c1 = −0.81 ± 0.15, c3 =
−4.69 ± 1.34, and c4 = 3.40 ± 0.04 with, however, a bit
too low σ term σ (0) = 40 MeV as compared to ChPT.
Unitarization methods reproducing the phase shifts [32,33]
from threshold to the � resonance region conclude c1 =
−0.43 ± 0.04, c3 = −3.10 ± 0.05, and c4 = 1.51 ± 0.04.

The values of the chiral constants c1, c3, and c4 also depend
on regularization details of the NN chiral interaction. The
πN values from Ref. [31] were taken in the nucleon-nucleon
NNLO calculation of Ref. [10] with sharp and Gaussian cutoffs
� = 0.6–0.8 GeV in momentum space, and momentum-
dependent counterterms were supplemented and determined
from a fit to the NN database relying on the partial wave
analysis (PWA) of Ref. [43,44]. Likewise, Ref. [19] constructs
a NNLO chiral potential where channel-dependent Gaussian
momentum space cutoffs in the range � = 0.4–0.5 GeV were
used to fit the NN database [45]. The N3LO extension of
this work [28] uses only one common cutoff and fixing
c1 = −0.81 produces c3 = −3.20 and c4 = 5.40. In Ref. [11],
the NNLO calculation was done in configuration space with
a short distance cutoff at r = 1.4 fm, where an energy- and

channel-dependent boundary condition was imposed, and the
fixed value c1 = −0.76 ± 0.07 was used to make a PWA to
pp data yielding c3 = −5.08 ± 0.24 and c4 = 4.70 ± 0.70. An
update of this calculation also including np data [21] generates
c3 = −4.78 ± 0.10 and c4 = 3.96 ± 0.22. The calculations of
Ref. [22,23] improve the cutoff dependence of the potential in
momentum space by using spectral regularization, and taking
again Gaussian cutoffs and fixing c1 = −0.81 yields, after
fitting the counterterms to the NN PWA [43,44], the values
c3 = −3.40 and c4 = 3.40. The extension of this work to
N3LO has been done in Ref. [29] keeping the same values
for c3 and c4 and readjusting the counterterms.

In a renormalized theory, results should be insensitive to
the auxiliary regularization method if the regulator is removed
at the end. If a fit to the database proves successful, then the
resulting parameters should be cutoff independent or at least
the systematic uncertainty induced by the regularization should
be smaller than the statistical errors induced by experimental
data. Otherwise, the cutoff becomes a physical parameter.
The first indication that finite cutoff effects are sizable in the
present calculations has to do with the variety of values that
have been used in the literature for the low energy constants
c1, c3, and c4 to adjust NN partial waves and deuteron prop-
erties [10,11,21–23,28] (see also the comment in Ref. [24]).
Obviously, we do not expect the values of c to agree exactly,
but the discrepancies should be at the level of the difference
in the approximation.1 Since the database is the same but the
regularization schemes are different, one unavoidably suspects
that these determinations of the low energy constants may
perhaps be regularization and hence cutoff dependent.

To get a proper perspective on the issue of renormalization,
let us consider the size of the contributions of the (renor-
malized) chiral potential in configuration space at different
distances. For instance, at r = 1.4 fm in the 1S0 channel,
each order in the expansion is about an order of magnitude
smaller than the preceding one. At short distances, however,
the situation is exactly the opposite: higher orders dominate
over the lower orders. In the previous example of the 1S0

channel, LO and NLO become comparable at r ∼ 0.9 fm, and
NLO and NNLO become comparable at distances at which the
value r ∼ 0.1–0.4 fm depends strongly on the particular choice
of low energy constants c3 and c4. Actually, a general feature of
the chiral NN potentials at NNLO relates to their short distance
behavior; they develop an attractive van der Waals singularity
U ∼ −MC6/r6 similar to the one found for neutral atomic
systems. In such a situation, the standard regularity condition
at the origin only specifies the wave function uniquely if
the potential is repulsive, but some additional information is
required if the potential is attractive [46] (for a comprehensive
review in the one channel case see, e.g., Ref. [47]). Within the
EFT framework, the problem has been revisited in Ref. [48].
The net result is that the regularity condition at the origin

1For instance, pion loops at NLO modify the contribution to c3

by ∼ 3g2
Am2/(64πf 2) ∼ 0.4/GeV. This contribution must be taken

into account when comparing numbers between [11,21,31], and the
present approach. Only the extractions using the N3LO NN potential
in Ref. [28] are made at the same order as those from [31].
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tames the singularity [41] and, in fact, more singular potentials
become less important at low energies.

In this work, we reanalyze the NN chiral potential including
TPE potential at NNLO. We carry out the analysis entirely in
coordinate space following the ideas developed in our previous
work [41] for the OPE potential. In configuration space, the
(renormalized) potential is finite except at the origin, a point
which should be carefully handled, requiring a delicate nu-
merical limiting procedure. Unlike previous works on the TPE
potential, ours tries to remove the cutoff completely, taking
the consequences seriously. This does not mean that finite
cutoff calculations are necessarily incorrect or not entitled
to describing all or part of the data, but there are also good
reasons for removing the cutoff and looking at the physical
consequences. First, the limit exists in a strict mathematical
sense under well-defined conditions, as the analysis below
shows. This is a nontrivial fact, because calculations done in
momentum space can only address this question numerically
by adding counterterms suggested by an a priori power
counting on the short distance potential. As shown in Ref. [42],
this does not always work, and calculations may require
some trial and error. Second, as far as we know, this is
the only way to remove short distance ambiguities, thereby
making the calculations truly model independent. Third, the
study of peripheral waves has proven to be successful by
using perturbative renormalized amplitudes corresponding to
irreducible TPE and iterated OPE where the cutoff has been
removed in the intermediate state [7,20]. Peripheral waves
mainly probe large distances in the Born approximation, but
they also see some of the short distance interaction due to
rescattering effects. Fourth, the advantage of renormalization
is that one should obtain the same results provided one uses
as input the same physical information, regardless whether
the calculation is done in coordinate or momentum space,
and also regardless of the particular regularization. Finally,
a reliable estimate of the errors and convergence rate of the
chiral expansion can be done, without any spurious cutoff
contamination. In principle, the higher the order in the chiral
expansion the better, provided there is perfect errorless data to
fit the increasing number of low energy constants appearing at
any order. However, the chiral expansion may reach a limited
predictive power because of finite experimental accuracy in
the low energy constants used as input. The output inherits a
propagated error which may eventually become larger than the
experimental uncertainty.2 Finite cutoff uncertainties are not
a substitute for propagating input experimental errors to the
predictions of the theory, and they can be regarded at best as a
lower bound on systematic errors. In this paper, we regard this
possible cutoff dependence as purely numerical inaccuracies
of the calculation and not as a measure of the uncertainty in the
predictions of the theory, so we make any effort to minimize
these cutoff-induced systematic errors.

In the process of eliminating the cutoff , we find some
surprises, and effects not explored up to now become manifest.

2This issue has been illustrated in Refs. [49–51] for the case of
ππ scattering at two loops, and will become clear in NN scattering
below.

Even for low energy scattering parameters and deuteron
properties, for which the description should be more reliable
and robust, we find systematic discrepancies in our calculation
with values quoted in the literature, and we conclusively
identify these discrepancies as finite cutoff effects. This
might provide a natural explanation for why calculations with
different cutoff methods fitting the NN phase shifts [43–45]
obtain different results for the chiral constants c1, c3, and c4

or why different values of the constants yield good fits to the
data. According to our study, for the lowest phases the reason
can partly be related to the dominance of short distance van
der Waals singularities for a system with unnaturally large
scattering lengths or a weakly bound state, as it is the case
for the 1S0 and 3S1–3D1 channels. In some cases, the effect
may be as high as 30%, as in the effective range of the
triplet 3S1 channel. The size of the effect depends on the
value of the low energy πN constants c1, c3, and c4. Given
the significant sensitivity of low energy NN properties and
deuteron properties on these low energy πN constants, we
try to make a fit to some low energy properties for which
uncertainties are reliably known and where we expect the
chiral theory to be most reliable. At this point, we depart
from the standard large-scale fits to all phase shifts or partial
wave analyses where the low energy threshold parameters are
determined a posteriori. The assignment of statistical errors
on the fitting parameters c1, c3, and c4 is often not addressed
(see, however, Refs. [11,21]) because the NN databases used
to fit the phase shifts [43–45] are treated as errorless. We also
try to improve on this point within our framework.

The paper is organized as follows. In Sec. II we discuss
the basic assumption of the smallness of the wave function
in the short-range unknown region and its consequences.
We also analyze the constraints based on causality and
analyticity of the S matrix. In Sec. III, we introduce the
classification of boundary conditions which will be used in
the paper to effectively renormalize the amplitudes in both
the one-channel and the coupled-channel cases. We will also
review the orthogonality constraints for singular potentials
already used in our previous work [41] for the OPE potential.
Section IV deals with the description of the singlet 1S0 channel.
From the superposition principle of boundary conditions, we
show how a universal form of a low energy theorem arises
for the threshold parameters as well as for the phase shift.
In Sec. V, we discuss the interesting triplet 3S1–3D1 channel
for both the deuteron bound state and the corresponding
scattering states, where full use of the orthogonality constraints
as well as the superposition principle of boundary conditions
generate interesting analytical relations connecting deuteron
and scattering properties. In Sec. VI, a careful discussion
of errors for our cutoff-independent results is given. Also,
a determination of the chiral constants based on low energy
data and deuteron properties is made. In Sec. VII, we present a
simplified study on the significance of the chiral van der Waals
forces and the striking similarities with the full calculations
for the S waves. In Sec. VIII, we show some puzzling results
for the NLO calculation in the deuteron channel. We also
comment on the relation to finite cutoff calculations and
the conflict between Weinberg counting and nonperturbative
renormalization at NLO. We also outline possible solutions to
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TABLE I. Short distance van der Waals coefficients for the NNLO chiral potential in singlet 1S0 and the 3S1–3D1 triplet channels.

Set Source c1 (GeV−1) c3 (GeV−1) c4 (GeV−1) MC6 (fm4) MC6,+ (fm4) MC6,− (fm4) θ (deg)

Set I (BM) πN [31] −0.81 ± 0.15 −4.69 ± 1.34 3.40 ±0.04 −8.74 −16.96 −5.63 140.8
Set II (RTdS) NN [11] −0.76 −5.08 4.70 −10.19 −21.45 −5.58 170.0
Set III (EMa) NN [20] −0.81 −3.40 3.40 −6.45 −14.68 −3.35 140.7
Set IV (EMb) NN [28] −0.81 −3.20 5.40 −7.28 −20.18 −1.86 182.6

this problem. In Sec. IX, we analyze our results in the light of
long distance perturbation theory, reinforcing the usefulness
of nonperturbative renormalization due to an undesirable
proliferation of counterterms. Finally, in Sec. X, we summarize
our conclusions.

For numerical calculations, we take fπ = 92.4 MeV,
m = 138.03 MeV, M = MpMn/(Mp + Mn) = 938.918 MeV,
gπNN = 13.083 in the OPE piece to account for the
Goldberger-Treimann discrepancy according to the Nijmegen
phase shift analysis NN scattering [52] and gA = 1.26 in the
TPE piece of the potential. The values of the coefficients c1, c3,
and c4 used in this work are listed in Table I for completeness.
The potentials in configuration space used in this paper are
exactly those provided in Refs. [7,11,12] but disregarding
relativistic corrections, M/E → 1.3

II. SHORT DISTANCE INSENSITIVITY CONDITIONS AND
RENORMALIZATION

In this section, we elaborate on the essential role played by
standard quantum mechanical orthogonality and completeness
properties of the wave functions in the rest of this paper. As
we have already mentioned, our approach is unconventional
from an EFT perspective, and at present it is unclear whether
such properties have an EFT justification. At the same time,
one should say that many self-denominated EFT calculations
do indeed normalize deuteron wave functions to unity and
use energy-independent regulators from which orthogonality
relations follow automatically.

A. The inner and outer regions

Similar to EFT, our basic assumption is that low energy
physics should not depend on short distance fine details. This
rather general principle can be made into a precise quantitative
statement in practice for a quantum mechanical system. For
the sake of clarity, let us consider the singlet 1S0 channel for
positive energies. If we assume a short distance regulator
rc, above which our long distance (local) potential acts, the
reduced Schrödinger equation in the outer region reads

− u′′
k,L(r) + UL(r)uk,L(r) = k2uk,L(r), r > rc, (2)

3In fact, if we do consider relativistic corrections, the changes in
observables are negligible. In the case of the deuteron, the changes
are one order of magnitude smaller than the provided error, which
is deduced from the uncertainty in the D/S ratio η (see Table III),
while in the case of the singlet phase shifts the change is about 0.2
degrees at a center-of-mass momentum of 400 MeV, the maximum
considered in this work.

where the label L stands for long. Asymptotically, it behaves
as

uk,L(r) → A sin(kr + δ(k, rc)), (3)

where A is an arbitrary normalization constant and the depen-
dence on the short distance regulator rc has been explicitly
highlighted. In the inner region, the dynamics is unknown but
we also expect it to be irrelevant provided krc � 1, i.e., if
we assume the corresponding wavelength to be larger than
the short distance scale. The potential can be deduced from
perturbation theory in the full amplitude,

U (�x) = C0δ(�x) + C2{∇2, δ(�x)} + · · · + UL(x), (4)

where UL(x) corresponds to the expansion in Eq. (1) [7,11,12].
The distributional contact terms are regularization scheme
dependent and correspond to polynomial terms in momen-
tum space. Obviously, they do not contribute to the region
r > rc for rc > 0. The very nature of such a calculation
already implies that C0, C2, etc., are perturbative corrections
to the short-range physics, but they do not include pos-
sible nonperturbative effects. As will become clear below
(Sec. III), finiteness of the physical phase shift in the limit
rc → 0 implies a highly nonperturbative reinterpretation of the
short-range terms, even if the long-range pieces are computed
perturbatively.

Following [34,36], it is useful to use a nonlocal and energy-
independent potential to describe the short distance dynamics

− u′′
k,S(r) +

∫ rc

0
US(r, r ′)uk,S(r ′) = k2uk,S(r), r < rc, (5)

where the label S stands for short. This holds provided we
are below any inelastic channel such as πNN . Above such
threshold, any open channel and hence a genuine energy
dependence should be included explicitly. Below the threshold,
which is the situation of interest to this paper, there can also
be an energy dependence induced by the virtual contribution
of inelastic channels. In the present paper, we consider the
nucleons to be heavy baryons in which case the threshold
at sπNN = (2M + m)2 = 4(M2 + k2) corresponds to a c.m.
momentum k = √

m(M + m/4) → ∞. The nonlocal short
distance potential US(r, r ′) encodes, in particular, contact
terms (deltas and derivatives of deltas) which appear when
the long distance potential UL(r) is computed in perturba-
tion theory. These terms are in fact ambiguous (and hence
unphysical) and depend on the regularization scheme used in
the perturbative calculation, but they are not essential since
they do not contribute to the absorptive part and hence to the
corresponding spectral function [7]. The important point is that
these ambiguous distributional terms never contribute to the
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FIG. 1. Probability inside the short distance region as a function of the short distance cutoff radius rc for the deuteron state for different
approximations to the potential. In all cases, the deuteron binding energy is fixed to the experimental value. Left panel: 0-π means a pionless
theory in which η = 0.0256 is also fixed to the experimental number. LO is our previous OPE work [41], where η = 0.02633 is deduced
from the regularity condition of the wave function at the origin. NLO and NNLO (set IV) correspond to the higher terms in Eq. (1) where the
experimental η value is also taken. Right panel: Same notation, but fixing η = 0.0256 as an independent parameter. In these cases, the wave
functions in the outer region would diverge at short distances.

long-range part provided rc > 0, since in this case a compact
support for distributional terms is guaranteed. This is a clear
advantage of the radial cutoff we are using. In fact, our main
motivation for carrying out the analysis in coordinate space is
this clean separation between short and long distances. Many
regulators, mainly those in momentum space, do not fulfill this
condition, since the regulator effectively smears these short
distance terms and intrudes somewhat into the long distance
region.4

Finally, we need a matching condition connecting the inner
and outer regions,

u′
k,L(rc)

uk,L(rc)
= u′

k,S(rc)

uk,S(rc)
. (6)

Viewed from the outer region, this relation corresponds to an
energy-dependent boundary condition at a given short distance
cutoff radius rc. Because of elastic unitarity, we expect the state
to be normalized, so that if we use a box of size a as an infrared
regulator, we have∫ rc

0
uk,S(r)2dr +

∫ a

rc

uk,L(r)2dr = 1, (7)

with a much larger than the range of the potential. This
equation gives a quantitative separation between long distance
and known physics and short distance and unknown physics.
Obviously, any effective description based on the long-range
part should fulfill ∫ rc

0
uk,S(r)2dr � 1, (8)

4For instance, the widely used Gaussian regulator in momentum
space [4,28,29,42] of a local potential in coordinate space corresponds
indeed to a convolution of the original potential smeared over the
region of size 1/�.

which corresponds to the requirement of a small wave function
in the inner unknown region. This is our basic condition from
which most of our results follow. It should be realized that here,
long and short distances are intertwined through the matching
condition, Eq. (6). In particular, an arbitrarily growing function
at the origin cannot fulfill this condition even if a large value
of the short distance cutoff is taken.

Let us emphasize that despite the fact that the wave function
is not an observable itself and EFT is not naturally formulated
in terms of wave functions,5 in our approach matrix elements
do require that wave functions are dominated by the long
distances, and in particular short distance insensitivity must
be expected. Otherwise, the contribution from short distances
would become inadmissibly large. This kind of pathological
situation actually occurs when dealing with the deuteron
channel in the theory with no explicit pion-exchange potentials
and a nonvanishing D/S wave ratio, η [35], with OPE potential
[41] and TPE potential at NLO in the Weinberg counting
(see Secs. VIII and VIII C below). As an instructive and
enlightening example, we illustrate the situation in Fig. 1 in
the deuteron state for the dimensionless quantity

P (rc) =
∫ rc

0
(u(r)2 + w(r)2)dr, (9)

(for notation see Sec. V) using the pionless, LO, NLO and
NNLO potentials, Eq. (1), in the outer region r > rc, and
matching to a free particle in the inner region r < rc (it turns
out that the precise form of the wave function inside is not

5EFT is, however, formulated in terms of regularization scheme and
scale-dependent counterterms. So our discussion will parallel in spirit
the naturalness arguments on counterterms considered in the standard
EFT literature.
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essential).6 In the left panel, we display P (rc) for the case
of a pionless theory where u(r) = e−γ r and w(r) = 0, in the
outer region r > rc as well as the LO, NLO, and NNLO chiral
potentials. For an effective description, one would expect that
P (rc) → 0 as rc → 0. This is so in all cases except at NLO in
the standard Weinberg counting, where the wave function leaks
into the short distance region in an uncontrolled way. This is a
first and transparent illustration of the fact that the description
based on any preconceived power counting is not necessarily
consistent with the requirement that short distance ambiguities
be under control, since the wave function in the inner and
unknown region does not become arbitrarily small as the cutoff
is removed. As a further example, we also show in the right
panel two more problematic cases. Namely, a theory where the
asymptotic D/S ratio, η, and the deuteron binding energy are
fixed to their experimental values for both the pionless case
and the OPE potential. The common feature of these solutions
is that the wave functions in the outer region diverge when
rc → 0.

From Fig. 1, it is obvious that in some cases one could
instead keep a finite cutoff, perhaps minimizing the inner
probability so as to make the approximation as effective as
possible. We will analyze this situation in more detail in
Sec. VIII C. As we will discuss in Sec. III, tight constraints on
the structure of short distance counterterms must be fulfilled
if the requirement P (rc) → 0 as rc → 0+ is imposed a priori.

B. Wigner bounds on the short distance contributions

To proceed further, we derive Eq. (5) with respect to energy,
and we obtain, after some algebra,

d

dk2

[
u′

k,S(rc)

uk,S(rc)

]
= −

∫ rc

0 uk,S(r)2dr

uk,S(rc)2
� 0, (10)

whenever rc is not a zero of the wave function.7 The short-range

6In a momentum space formulation, this is somewhat equivalent
to the cutoff of the Lippmann-Schwinger equation above a given
value �.

7The previous equation holds with respect to the explicit energy
dependence. The negativity condition holds also when the potential
is implicitly energy dependent but due to integrated out inelastic
channels (which move to infinity in the heavy baryon formalism). The
simplest way to realize this is to consider the corresponding analog
of the familiar optical potential from multichannel scattering theory
(see, e.g., [53]); starting from the many-body Lippmann-Schwinger
equation T = V + V (E − H )−1T , where V is the many-body poten-
tial and introducing PH and PL, orthogonal self-adjoint projectors,
PH + PL = 1 onto the high energy and low energy complementary
subspaces, respectively, and eliminating the high energy degrees of
freedom, one gets

VL(E) = PLV PL + PLV PH (E − H )−1PH V PL.

Obviously

V ′
L(E) = −PLV PH (E − H )−2PH V PL

= −(PLV PH (E − H )−1)(PLV PH (E − H )−1)†

is a negative definite operator since a product of an operator by its
adjoint is positive definite, 〈ψ |AA†ψ〉 = 〈Aψ |Aψ〉 > 0.

theory can be characterized by an accumulated phase shift
δS(k, rc), given by the solution of the truncated short-range
problem,

uk,S(r) = sin (kr + δS(k, rc)) , r > rc, (11)

which fulfills, from Eq. (10),

d

dk2
[k cot (krc + δS(k, rc))] � 0, (12)

a condition equivalent to Wigner’s causality condition [34].
Using an effective range expansion for the short distance phase
shift

k cot δS = − 1

α0,S

+ 1

2
r0,Sk

2 + · · · , (13)

we get the Wigner bound for the effective range

r0,S � 2rc

[
1 − rc

α0,S

+ r2
c

3α0,S

]
, (14)

where α0,S and r0,S represent the scattering length and effective
range when the short distance potential US(r, r ′) is switched
on from the origin up to the scale rc or equivalently when
the long distance potential is switched off from infinity down
to rc (see Refs. [39,40] for more details). In a theory where
the long distance potential is absent UL(r) = 0, i.e., a pure
short distance description, we have the obvious result that the
short distance threshold parameters coincide with the physical
parameters α0,S = α0 and r0,S = r0. Thus,

r0 � 2rc

[
1 − rc

α0
+ r2

c

3α0

]
, UL(r) = 0, (15)

which implies that r0 � 0 for rc → 0. With the experimental
values, one gets the lowest short distance cutoff compatible
with causality to be rc = 1.4 fm. For a given long distance
potential, we just solve the equations from infinity inward
and look for the point where the Wigner condition is first
violated. In Fig. 2, we plot the evolution of the Wigner bound
on the effective range for the different approximations to
the potential according to the expansion (1) as a function
of the short distance cutoff radius. As we see, the lower bound
on the radius is pushed toward the origin, and in fact for the
NNLO approximation there is no lower bound at all. Thus, only
for the NNLO TPE potential can one build the full strength
of the experimental effective range without violation of the
Wigner condition. We will see more on this in Sec. IV.

If we change explicitly the short distance radius, rc → rc +
�rc, we can use the matching condition, Eq. (6), to evaluate the
change seen from the outer region. This results in a variable
phase equation which has been analyzed extensively in our
previous works [39,40]. If we take the limit rc → 0, we get
that the outer wave function fulfills

d

dk2

[
u′

k(0+)

uk(0+)

]
= 0, (16)

where the label L has been suppressed. Thus, the boundary
condition becomes energy independent when the limit rc →
0+ is taken if the inner wave function becomes arbitrarily
small. Note that the limit is taken from above such that
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FIG. 2. Wigner bound on the effective range of the short distance
interaction [right hand side of Eq. (14)] as a function of the short
distance cutoff radius for the contact interaction (ERE), the OPE
interaction (LO), the TPE (NLO), and NNLO. We use the conditions
α0 = −23.74 fm and r0 = 2.77 fm when rc � 1/mπ . Causality is
violated when the curve crosses the experimental value. Straight
horizontal lines correspond to the values obtained for the effective
range when the short distance initial condition r0,S(0+) = 0 is
assumed.

rc > 0.8 As we have said already, this justifies not considering
contact terms in the potential. A direct consequence is that with
the exception of the short distance scattering length αS,0(0+),
which can be fixed by some renormalization condition (see
Sec. III), the remaining short distance threshold parameters
are also zero in this limit,

r0,S(0+) = 0 v2,S(0+) = 0, · · · . (17)

This energy independence of the boundary condition at the
origin ensures the orthogonality conditions between different
energy states, ∫ ∞

0+
uk(r)uk′(r)dr = δ(k − k′). (18)

III. SHORT DISTANCE BEHAVIOR OF CHIRAL
POTENTIALS, ORTHOGONALITY CONSTRAINTS,

AND THE NUMBER OF INDEPENDENT CONSTANTS

As we have said, chiral NN potentials, Eq. (1), although
they decay exponentially at large distances, become singular
at short distances, where one has

U (r) = MCn

rn
(1 + a1r + a2r

2 + · · ·). (19)

To avoid any misconception, let us emphasize that the short
distance behavior of a long distance potential should be

8To illustrate this point, let us note that for potentials which do not
diverge too strongly at the origin r2U (r) → 0 such as OPE in the 1S0

channel, there is some irreversibility in the process of integrating from
exactly rc = 0 out [which requires the regular solution, u(0) = 0] or
integrating in toward the origin from above r → 0+ (which generally
involves the irregular solution, u(0) �= 0). See the discussion in Ref.
[39] and in Sec. III C.

regarded as a long distance feature, i.e., a long wavelength
property, since different long distance potentials yield different
short distance behaviors. The short distance properties of chiral
potentials have nothing to do with short distance properties
of the “true” potential, but renormalization and finiteness
require a very precise behavior of the wave function when
approaching the origin from long distances. In this section,
we classify the undetermined constants depending on the
attractive or repulsive nature of the corresponding potentials
in the single channel case and the eigenvalues of the potential
matrix in the coupled channel case. In coordinate space and
disregarding relativistic corrections, the potentials in Eq. (1)
are local and energy independent.9 An important condition
of the short distance behavior of the wave functions is the
orthogonality constraints between states of different energy.
For a regular energy-independent potential, these constraints
are automatically satisfied, but for singular potentials they
generate new relations relevant to the NN interaction. Our
approach is not the conventional one of adding short dis-
tance counterterms following an a priori power counting
on the long distance potential. Rather it is the power counting
in the potential that uniquely determines the admissible form
of the short distance physics if we want to reach a finite limit
when the regulator is removed. This can only be achieved
by choosing the regular solution at the origin, i.e., u(0) = 0.
In Sec. VIII C, we will show that irregular solutions generate
divergent results after renormalization. Although this may look
like a potential drawback of removing the cutof, it provides
valuable insight into the form of the potential and the validity
of the expansion (see Sec. VIII D).

A. One channel case

Let us first review the single channel case in a way that
allows the results for the coupled channel situation to be
easily stated. The reduced Schrödinger equation for angular
momentum l is

− u′′ + U (r)u + l(l + 1)

r2
= k2u. (20)

For a power law singular potential at the origin of the form
U (r) = MCn/rn = ±(R/r)n/R2 with n > 2 and R the length
scale dimension, the de Broglie wavelength is given by
1/k(r) = 1/

√|U (r)| , and the applicability condition for the

9In momentum space and up to NNLO, the long distance part of
the potential depends on the momentum transfer q only and not
on the total momentum k. Essential nonlocalities, i.e., contributions
of the form V (q, k) = L(q)k2 with L(q) a nonpolynomial function,
depend weakly on the total momentum and appear first at N3LO
[14–18,20] due to relativistic 1/M2 one loop contributions. In
coordinate space, this weak nonlocality corresponds to a modification
of the kinetic energy term in the form of a general self-adjoint Sturm-
Liouville operator, −u′′(r) → −(p(r)u′(r))′, with a singular p(r)
function at the origin and exponentially decaying at long distances.
The present formalism can in principle be extended to include these
features and will be discussed elsewhere. Nevertheless, according to
the results of Sec. VI (see Table IV ) on the loss of predictive power
already at NNLO there is a lack of phenomenological motivation.
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WKB approximation reads (1/k(r))′ � 1, so that for distances
r � R(n/2)2/(2+n) one has a semiclassical wave function
[46–48]. Obviously, since the potential is much larger than
the energy, finite energy corrections to the wave function will
be suppressed by small relative factors of k2/U (r). Keeping
the leading short distance behavior, one gets for attractive and
repulsive singular potentials and any angular momentum the
following behavior for the regular solutions

uA(r) → CA

( r

R

)n/4
sin

[
2

n − 2

(
R

r

) n
2 −1

+ ϕ

]
, (21)

for

for UA → − 1

R2

(
R

r

)n

, (22)

and

uR(r) → CR

( r

R

)n/4
exp

[
− 2

n − 2

(
R

r

) n
2 −1

]
, (23)

for and

UR → + 1

R2

(
R

r

)n

, (24)

respectively. Here CA and CR are normalization constants, and
ϕ an arbitrary short distance phase. In the repulsive case, we
have discarded the irregular solution (a similar exponential
with a positive sign) which would not allow us to normalize
states. For an attractive singular potential, there is a short
distance unknown parameter. This phase could, in principle,
be energy dependent. Chiral potentials are, however, local and
energy independent at NNLO at all distances, and they become
nonlocal or energy dependent at N3LO, because of relativistic
1/M2 corrections [14–18].10 Thus, if we require orthogonality
of states with different energy (positive or negative), we get11

0 = u′
kup − upu′

k

∣∣∣
0

= 1

R
sin (ϕ(k) − ϕ(p)) . (25)

Hence, the phase ϕ is energy independent and could be fixed
by matching the solution to the asymptotic large distance
region (we assume a short-range potential), e.g., by requiring
a given value of the scattering length αl at zero energy. In
this way, a new and physical scale appears in the problem
which is not specified by the potential. This is equivalent to the
well-known phenomenon of dimensional transmutation, and in
fact it was previously observed in Ref. [48]. Another possibility
is to fix ϕ from a given bound state energy, E = −B. The
new scale entering the problem is the corresponding wave

10 The subthreshold energy dependence from the virtual pion pro-
duction channel NN → NNπ which is in principle N3LO disappears
since in the heavy baryon limit the threshold sπNN = (2M + m)2 =
4(M2 + k2) translates into a c.m. momentum k = √

m(M + m/4) →
∞.
11It should be emphasized that this orthogonality constraint has been

obtained from the semiclassical wave function at finite energy but
very short distances.

number, γ = √
MB. Note that although neither αl nor γ

can be predicted from a singular potential, the orthogonality
constraint does predict a correlation between them through
the potential. Likewise, the phase shifts δl can be deduced
from either αl or γ by taking the same short distance
phase ϕ. In the repulsive case, there is no dimensional
transmutation since the orthogonality condition follows from
regularity at the origin, and the potential fully specifies the
wave function. In this case, the scattering length and the
spectrum are completely determined from the potential as for
standard regular potentials.

B. Coupled channel case

We turn now to the two coupled channel case where the
wave functions are denoted by a column vector (u,w) (for
some particular cases, see, e.g., Refs. [38,41,48,54]). If we
assume that at short distances the reduced potential behaves as

U → M
Cn

rn
, (26)

where Cn is a symmetric matrix of van der Waals coefficients,
then by diagonalizing the matrix Cn we get

Cn =
(

cos θ sin θ

− sin θ cos θ

) (
Cn,+ 0
0 Cn,−

) (
cos θ − sin θ

sin θ cos θ

)
,

(27)

where Cn,± are the corresponding eigenvalues and θ the mixing
angle. Thus, at short distances we can decouple the equations
to get (

u

w

)
→

(
cos θ sin θ

− sin θ cos θ

) (
u+
u−

)
, (28)

where (u+, u−) are regular solutions as in the single channel
case. So, in the two channel situation, we have three possible
cases depending upon the sign of the eigenvalues.

(i) Both eigenvalues are negative, i.e., both eigenpotentials
are attractive and MCn,+ = −Rn−2

+ and MCn,− = −Rn−2
−

with R± the corresponding scale dimension. In this case,
the short distance eigensolutions are oscillatory and there
are two undetermined short distance phases, ϕ+ and
ϕ−. Moreover, for two states (uk,wk) and (up,wp) with
different energies, we get the orthogonality constraint

0 = u′
kup − upu′

k + w′
kwp − wpw′

k

∣∣∣
0

= 1

R+
sin(ϕ+(k) − ϕ+(p)) + 1

R−
sin(ϕ−(k) − ϕ−(p)).

(29)

(ii) One eigenvalue is negative and the other is positive,
MCn,+ = Rn−2

+ and MCn,− = −Rn−2
− . One short dis-

tance eigensolution is a decreasing exponential and
the other is oscillatory, so we have one short distance
phase ϕ. In this case for two states (uk,wk) and
(up,wp) with different energies, we get the orthogonality
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constraint

0 = u′
kup − upu′

k + w′
kwp − wpw′

k

∣∣∣
0

= 1

R+
sin(ϕ+(k) − ϕ+(p)). (30)

(iii) Both eigenvalues are positive, MCn,+ = Rn−2
+ and

MCn,− = Rn−2
− . Then, both short distance eigensolutions

are decreasing exponentials. There are no short distance
phases. In this case, the orthogonality relations are
automatically satisfied.

This simple argument can be easily generalized to any
number of coupled channels. The number of undetermined
short distance phases corresponds to the number of attractive
eigenpotentials at short distances. Orthogonality of the wave
functions requires that all these short distance phases fulfill a
generalized condition of the form of Eq. (29).

The orthogonality conditions require the determination of
the short distance phases, as we did in Ref. [41] for the OPE
case. This requires in general an improvement on the short
distance behavior to high orders. An alternative method is
to impose the orthogonality constraints in either the single
or coupled channel case by integrating in from infinity for a
fixed energy, either positive or negative, and then impose the
condition at a sufficiently short distance cutoff radius r = rc.
In the single channel case, one would get the condition

u′
k(rc)

uk(rc)
= u′

0(rc)

u0(rc)
, (31)

if the zero energy state is taken as the reference state. An
analogous relation holds for the coupled channel situation,
namely,

0 = uk(rc)u0(rc)′ − uk(rc)′u0(rc)

+wk(rc)w0(rc)′ − wk(rc)′w0(rc). (32)

Obviously, in this procedure, cutoff independence must be
checked. For the TPE chiral potentials analyzed in this paper,
we find that rc = 0.1–0.2 fm proves a sufficiently small value
of the short distance cutoff.

C. Power counting, counterterms, and short distance
parameters

As we see, the number of independent parameters is
determined from the potential, although their value can be
fixed arbitrarily by some renormalization condition such as
fixing scattering lengths to their physical value. This removes
the cutoff in a way that causes short distances to become
less and less important. Now, if the potential is regular,
i.e., r2|U (r)| → 0, one may choose between the regular and
irregular solutions.12 In the first case, the scattering length
is predicted, while in the second case, the scattering length
becomes an input of the calculation. In either case, the wave
function is still normalizable at the origin. Singular potentials
at the origin, i.e., fulfilling r2|U (r)| → ∞, do not allow this

12Both cases comply with the normalizability condition at the origin,
Eq. (8).

choice if one insists on normalizability of the wave function
at the origin. If the potential is repulsive, the scattering length
is fixed, while for an attractive potential, the scattering length
must be an input parameter. Furthermore, orthogonality of
different energy solutions requires an energy independence
of the boundary condition, so that in all cases the effective
range and higher order threshold parameters cannot be taken as
independent parameters, in addition to the scattering lengths.

This can be translated into the language of counterterms
quite straightforwardly. In momentum space, fixing α0 arbi-
trarily corresponds to taking a constant C0 cutoff-dependent
and energy-independent contribution to the potential V0(k′, k)
in the Lippmann-Schwinger equation. Likewise, fixing r0 can
be mapped as adding a term C2(k2 + k′2 ) to the potential.
For higher coupled channel partial waves, in which one fixes
the scattering length αl,l′ , one has instead terms of the form

Cl′,lk
′l′ kl in the potential Vl′,l(k′, k).

The OPE potential in the singlet 1S0 is regular at the origin
and hence one can take α0 as an independent parameter or not
(see Refs. [39,40].) Actually, the smallness of the scattering
length for the regular solution suggests using the irregular
solution. In Weinberg’s counting of the potential, at NLO one
has TPE contributions in the potential. At short distances, they
behave as an attractive 1/r5 potential (see Sec. VIII), and then
α0 must be an independent parameter. At NNLO, one has,
again, a singular attractive 1/r6 potential (see Sec. IV) and
thus an adjustable scattering length. This looks quite natural
because increasing the order in the potential has a meaning,
and we can always compare the effect in the phase shifts
of having a higher order potential with the same scattering
length (see Sec. VIII). In this construction, if the next term
in the expansion were to be more singular and repulsive, the
scattering length would be fully predicted from the potential.

The OPE potential in the triplet 3S1–3D1 coupled channel
corresponds to case 2 and hence one has one free parameter in
addition to the OPE potential parameters. One may choose this
parameter to be the deuteron binding energy (or alternatively
the triplet S-wave scattering length). Any other bound state
or scattering observables are predicted. This case was treated
in great detail in our previous work [41].13 In the NLO TPE
potential, we have case 3 because both eigenpotentials present
a repulsive 1/r5 singularity (see Sec.VIII) and one would
predict all observables from the potential parameters. Finally,
in the NNLO TPE potential, we have case 1 corresponding
to an attractive-attractive (see Sec. V), and two additional
parameters need to be specified for a state with a given energy.
The orthogonality condition imposes a relation between two
states of different energy, so that for all energies in the triplet
channel, one has three independent parameters. We will take
these three parameters to be the deuteron binding energy,
the asymptotic D/S ratio and the S-wave scattering length.
The trend one observes when going from LO to NNLO is
quite natural; as usual in ChPT one has more parameters at any
order of the approximation. The NLO approximation poses,

13Relevant previous work on this channel was also presented in
Refs. [38] and [40], in which the orthogonality conditions were not
considered. See the discussion at the end of Sec. V in Ref. [41].
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however, a problem since one seems to have more predictive
power than at LO (see Sec. VIII for more details on the
consequences of using our renormalization ideas literally for
the conventional NLO potential).

For the NNLO TPE triplet 3S1–3D1 channel, we fix the
deuteron binding energy, or equivalently γ , and the asymptotic
D/S ratio η by their experimental values. This fixes the short
distance phases ϕ+(γ ) and ϕ−(γ ). Next, if we use an α or β

(see below for a definition) zero energy scattering state, we
have in principle two short distance phases [ϕα,+(0), ϕα,−(0)]
and [ϕβ,+(0), ϕβ,−(0)] which can be related to the (α0, α02) and
(α02, α2) scattering lengths, respectively. Using the orthogo-
nality constraints to the deuteron bound state, one can then
eliminate α02 and α2 and treat α0 as a free parameter. Thus, in
the triplet 3S1–3D1 channel we can treat γ, η, and α0 as indepen-
dent parameters. Once these parameters have been fixed, we
can actually predict the corresponding phase shifts since any
positive energy state must be orthogonal to both the deuteron
bound state and the zero energy scattering states. This result is
a direct consequence of the singular van der Waals attractive
behavior of the TPE potential at the origin. It is remarkable
that this same set of independent parameters was also adopted
in Ref. [55] within the realistic potential model treatment.

Conflicts between naive dimensional power counting and
renormalization have already been reported recently at the
LO (OPE) level [42], where it was shown that even the 3P0

partial wave depends strongly on the cutoff in momentum
space (a Gaussian regulator is used) if according to the standard
Weinberg counting no counterterm is added. The requirement
of renormalizability makes the promotion of one counterterm
unavoidable for channels that present an attractive singularity.
This promotion is the minimal possible one compatible with
finiteness, because in a coupled channel problem one could
think in general of three counterterms. From this viewpoint,
the choice of just one counterterm in triplet channels is a bit
mysterious. Our discussion in coordinate space agrees with
these authors in the OPE potential, and it actually allows us
to identify a priori the necessarily promotable counterterms
as nontrivial boundary conditions at the origin for singular
attractive potentials. Moreover, we also see that the promotion
of only one counterterm in the triplet channels with an
attractive-repulsive singularity invoked in Ref. [42] is also
maximal, since any additional counterterm would also produce
divergent results (see Sec. VIII C). Thus, we see that although
power counting determines the long distance potential, the
short distance singular character of the potential does not allow
us to fix the counterterms arbitrarily.

To conclude this discussion, let us mention that the short
distance phases, whenever they become relevant, play the role
of some dimensionless constants which depend exclusively on
the form of the potential but not on the potential parameters
[41]. For the same reason, they can be taken to be zeroth order
in the power counting used to generate the chiral potential
in Eq. (1), although they are subjected in general to higher
order corrections. In this sense, the form of the short distance
interaction is dictated only by the potential and cannot be
considered as independent information. (See also Ref. [56] for
a similar view on the three-body problem in the absence of
long distance potentials.)

IV. THE SINGLET 1 S0 CHANNEL

For the singlet 1S0 channel, one has to solve

− u′′(r) + U1S0 (r)u(r) = k2u(r). (33)

At short distances, the NNLO NN chiral potential behaves
as [7,11,12]

U1S0 (r) → 3g2

128f 4π2r6
(−4 + 15g2 + 24c̄3 − 8c̄4)

= −R4

r6
, (34)

which is a van der Waals type interaction with typical
length scale R = (−MC6)1/4. Here, c̄i = Mci . The value of
the coefficient is negative for the four parameter sets of
Table I, so the solution at short distances is of oscillatory
type, Eq. (21) with n = 6, and

u(r) → A
( r

R

)3/2
sin

[
−1

2

(
R

r

)2

+ ϕ

]
, (35)

where there is a undetermined energy-independent phase ϕ,
and A is a normalization constant. Note that the corresponding
van der Waals radius is quite sensitive to the choice of chiral
parameters.

A. Low energy parameters

For the zero energy state, we use the asymptotic normaliza-
tion at large distances

u0(r) → 1 − r

α0
. (36)

Then, the effective range is given by

r0 = 2
∫ ∞

0
dr

[(
1 − r

α0

)2

− u0(r)2

]
. (37)

We can use the superposition principle for boundary conditions

u0(r) = u0,c(r) − 1

α0
u0,s(r), (38)

where u0,c(r) → 1 and u0,s(r) → r correspond to cases where
the scattering length is either infinity or zero, respectively.
Using this decomposition, one gets

r0 = A + B

α0
+ C

α2
0

, (39)

where

A = 2
∫ ∞

0
dr

(
1 − u2

0,c

)
, (40)

B = −4
∫ ∞

0
dr(r − u0,cu0,s), (41)

C = 2
∫ ∞

0
dr

(
r2 − u2

0,s

)
, (42)

depend on the potential parameters only. The interesting thing
is that all explicit dependence on the scattering length α0 is
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displayed by Eq. (39). In a sense, this is the nonperturbative
universal form of a low energy theorem, which applies to
any potential regular or singular at the origin which decays
faster than a certain power of r at large distances (for an
analytical example with the pure van der Waals potential
U = −R4/r6, see Sec. VII). Since the potential is known
accurately at long distances, we can visualize Eq. (39) as a
long distance correlation between r0 and α0. Naturally, if there
is scale separation between the different contributions in the
potential, Eq. (1), we expect the coefficients A, B, and C to
display a converging pattern. This is exactly what happens
[see Eqs. (43) and (89) below], although this behavior is not
compatible with a naive and perturbative power counting (see
Sec. IX).

In the 1S0, the TPE potential becomes singular and attractive
at short distances. Nevertheless, already at this point one can
see the dramatic difference between attractive and repulsive
singular potentials. In the attractive case, the short distance
phase allows one to choose the scattering length independently
of the potential, hence the coefficients A,B, and C are
uncorrelated with α0. For a singular repulsive potential,
however, α0 as well as A,B, and C are determined by the
potential. If one assumes A,B, and C to be independent of
α0 in the repulsive case, which can only be possible because
of an admixture of both the regular and irregular solutions,
the latter will dominate at short distances and the effective
range will diverge r0 → −∞. This fact will become relevant in
Sec. VIII C.

Obviously, for the chiral TPE potential, Eq. (1), the
coefficients have to be evaluated by numerical means, and
they are finite. We expect that these coefficients scale with
the relevant scale of the potential. If long distances dominate,
then A ∼ 1/m,B ∼ 1/m2, and C ∼ 1/m3 but r0 ∼ 1/m. In
contrast, if short distances dominate, then A ∼ R,B ∼ R2,
and C ∼ R3 and r0 ∼ R. The real situation is somewhat in
between, but it is clear that A is far more sensitive to short
distances than C. Actually, for a large scattering length, as is
the case in the 1S0 channel, the coefficient A dominates. Note
that unlike the standard approaches, where a short distance
contribution to the effective range is allowed (in the form of
a momentum-dependent counterterm C2(k2 + k′2) ), we build
r0 solely from the potential and the scattering length α0. This
is a direct consequence of the orthogonality relations, which
preclude energy-dependent boundary conditions for the local
and energy-independent chiral TPE potential.

In Fig. 3, we show the dependence of the effective range
as a function of the short distance cutoff radius rc, i.e.,
replacing the lower limit of integration in Eq. (37), for
values between 2 and 0.1 fm and taking the experimental
value of the scattering length α0 = −23.74 fm. As we see,
the short distance behavior is well under control and nicely
convergent toward the experimental value. This dependence
also illustrates that an error estimate based on varying the
cutoff between a certain range is only a measure of the size
of finite cutoff effects, rather than a measure of the error.
The linear behavior observed at small rc is a consequence
of the dominance of the first term in Eq. (37) as compared
with the second term where the wave function contribution
vanishes as ∼r4

c . Let us remember that in the conventional
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FIG. 3. Effective range for the TPE potential in the singlet 1S0

channel when the lower limit of integration in Eq. (37) is taken to be
a short distance cutoff and the experimental value of the scattering
length α0 = −23.74 fm is taken. We show sets I–IV (see main
text).

treatments, a counterterm C2 is added to provide a short
distance contribution to the effective range parameter, and
the result is fitted to experiment so that r0 becomes an input
of the calculation. Obviously one expects C2 to depend on
the regularization scale. As shown in Fig. 3, the size of the
counterterm C2 at rc → 0 must be numerically small, since the
TPE potential provides the bulk of the contribution. This agrees
with the orthogonality constraint which requires C2 → 0 when
rc → 0.

Numerically we find the following renormalized relations
in the singlet channel for the OPE and NNLO TPE,

r0 = 1.308062 − 4.547741

α0
+ 5.192606

α2
0

(OPE),

r0 = 2.670963 − 5.755234

α0
+ 6.031119

α2
0

(I),

r0 = 2.715075 − 5.847358

α0
+ 6.093430

α2
0

(II), (43)

r0 = 2.586862 − 5.584383

α0
+ 5.916900

α2
0

(III),

r0 = 2.616830 − 5.640921

α0
+ 5.952694

α2
0

(IV)

As we see, the C coefficient is not very sensitive to the choice
of the coefficients c1, c3, c4, and the OPE potential already
provides the bulk of the contribution. On the other hand, the
A coefficient changes dramatically when going from OPE to
TPE, suggesting that the effect is clearly nonperturbative.
A direct inspection of the integrands for the A, B, and C

coefficients shows that A picks its main contribution from
the short distance region around 1 fm, whereas for B and
C the most important contribution is located around 3 fm.
One expects that different choices of coefficients c3 and c4

influence mostly the A coefficient. We confirm this expectation
analytically by only keeping the van der Waals contribution
to the full potential in Sec. VII. We emphasize, again, that
A,B, and C are intrinsic information on the potential; these
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TABLE II. Threshold parameters in the singlet 1S0 channel for the
different sets of parameters c1, c3, and c4 given in Table I. We compare
our renormalized results given by the cutoff independent universal
formula (39) for r0 and its extension for v2 to finite cutoff NN

calculations using their scattering length as an input. The difference
is attributed to finite cutoff effects.

Set Calculation � = 1/rc α0 (fm) r0 (fm) v2 (fm3)

I NNLO [10] 0.6–1 GeV −23.72 2.68 −0.61
I NNLO [19] 0.5 GeV −23.75 2.70 –
I This work ∞ Input 2.92 −0.30
II NNLO [11] 1/1.4 fm – – –
II This work ∞ Input 2.97 −0.23
III NNLO [23] 0.65 GeV −23.4 2.67 −0.50
III N3LO [29] 0.7 GeV −23.6 2.66 −0.50
III This work ∞ Input 2.83 −0.43
IV N3LO [28] 0.5 GeV −23.73 2.73 –
IV This work ∞ Input 2.87 −0.38
Nijm II [43,44] – −23.73 2.67 −0.48
Reid 93 [43,44] – −23.74 2.75 −0.49
Exp. – – −23.74(2) 2.77(5) –

values for the effective range stem solely from the NNLO chiral
potential and the scattering length α0, without any additional
short distance contribution. The closeness of these numbers to
the experimental value suggests that there is perhaps no need to
make the boundary condition energy dependent if the cutoff is
indeed removed, and that the missing 0.1 fm contribution can
be clearly attributed to N3LO contributions in the potential.

The results are summarized in Table II. For pn we have the
experimental values α0 = −23.74(2) and r0 = 2.77(5). The
previous formula, Eq. (39), yields r0 = 2.92, 2.97, 2.83, 2.87
for sets I, II, III, and IV, respectively, which values how a
systematic discrepancy with the published values in several
works (see references in Table II) and also a systematic trend
to discrepancy with respect to the experimental value. Our
renormalized values are always larger than the finite cutoff
results. This seems natural since finite cutoff corrections
diminish the integration region. Note also that the size of the
discrepancy is larger than the experimental uncertainties and
hence is statistically significant.

The value of the effective range was not given in the
coordinate space calculation of Ref. [11], but the quality
of the fit suggests that they obtain a value very close to
the experimental one, r0 = 2.77(5). The contribution to the
effective range from the origin to 0.1 fm is about 0.2. In Ref.
[11], the cutoff is in coordinate space and an energy-dependent
boundary condition is considered. In practice this means
cutting off the lower integration in Eq. (37) at rc = 1.4 fm
and adding an extra short distance contribution rS in a way
that the experimental value is reproduced. This introduces a
new potential-independent parameter. As we have argued, in
the limit rc → 0, the short distance contribution of the effective
range should go to zero, as implied by the orthogonality
constraints. For finite a, the orthogonality constraint does not
imply a vanishing short distance contribution to the effective
range.

For set IV, one could reach the upper experimental value
by flipping the sign of c1 and keeping c3 and c4 unchanged.
For c1 = 2.43 GeV−1, one gets r0 = 2.78 fm. The full
experimental range would be covered by letting 0.81 < c1 <

4.90 GeV−1. This is in total contradiction to the expectations
of πN scattering studies [31]. The insensitivity of our results
with respect to the c1 coefficient has to do with the fact that
c1 only enters in the potential at short distances at order 1/r4

which is subleading as compared with the leading van der
Waals singularity. This is another confirmation of the short
distance dominance in the effective range parameter r0.

Thus, according to our analysis, for the accepted values
of chiral constants of sets I–IV used in previous works, the
difference in the value of the 1S0 effective range could only
be attributed to three-pion-exchange, relativistic effects and
electromagnetic corrections. Another possibility, of course, is
to refit the chiral constants to our renormalized, cutoff free
results. This will be discussed in Sec. VI.

B. Phase shift

For a finite energy scattering state, we solve for the chiral
TPE potential with the normalization

uk(r) → sin(kr + δ0)

sin δ0
. (44)

Again, if we use the superposition principle

uk(r) = uk,c(r) + k cot δ0uk,s(r), (45)

with uk,c → cos(kr) and uk,s → sin(kr)/k and impose the
orthogonality constraint with the zero energy state to get

u′
k,c(rc) + k cot δ0u

′
k,s(rc)

uk,c(rc) + k cot δ0uk,s(rc)
= −α0u

′
0,c(rc) + u′

0,s(rc)

−α0u0,c(rc) + u0,s(rc)
. (46)

Note that the dependence of the phase shift on the scattering
length is explicit; cot δ0 is a bilinear rational mapping of α0.
Taking the limit rc → 0, we get

k cot δ0 = α0A(k) − B(k)

α0C(k) − D(k)
, (47)

whereas the functions A,B, C, and D are even functions of k

which depend only on the potential and are given by

A(k) = lim
a→0

(u0,c(rc)u′
k,c(rc) − u′

0,c(rc)uk,c(rc)),

B(k) = lim
a→0

(uk,c(rc)u′
0,s(rc) − u0,s(rc)u′

k,c(rc)),
(48)

C(k) = lim
a→0

(u′
0,c(rc)uk,s(rc) − u0,c(rc)u′

k,s(rc)),

D(k) = lim
a→0

(u0,s(rc)u′
k,s(rc) − u′

0,s(rc)uk,s(rc)).

The obvious conditions A(0) = D(0) = 0 and B(0) = C(0) =
1 are satisfied. Expanding the expression for small k yields the
well-known effective range expansion

k cot δ = − 1

α0
+ 1

2
r0k

2 + v2k
2 + · · · , (49)

where vk is a polynomial in 1/α0 of degree k + 1.
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FIG. 4. Renormalized phase shifts for the ERE, OPE and TPE
potentials as a function of the c.m. np momentum k in the singlet 1S0

channel compared to the Nijmegen results [43] for different parameter
sets. The regular scattering wave functions for finite k are orthogonal
to the zero energy wave functions. For the TPE potential, we have
taken the chiral couplings of set IV.

The renormalized phase shift is presented in Fig. 4 for
set IV. As we see, the trend in the effective range r0 and the v2

parameter are reflected in the behavior of the phase shift. 14

V. THE TRIPLET 3S1–3D1 CHANNEL

The coupled channel 3S1–3D1 set of equations read

−u′′(r) + U3S1 (r)u(r) + UE1 (r)w(r) = k2u(r),
(50)

−w′′(r) + UE1 (r)u(r) +
[
U3D1 (r) + 6

r2

]
w(r) = k2w(r).

At short distances, the NN chiral NNLO potential behaves
as [7,11,12]

U3S1 (r) → MC6,3S1

r6
,

UE1 (r) → MC6,E1

r6
, (51)

U3D1 (r) → MC6,3D1

r6
,

which is a coupled channels van der Waals type interaction,
where the coefficients are given by

MC3S1 = 3g2

128f 4π2
(4 − 3g2 + 24c̄3 − 8c̄4),

MCE1 = − 3
√

2g2

128f 4π2
(−4 + 3g2 − 16c̄4), (52)

MC3D1 = 9g2

32f 4π2
(−1 + 2g2 + 2c̄3 − 2c̄4).

14Let us mention that the momentum space calculation of Ref. [42]
does not reproduce the physical and well-measured scattering length;
rather, it tries to fit the phase shifts at certain energies. Hence,
there will be some differences between the singlet OPE phase shifts
presented here and the corresponding results of Ref. [42].

If we diagonalize the corresponding matrix, we get(
C6,3S1 C6,E1

C6,E1 C6,3D1

)
=

(
cos θ sin θ

− sin θ cos θ

) (
C6,+ 0
0 C6,−

)

×
(

cos θ − sin θ

sin θ cos θ

)
, (53)

where C6,± are the corresponding eigenvalues and θ the mixing
angle. They are listed in Table I for different parameter choices
of the chiral couplings c1, c3, and c4. We see that in all cases,
both eigenpotentials are attractive at short distances; hence, the
short distance behavior of the wave functions is of oscillatory
type with n = 6. Defining the van der Waals scales as

R± = (−MC6,±)1/4, (54)

the short distance solutions read

(
u

w

)
→

(
cos θ sin θ

− sin θ cos θ

) 


(
r

R+

) 3
2

sin
[

1
2

(
R+
r

)2
+ ϕ+

]
(

r
R−

) 3
2

sin
[

1
2

(
R−
r

)2
+ ϕ−

]

 .

Thus, we have two arbitrary short distance phases ϕ± for a
given fixed energy which cannot be deduced from the potential
and hence have to be treated as independent parameters. We
will fix them to some physical observables by integrating
Eqs. (50) from infinity down to the origin.

A. The deuteron

In the deuteron, k2 = −γ 2 and we solve Eq. (50) together
with the asymptotic condition at infinity

u(r) → ASe
−γ r ,

(55)

w(r) → ADe−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
,

where γ = √
MB is the deuteron wave number, AS is the

normalization factor and the asymptotic D/S ratio parameter
is defined by η = AD/AS . In what follows we use γ and η

as input parameters, thus fixing the short distance phases ϕ±
automatically.

In this paper we compute the matter radius, which reads,

r2
m = 〈r2〉

4
= 1

4

∫ ∞

0
r2(u(r)2 + w(r)2)dr, (56)

the quadrupole moment (without meson exchange currents)

Qd = 1

20

∫ ∞

0
r2w(r)(2

√
2u(r) − w(r))dr, (57)

the deuteron inverse radius

〈r−1〉 =
∫ ∞

0
dr

u(r)2 + w(r)2

r
, (58)

which appears in low energy pion-deuteron scattering, and the
D-state probability

PD =
∫ ∞

0
w(r)2dr. (59)
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Following Ref. [41], we use the superposition principle of
boundary conditions and write

u(r) = uS(r) + ηuD(r),
(60)

w(r) = wS(r) + ηwD(r),

where (uS,wS) and (uD,wD) correspond to the boundary
conditions at infinity, Eq. (55), with AS = 1 and AD = 0 and
with AS = 0 and AD = 1, respectively. Obviously, uS, uD,wS ,
and wD depend only on the potential and the deuteron binding
energy; therefore, the dependence on the asymptotic D/S ratio
η can de determined analytically. The value is taken as a free
parameter. The resulting deuteron wave functions for set IV are
displayed in Fig. 5 and compared with the Nijmegen II results
[43,44]. One clearly sees the incommensurable ever-increasing
oscillations below r = 0.6 fm.

The short distance cutoff dependence of these deuteron
properties using the experimental values for the deuteron
binding energies and the asymptotic D/S ratio, η = 0.0256,
can be found in Fig. 6. As one sees, the cutoff dependence is
well under control, so the infinite cutoff limit can be extracted
without difficulty.

Using the superposition principle of boundary conditions,
Eq. (60), the asymptotic S-wave ratio depends quadratically
on η as follows:

1

A2
S

=
∫ ∞

0
dr

(
u2

S + w2
S

) + 2η

∫ ∞

0
dr(uSuD + wSwD)

+ η2
∫ ∞

0
dr

(
u2

D + w2
D

)
. (61)

The coefficients of this second-order polynomial depends
on the potential and the deuteron binding energy. Similar
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TABLE III. Deuteron properties and low energy parameters in the 3S1–3D1 channel for the pionless theory (Short), the OPE, and the
TPE potential. By pionless we mean taking the only normalizable solution with no potential, i.e., u(r) = e−γ r and w(r) = 0. We use the
nonrelativistic relation γ = √

2µnpB with B = 2.224575(9). For OPE∗ we take gA = 1.26 as input instead of gπNN = 13.083. Errors quoted
in the TPE reflect the uncertainty only in the nonpotential parameters γ, η, and α0. Differences from this work are attributed to finite cutoff
effects. Experimental values can be traced from [55].

Set Ref. γ η AS rm Qd PD 〈r−1〉 α0 α02 α2 r0

Short — Input 0 0.6806 1.5265 0 0 ∞ 4.3177 0 0 0
OPE [41] Input 0.02633 0.8681(1) 1.9351(5) 0.2762(1) 7.31(1)% 0.476(3) 5.335(1) 1.673(1) 6.693(1) 1.638(1)
OPE∗ [41] Input 0.02555 0.8625(2) 1.9234(5) 0.2667(1) 7.14(1)% 0.471(3) 5.308(1) 1.612(1) 6.325(1) 1.602(2)

I N2LO [10] 0.0245 0.884 1.967 0.262 6.11% — 5.420 — — 1.753
I N2LO [19] 0.0256 0.8846 1.9756 0.281 4.17% — 5.417 — — 1.753
I This work Input Input 0.900(2) 1.999(4) 0.284(4) 6(1)% 0.424(3) Input 2.3(2) 3(3) 1.4(4)

II [11] — — — — — — — — — — —
II This work Input Input 0.900(2) 1.999(4) 0.285(4) 7(1)% 0.424(4) Input 2.22(15) 4(2) 1.46(19)

III N2LO [23] — 0.0256 0.873 1.972 0.272 5% — 5.427 — — 1.731
III N3LO [29] — 0.0254 0.882 1.979 0.266 3% — 5.417 — — 1.745
III This work Input Input 0.891(3) 1.981(5) 0.279(4) 7(1)% 0.436(3) Input 1.88(10) 5.7(16) 1.67(8)

IV N3LO [28] — 0.0256 0.8843 1.968 0.275 4.51% — 5.417 — — 1.752
IV This work Input Input 0.884(4) 1.967(6) 0.276(3) 8(1)% 0.447(5) Input 1.67(4) 6.6(4) 1.76(3)

NijmII [43,44] 0.2316 0.02521 0.8845(8) 1.9675 0.2707 5.635% 0.4502 5.418 1.647 6.505 1.753
Reid93 [43,44] 0.2316 0.02514 0.8845(8) 1.9686 0.2703 5.699% 0.4515 5.422 1.645 6.453 1.755
Exp. — 0.2316 0.0256(4) 0.8846(9) 1.971(6) 0.2859(3) — — 5.419(7) — — 1.753(8)

relations hold for other observables. Evaluating the integrals
numerically produces the following analytic correlations:

Set I

1
/
A2

S = 3.78888 − 214.675 η + 4489.43 η2

r2
m

/
A2

S = 5.47297 − 54.1956 η + 1295.89 η2

Qd

/
A2

S = −0.342883 + 36.6449 η − 372.841 η2 (62)

PD

/
A2

S = 2.10904 − 184.824 η + 4124.37 η2

〈r−1〉/A2
S = 3.58173 − 252.20 η + 5186.53 η2

Set II

1
/
A2

S = 3.01271 − 155.591 η + 3363.94 η2

r2
m

/
A2

S = 5.34737 − 44.8896 η + 1122.59 η2

Qd

/
A2

S = −0.296852 + 33.2406 η − 309.624 η2 (63)

PD

/
A2

S = 1.44293 − 132.314 η + 3098.89 η2

〈r−1〉/A2
S = 2.52815 − 171.36 η + 3635.18 η2

Set III

1
/
A2

S = 4.65049 − 283.545 η + 5902.53 η2

r2
m

/
A2

S = 5.58929 − 63.1854 η + 1481.50 η2

Qd

/
A2

S = −0.377779 + 39.2691 η − 420.250 η2 (64)

PD

/
A2

S = 2.77521 − 241.491 η + 5330.67 η2

〈r−1〉/A2
S = 4.87639 − 356.21 η + 7311.77 η2

Set IV

1
/
A2

S = 3.40962 − 190.713 η + 4198.86 η2

r2
m

/
A2

S = 5.40066 − 49.2912 η + 1232.81 η2

Qd

/
A2

S = −0.306469 + 33.9354 η − 318.598 η2 (65)

PD

/
A2

S = 1.66525 − 155.233 η + 3681.89 η2

〈r−1〉/A2
S = 3.14658 − 226.20 η + 4907.35 η2

The numerical coefficients in these expressions depend on the
deuteron binding energy and the TPE potential parameters
g,m, f, c1, c3, and c4. The results for the deuteron properties
are given in Table III. The uncertainties are due to changing
the input γ and η within their experimental uncertainties. We
have checked that the short distance cutoffs a ∼ 0.1–0.2 fm
generates much smaller uncertainties. The explicit dependence
on η is displayed in Fig. 7. Again, we find a discrepancy
in the case of set I with the values quoted in the finite
cutoff calculation. Remarkably, our renormalized results in
coordinate space agree most with the momentum space
calculation of Ref. [19] corresponding to set IV. It is noticeable
that this can be done without explicit knowledge of the
counterterms used in that work in momentum space. This
is precisely one of the points of renormalization; results can
be reproduced by just providing physical input data, with no
particular reference to the method of solution. Let us remember
that c1, c3, and c4 were fixed from the perturbative study of
NN peripheral waves where the cutoff sensitivity is rather
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small. Nevertheless, some significant discrepancies do also
occur.

For the parameter set IV [28] obtained by an N3LO fit to
NN scattering data, our NNLO calculation reproduces almost
exactly the numbers provided in that work. Furthermore, they
turn out to be compatible with the experimental numbers at
the 1σ level within the uncertainty induced by the asymptotic
D/S ratio.15

One immediate lesson we learn from inspection of Table III
is that regardless of the parameter set, only the experimental
uncertainty in the asymptotic D/S ratio for the deuteron
generates theoretical uncertainties about an order of magnitude
larger than the experimental ones. Furthermore, one also has to
take into account other uncertainties, such as the one in gπNN

and, of course, those induced by c1, c3, and c4, which generally

15One may object to using N3LO parameters in a NNLO calculation,
since they are obtained by fitting the same database. However, if
there are finite cutoff effects, the situation is not as clear. Finite cutoff
effects are minimized in an N3LO calculation as shown in Ref. [29]
where the induced uncertainties are drastically reduced when going
from NNLO to N3LO. Note that in our calculation, there already are
no sizable cutoff-induced uncertainties at NNLO.

will generate larger uncertainties if all these parameters are
regarded as independent (see Sec. VI below). In addition, some
systematic errors relate to the accuracy of the expansion in the
potential, Eq. (1). In common with nonperturbative finite cutoff
calculations [10,11,21–23,28], they are difficult to estimate
a priori given the nonperturbative nature of our calculation,
but they are bound to increase the error (see, however, our
discussion in Sec. IX on noninteger power counting). Given
the insensitivity of our results to the short distance cutoff, the
procedure used in Refs. [22,23] of varying the cutoff becomes
unsuitable in our case.

For the deuteron channel, one may conclude that the predic-
tive power of the chiral expansion has reached a limit at NNLO.
So, at present, we do not expect to make theoretical predictions
in the deuteron to be more accurate than experiment. The
inclusion of N3LO and higher orders may provide better
central values but is unlikely to improve the situation re-
garding error estimates since new unknown coefficients in the
potential appear and the induced uncertainties will generally
increase.

On the other hand, the slopes for AS and rm (Fig. 7)
suggest that it would be better to take the asymptotic S-wave
normalization or the matter radius as input, since generated
errors may be comparable or even smaller. For instance, if
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the matter radius rm is taken as input, we get instead η =
0.0253(4), a compatible value with similar errors. However,
if we take AS = 0.8846(9) as input for set IV, we obtain
η = 0.0255(1), a value compatible with the experimental one
but with much smaller errors. The reduction of errors is
also confirmed in sets I–III, although the central values are
a bit off. This result opens up the possibility of making a
benchmark determination of the asymptotic D/S deuteron
ratio from the chiral effective theory. Obviously, to do so, the
chiral constants should be known with rather high accuracy,
an illusory expectation at the present moment. In this regard, it
would perhaps be profitable to pin down the errors for the chiral
constants from peripheral waves. This point will be analyzed
elsewhere [58].

Both the loss of predictive power and the very rare pos-
sibility of making model-independent theoretical predictions
for purely hadronic processes using chiral perturbation theory
more accurate than experiment, which we seem to observe
in low energy NN scattering, are not new observations.
They have already been documented for low energy ππ

scattering [49–51] and provide further motivation for using
chiral effective approaches.

B. Low energy parameters

The zero energy wave functions are taken asymptotically
as 16

u0,α(r) → 1 − r

α0
,

w0,α(r) → 3α02

α0r2
,

(66)
u0,β(r) → r

α0
,

w0,β(r) →
(

α2

α02
+ α02

α0

)
3

r2
− r3

15α02
.

Using these zero energy solutions, one can determine the
effective range. The 3S1 effective range parameter is given
by

r0 = 2
∫ ∞

0

[(
1 − r

α0

)2

− uα(r)2 − wα(r)2

]
dr. (67)

16We correct an error in Eq. (45) of our previous work [41] where
α2 appears. The corrected numerical value is α2 = 6.693 fm5.

In the zero energy case, the vanishing of the diverging
exponentials at the origin imposes a condition on the α and β

states which generate a correlation between α0, α02, and α2.
Using the superposition principle of boundary conditions we
may write the solutions in such a way that

u0,α(r) = u1(r) − 1

α0
u2(r) + 3α02

α0
u3(r),

w0,α(r) = w1(r) − 1

α0
w2(r) + 3α02

α0
w3(r),

(68)

u0,β (r) = 1

α0
u2(r) +

(
3α2

α02
+ 3α02

α0

)
u3(r) − 1

15α02
u4(r),

w0,β (r) = 1

α0
w2(r) +

(
3α2

α02
+ 3α02

α0

)
w3(r) − 1

15α02
w4(r),

where the functions u1,2,3,4 and w1,2,3,4 are independent of
α0, α02, and α2 and fulfill suitable boundary conditions. The
orthogonality constraints for the α and β states read in this
case

uγ u′
0,α − u′

γ u0,α + wγ w′
0,α − w′

γ u0,α

∣∣∣
r=rc

= 0,

(69)

uγ u′
0,β − u′

γ u0,β + wγ w′
0,β − w′

γ u0,β

∣∣∣
r=rc

= 0,

yielding two relations between γ, α02, α2, η, and α0, meaning
that two of them are not independent. Using the superposition
principle decomposition of the bound state, Eq. (60), and for
the zero energy states, Eq. (68), we make the orthogonality
relation explicit in α0, α02, α2, and η. If we would use
α0, α02, α2 as input parameters, the orthogonality constraint
is actually a nonlinear eigenvalue problem for γ and η. The
values of α02 and α2 are not well known, although they have
been determined in potential models in our previous work [59].
In contrast, γ, η, and α0 are well determined experimentally.
Thus, in the deuteron scattering channel, we will use γ, η, and
α0 as independent input parameters and α02, α2 as predictions.
This same set of independent parameters was also adopted
in Ref. [55] within the high-quality potential model treatment,
although the role of the short distance van der Waals singularity
was not recognized. Fixing the experimental value of γ , we
get the following relations for different parameter choices of
c1, c3, and c4:

Set I

α02 = 2.01763 − 0.456461 α0 − 44.8947 η + 11.9351 α0 η

−0.314426 + 13.1555 η

(70)

α2 = −0.023522 + 1.04677 η − 11.6459 η2 + α0 (0.008423 − 0.537856 η + 9.39376 η2)

α0 (−0.023901 + η)2
+ α2

02

α0
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Set II

α02 = 1.71745 − 0.373228 α0 − 33.4616 η + 8.76639 α0 η

−0.228075 + 9.865911 η

(71)

α2 = −0.030303 + 1.18083 η − 11.5032 η2 + α0 (0.009559 − 0.566611 η + 9.71850 η2)

α0 (−0.023118 + η)2
+ α2

02

α0

Set III

α02 = 2.36659 − 0.550871 α0 − 59.1666 η + 15.7488 α0 η

−0.414962 + 17.2806 η

(72)

α2 = −0.018755 + 0.937802 η − 11.7229 η2 + α0 (0.007437 − 0.505434 η + 9.09925 η2)

α0 (−0.024013 + η)2
+ α2

02

α0

Set IV

α02 = 1.89526 − 0.418953α0 − 41.8369η + 10.8526α0η

−0.279236 + 12.2978η

(73)

α2 = −0.023751 + 1.04857 η − 11.5733 η2 + α0 (0.008050 − 0.518604 η + 9.31798 η2)

α0 (−0.023118 + η)2
+ α2

02

α0

The numerical coefficients appearing in these equations de-
pend on the deuteron wave number γ and the TPE parameters
g, f , and m and c1, c3, and c4. The dependence on η for fixed
values of α0 within its experimental uncertainty is depicted
in Fig. 8. We see that for fixed chiral couplings c1, c3, and
c4, the η uncertainty dominates the errors. Numerical values
can be seen in Table III. Note the large discrepancy in the
effective range r0 for sets I and II with the experimental
number. Finite cutoff effects are observed in set III although
the η-induced uncertainty would make the value compatible
with that estimate. Good agreement is observed again for
set IV, particularly in the E1 and 3D1 scattering lengths and
the effective range r0, but only the latter provides a clear
TPE improvement over the OPE. The quantities α02 and
α2 are compatible with typical expectations [59] from the
high-quality potential models.

C. Phase shifts

For the α and β positive energy scattering states, we choose
the asymptotic normalization

uk,α(r) → cos ε

sin δ1
(ĵ0(kr) cos δ1 − ŷ0(kr) sin δ1),

(74)
wk,α(r) → sin ε

sin δ1
(ĵ2(kr) − ŷ2(kr) sin δ1),

uk,β(r) → − 1

sin δ1
(ĵ0(kr) cos δ2 − ŷ0(kr) sin δ2),

(75)
wk,β(r) → tan ε

sin δ1
(ĵ2(kr) cos δ2 − ŷ2(kr) sin δ2),

where ĵl(x) = xjl(x) and ŷl(x) = xyl(x) are the reduced
spherical Bessel functions and δ1 and δ2 are the eigenphases
in the 3S1 and 3D1 channels, and ε is the mixing angle E1. The
use of the superposition principle for boundary conditions as
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FIG. 8. Dependence of scattering lengths α02 (in fm3) and α2 (in fm5) for the TPE potential as a function of η. Boxes represent the Reid93
and Nijm II values determined in Ref. [59]. We used α0 = 5.419(7) fm to generate the bands, with set IV low energy constants.

well as the orthogonality constraints, yield to

uγ u′
k,α − u′

γ uk,α + wγ w′
k,α − w′

γ uk,α|r=rc
= 0,

(76)
uγ u′

k,β − u′
γ uk,β + wγ w′

k,β − w′
γ uk,β |r=rc

= 0,

analogous to Eq. (69), to the deuteron wave functions. If
orthogonality is applied to the zero energy state, one obtains
an explicit relation of δ1, δ2, and ε with the scattering lengths
α0, α2, and α02 as a direct generalization to the coupled
channel case of the one channel singlet case given by Eq. (47).
The explicit expressions are rather cumbersome and will not
be written down here explicitly. The results are depicted in
Fig. 9 for set IV. We observe a clear improvement in
the threshold region, in consonance with the low energy
parameters of Table III and a moderate improvement over the
OPE results in the intermediate energy region. This suggests
that finite cutoff effects may also be built into the phase shifts
as well as the low energy parameters.

VI. ERROR ANALYSIS AND DETERMINATION OF
CHIRAL COUPLINGS FROM LOW ENERGY N N DATA

AND THE DEUTERON

A. Propagating experimental errors in c1, c3, and c4.

The results in the previous sections clearly show that
deuteron and low energy scattering properties in the 1S0 and
3S1–3D1 channels are sensitive to finite cutoff effects and
also to the values of the chiral constants after removal of
the cutoff. We will assume that the values for c1, c3, and
c4 are free of uncertainties. Then, set IV provides the best
description of triplet data but produces a slightly off value for
the effective range in the singlet channel at the 2σ confidence
level. Note that in the singlet case, the theoretical prediction
for r0 does not have a large source of error as in the triplet case
where uncertainties in η dominate the error. On the contrary,
set III provides a compatible value for the effective range in the
singlet channel but incompatible values for the triplet channel
in AS and r0 at the 3–4 σ confidence level on the experimental
side. Thus, on this basis we may reject set III and accept set IV.
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FIG. 9. Renormalized eigenphase shifts for the OPE and TPE potentials as a function of the c.m. np momentum in the triplet 3S1–3D1

channel compared to the Nijmegen results [43]. The regular scattering wave functions are orthogonal to the regular deuteron bound state wave
functions constructed from the OPE with γ = 0.231605 fm−1, m = 138.03 MeV and gπNN = 13.083 for the OPE contribution to the TPE
potential, and g = 1.26 for the TPE contribution to the TPE potential. We take set IV (see main text).
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To improve on this analysis, let us try to include
some errors on the chiral coefficients. The πN analysis
of Ref. [31] (set I) and the NN fit of Ref. [11] (set II)
yield some errors. Ref. [28] (set IV) does not quote er-
rors, but we will take the educated guess of a 5% error
for c3 and a 30% error for c4 [60]. We can propagate
then by a Monte-Carlo simulation implementing also the
errors in gπNN = 13.1 ± 0.1, α0,s = −23.74 ± 0.02, α0,t =
5.419 ± 0.007, η = 0.0256 ± 0.0004. We assume for simplic-
ity that all these quantities are fully uncorrelated. This will in
general enhance the errors, as compared to the case where
correlations in c1, c3, and c4 with πN would be taken into
account. Perhaps, the best thing would be to consider a
simultaneous analysis of both NN and πN low energy data to
build in correlations. Obviously, we do not expect good central
values for the observables judging from Table III. But there is
still the possibility of large error bars.

The outcoming distributions in the low energy and deuteron
parameters are somewhat asymmetric. Actually, for a given
set of c1, c3, and c4 distributions, we observe the appear-
ance of upper bounds in the 3S1 effective range, namely,
r0,t � 1.79, 1, 75, 1.81 fm for sets I, II, and IV, respectively,
where the outcoming distributions become more dense. The
results of the error propagation are summarized in Table IV.
Thus, we see that the values of the chiral coefficients deduced
from low energy πN [31] are globally inconsistent, at the
1σ level, with the low energy NN threshold parameters after
uncertainties are taken into account. The same remark applies
to set II [11]. Again, the loss of predictive power becomes
manifest for all the sets, although set IV provides the best
central values and the smallest errors. The situation for the
quadrupole moment is noteworthy since the difference to
the potential value is attributed to meson exchange currents
(MECs) and relativistic effects, which provide a correction of
about 0.01 fm2 (see Ref. [25] in Ref. [19] and also Ref. [57]).
As we see, this is about the size of the error deduced from

TABLE IV. Singlet 1S0 and triplet 3S1–3D1 scattering and
deuteron properties with error estimates using the chiral TPE
potential. We make a Monte Carlo calculation of the in-
put parameters gπNN = 13.1 ± 0.1, α0,s = −23.77 ± 0.05, α0,t =
5.419 ± 0.007, η = 0.0256 ± 0.0004, and the chiral constants
c1, c3, and c4. The quoted values span an interval where 68% of
the output is contained.

Set I Set II Set IV Exp.

c1 −0.81(15) −0.76(7) −0.81
c3 −4.69(1.34) −5.08(24) −3.20(16)
c4 3.40(4) 4.78(10) 5.40(1.65)
r0,s 2.92+0.08

−0.04 2.97+0.03
−0.02 2.86+0.04

−0.03 2.77 ± 0.05

r0,t 1.36+0.33
−0.75 1.48+0.14

−0.25 1.76+0.03
−0.06 1.753 ± 0.008

As 0.899+0.008
−0.009 0.900+0.003

−0.004 0.884+0.005
−0.008 0.8849 ± 0.0009

Qd 0.284+0.005
−0.007 0.284+0.005

−0.004 0.276+0.004
−0.004 0.2859 ± 0.0003

rm 1.998+0.015
−0.019 1.998+0.007

−0.007 1.965+0.011
−0.014 1.971 ± 0.006

Pd 6.61.0
−0.9 7.1+0.9

−0.9 8.3+1.4
−1.5 —

α02 2.26+0.51
−0.39 2.20+0.23

−0.16 1.67+0.13
−0.13 —

α2 3.6+3.3
−6.9 4.0+1.6

−2.9 6.71+0.48
−0.83 —

our analysis. In the case of the deuteron matter radius, the
situation is even worse since MEC contributions are much
smaller 0.003 fm [57] while our predicted errors are larger. It
would be extremely interesting to reanalyze the problem with
the present deuteron wave functions [61].

B. Determination of c1, c3, and c4.

Another possibility is to attempt a direct fit to the data.
The standard approach is to fit the partial waves to a NN

database [43,44]. The problem with such an approach is that,
unfortunately, there is no error assignment on the phase shifts,
and hence a reliable assessment of errors cannot be made.
Actually, besides the work of Ref. [11,21] where a full partial
wave analysis was undertaken, other works [23,28,29] assume
fixed values for c1, c3, and c4 without attempting any error
analysis based on input uncertainties. But even if data for
the phase shifts with errors were known, one would expect
the quality of the fit to worsen as the energy was increased,
because we think that the chiral approach to NN interaction
should work best at low energies. If the data were known with
uniform uncertainty, one would fit until χ2/DOF (degrees of
freedom) exceeds unity, thus providing an energy window. In
such a fit, all points are equally weighted, while we know that
the description at low energies, where the theory works best,
will be compromised by the highest possible energy within
such an energy window.

Along the previous line of reasoning, we propose, instead,
to fit directly the low energy threshold parameters for which
central values and errors are well known and widely accepted.
The basic ingredient is to use purely hadronic information in
the process to avoid any contamination due to electromagnetic
effects. Specifically, we make a Monte Carlo sampling of the
input data assuming that as primary data they are Gaussian
distributed and uncorrelated. For any of the samples, we make
a χ2 fit to the values r0,s , r0,t , and AS , i.e., we minimize

χ2 =
(

r0,s − r
exp
0,s

�r0,s

)2

+
(

r0,t − r
exp
0,t

�r0,t

)2

+
(

AS − A
exp
S

�AS

)2

(77)

and then determine the optimal values of c1, c3, and c4. We
only accept values where χ2 < 1, and the resulting distribution
of chiral constants c1, c3, and c4 is given in Fig. 10. As we
see, there is a very strong, almost linear, correlation between
c3 and c4. This can be easily understood in terms of the
short distance dominance of the singlet effective range, since
for the pure van der Waals contribution, and in the limit of
large scattering length, r0,s ∼ R = (MC6)1/4, with C6 given
in Eq. (34). Deviations from linearity are induced from the
larger relative error of r0,s(1%) as compared to r0,t and AS

(0.1%). This is different from the large scale partial phase-shift
analysis obtained in Ref. [21] which found a very small
correlation between c3 and c4 of about 0.2. We have checked
that cutting-off data with decreasing values of χ2 excludes the
points where the distribution is sparse, so that the dense part
indeed reflects the uncertainties in the input data. The fact that
the three coefficients seem to be on a line is just a consequence
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FIG. 10. Correlation plots for the low energy constants c1, c3, and c4 obtained from the renormalized TPE potential by fitting the singlet and
triplet effective ranges r0,s = 2.77 ± 0.05 and r0,t = 1.753 ± 0.08 and the deuteron S-wave asymptotic normalization AS = 0.8846 ± 0.0009.
The dispersion in the data reflects the dispersion in all input parameters, gπNN = 13.11 ± 0.08, α0,s = −23.77 ± 0.05, α0,t = 5.419 ± 0.007,
and η = 0.0256 ± 0.0004, which provide χ2 < 1.

of solving by minimization a system of three equations and
three unknowns.

We use gπNN = 13.083, α0,s = −23.74 ± 0.02, α0,t =
5.419 ± 0.007, η = 0.0256 ± 0.0004 and fit c1, c3, and c4 to
the values r0,s = 2.77 ± 0.05, r0,t = 1.753 ± 0.08, and AS =
0.8846 ± 0.0009. Our final result for a sample with 125 points
with χ2 < 1 is

c1 = −1.13+0.02
−0.04(stat) GeV−1,

c3 = −2.60+0.18
−0.23(stat) GeV−1, (78)

c4 = +3.40+0.25
−0.40(stat) GeV−1.

The central value is the mean, and the errors were obtained
by the standard method of excluding the 16% left and right
extreme values of the variables, so as to have a 68% confidence
level between the upper and lower values. Cutting-off data with
χ2 < 0.5 does not change significantly the result.

At the 2σ level, our values for c1, c3, and c4 are com-
patible with the analysis of low energy πN scattering of
Ref. [31], c1 = −0.81 ± 0.15, c3 = −4.69 ± 1.34, and c4 =
3.40 ± 0.04, but they are incompatible with the NN full
partial wave analyses [11,21] which used an energy-dependent
boundary condition at a = 1.4 fm. It is difficult to say whether
other determinations for the chiral couplings based on NN

scattering are incompatible with ours, since no error estimates
have been provided.

C. Estimate of the systematic errors

As we have mentioned, any approach based on power
counting of the potential cannot make an a priori estimate
of the accuracy of the calculation. Nevertheless, we can have
an idea by simply varying the input parameters.

At LO we may use either gA = 1.26 as input or gπNN =
13.1, since the difference is the Goldberger-Treiman discrep-
ancy, which should be a higher order correction. The effect
can be seen by comparing OPE with OPE∗ in Table III. When
compared to the TPE result, for, e.g., set IV, the error is
underestimated this way. At NNLO we use the same procedure

in the TPE piece. Again, the difference should be higher orders.
Numerically this is equivalent to including gπNN = 13.1 ± 0.1
and considering this systematic error as a statistical one, which
has already been taken into account.

We can estimate the systematic error in the chiral constants
by varying the input used to determine c. To correlate the sin-
glet and triplet channels, we must keep r0,s and α0,s . So we can
interchange the inputs AS, r0,t with the outputs rm,Qd, α02,
and α2. This yields a total of 15 possible combinations. Another
question concerns the assessment of an error to the fitted
variables whenever there is no direct experimental quantity,
since this choice weights the determination of c. This is the
case for α02 and α2, where we make the educated guess of
taking the difference between the Reid93 and NijmII values as
determined in Ref. [59] as an estimate of the error. The situation
with Qd is a bit special, and we exclude it from the analysis.17

The results are listed in Table V. We see that this estimate
of the systematic error provides a larger fluctuation than the
direct propagation of the input errors for c1. Symmetrizing the
errors, we get

c1 = −1.2 ± 0.2 (syst) GeV−1,

c3 = −2.6 ± 0.1 (syst) GeV−1, (79)

c4 = +3.3 ± 0.1 (syst) GeV−1.

If we attempt a fit to all observables assigning �Qd = 0.01 fm2

and �α02 = 0.4 fm, we get c1 = −0.9, c3 = −2.71, and c4 =
3.85 with a large χ2/DOF = 3, basically because of the small
errors. Obviously, a more realistic estimate of the errors would
be desirable.

17The discrepancy of potential models to the experimental value
∼0.01 fm2, attributed to MECs and relativistic effects [57], is about
two orders of magnitude larger than the error in the experimental
number ∼0.0003 fm2 and the discrepancy between potential models
∼0.0004 fm2. It is not clear whether the discrepancy can be pinned
down with similar errors [61].
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TABLE V. Central values for the chiral constants c1, c3, and c4

depending on the input. We only include χ 2 < 1.

Fitted c1 c3 c4 χ 2

r0,s , AS, r0,t −1.09 −2.61 3.36 0.06
r0,s , AS, rm −1.23 −2.57 3.34 0.3
r0,s , r0,t , rm −1.45 −2.54 3.26 0.2
r0,s , r0,t , α2 −1.09 −2.64 3.17 0.4
r0,s , rm, α2 −1.03 −2.70 3.26 0.03

VII. THE ROLE OF CHIRAL VAN DER WAALS FORCES

As we have pointed out, our approach is not the conven-
tional one of adding short distance counterterms following a
given a priori power counting regardless of the approximation
in which the long distance potential has been constructed.
Instead, the potential power counting dictates the form of
the short distance physics by demanding a finite limit when
the regulator is removed. In order to stress the differences
with previous approaches, it is interesting to see how much
of the phase shifts is determined from the short distance
chiral potential without adding a short-range contribution
to the effective range. In the standard approach, this can
be achieved by adding a counterterm C2 in the S-wave
channels. In Ref. [41], we showed that both perturbatively
and nonperturbatively the orthogonality constraints for the
OPE potential imply C2 = 0. Here we will see that the bulk
of the S-wave interaction can be explained mainly in terms
of the chiral van der Waals force when renormalization is
carried out, without any additional short distance contribution
or counterterm.

For a pure van der Waals potential of the form

U = −R4

r6
, (80)

the zero energy wave function can be analytically computed
[47] in terms of Bessel functions Jν(x). Normalizing to the
asymptotic form u0(r) → 1 − r/α0 yields

u0(r) = �

(
5

4

) √
2r

R
J 1

4

(
R2

2r2

)

−�

(
3

4

) √
rR

2
J− 1

4

(
R2

2r2

)
1

α0
. (81)

The effective range can also be computed analytically [62,63]
from Eq. (37) yielding

r0 = −4 R2

3 α0
+ 4 R3 �

(
3
4

)2

3 α2
0 π

+ 16 R �
(

5
4

)2

3 π
,

= 1.39473 R − 1.33333 R2

α0
+ 0.637318 R3

α2
0

, (82)

in agreement with the general low energy theorem of Eq. (39).
Taking the values of Table I for R = (MC6)1/4, one gets in the

singlet 1S0 channel

r0,s = 2.39811 − 3.9418

α0,s

+ 3.23959

α2
0,s

(setI),

r0,s = 2.49192 − 4.25624

α0,s

+ 3.63486

α2
0,s

(setII),

(83)

r0,s = 2.2227 − 3.8625

α0,s

+ 2.57944

α2
0,s

(setIII),

r0,s = 2.29099 − 3.59753

α0,s

+ 2.82459

α2
0,s

(setIV).

The numerical agreement at the 10% level of the α0,s

independent term with the full chiral TPE result, Eq. (43),
is striking.18 On the other hand, first-order perturbation theory
in the OPE potential yields (see Sec. A of Ref. [41]) in the
form of Eq. (39) the result

r0,s = g2
πNN

8Mπ

(
1 − 8

3α0,sm
+ 2

α2
0,sm

2

)
,

= 1.4369 − 5.4789

α0,s

+ 5.8758

α2
0,s

. (84)

Note that the coefficient in 1/α2
0,s is slightly better described

by the OPE perturbative value than by the full OPE result [see
Eq. (43)], a not unreasonable result since this coefficient is
sensitive to the longest range part of the interaction. Likewise,
the bulk of the α0-independent coefficient is given just by
the most singular contribution to the full chiral potential. As
we see, for large scattering lengths, the effective range scales
with the van der Waals singlet radius Rs = (MC6,1S0 )1/4 and
not with the pion Compton wavelength 1/m, confirming the
dominance of the short distances singularity in the singlet
channel.

For the triplet channel, the equation cannot be solved
analytically, and the effective range has a correction due to
the D-wave [see Eq. (67)]. Moreover, the scattering length is
five times smaller than in the singlet case, so that we do not
expect in principle such a dramatic agreement. If we neglect
the mixing with the D-wave and take the Rt = (MC6,3S1 )1/4 of
Eq. (52), we obtain

r0,t = 2.50174 − 4.28983

α0,t

+ 3.67797

α2
0,t

(setI),

r0,t = 2.58537 − 4.58143

α0,t

+ 4.05928

α2
0,t

(setII),

(85)

r0,t = 2.35089 − 3.78809

α0,t

+ 3.05196

α2
0,t

(setIII),

r0,t = 2.40877 − 3.97691

α0,t

+ 3.28297

α2
0,t

(setIV),

18The formula (82) can also be used as a numerical test of the
integration method and of the numerical solution of the differential
equations. This is a nontrivial condition due to the rapid oscillations of
the wave function at the origin. We have checked that it is accurately
reproduced.
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Chiral FIG. 11. Renormalized eigenphase shifts in

the 1S0 and 3S1–3D1 channel for the pure chiral
van der Waals C6/r6 potential (VdW), and the
pure NNLO terms compared to the renormalized
phase shifts with the same parameters from
Table I for set IV. We also show the Nijmegen
database [43].

which, using the triplet scattering length value α0,t = 5.42,
yields r0,t = 1.83, 1.87, 1.75, 1.78, respectively, in remark-
able agreement with the experimental value. An estimate of
the mixing effect can be made by using the largest van der
Waals eigenradius R+ = (MC6,+)

1
4 obtained by diagonalizing

the interaction at short distances. From Table I, Eq. (82),
and the experimental value of the scattering length, we
get r0 = 2.00, 2.07, 1.95, 2.05 fm for sets I, II, III, and IV,
respectively, accounting for about 85% of the full value.
Instead, perturbation theory for OPE, Eq. (84), yields r0 =
0.62 fm; and full OPE, r0 = 1.64. Actually, using the relation

MC6,1S0 − MC6,3S1 = R4
s − R4

t

= 3g2

64π2f 4
(4 − 9g2), (86)

we get an explicit correlation among α0,s , r0,s , α0,t , and r0,t

regardless of the numerical values of the chiral constants c3

and c4. In the range of physical parameters, this looks like a
linear correlation (see Fig. 11) between the singlet and triplet
effective ranges. For r0,t = 1.75, one gets r0,s = 2.34.

To check further the dominance of chiral van der Waals
interactions, we plot in Fig. 12 the phase shifts for a variety of
situations including the pure van der Waals contributions, as
well as the contribution of the NNLO only, which reduces to
the previous case at short distances but decays exponentially
as ∼e−2mr at long distances. The plots confirm, again, our
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FIG. 12. van der Waals correlation between the singlet and triplet
effective ranges using the experimental singlet and triplet scattering
lengths. The point represents the experimental values.

estimations based on the pure van der Waals potential of the
effective range for the S waves, and this is the reason why the
triplet S wave is better reproduced than the singlet case for
set IV. Obviously, by adjusting the effective range and
changing the chiral parameters c3 and c4 we could obtain a
much better description of the data.

The results of this study show that the singularity of the
chiral van der Waals force is not a feature that should be
avoided, but instead it provides a very simple way to describe
the scattering data for the S waves.

Finally, it is interesting to note that central waves based
on taking the chiral limit of the potential are less accurately
described than the phase shifts obtained from the pure van
der Waals contribution. In this limit, the singlet 1S0 channel
contains in addition to the van der Waals term a 1/r5

contribution stemming from the NLO TPE contribution. The
triplet 3S1–3D1 TPE contribution has a similar structure in
addition to the OPE tensor 1/r3 singular short distance
contribution.

VIII. THE TPE POTENTIAL AT NLO: A MISSING LINK?

In the previous sections, we analyzed the renormalization of
the NNLO potential. In this section, we analyze the NLO in the
singlet 1S0 and triplet 3S1–3D1 channels and the problem that
arises in the latter. We argue that similar trends are observed
in finite cutoff calculations. We also suggest several scenarios
of how the problem may be overcome.

A. Convergence in the singlet 1S0 channel

In the singlet 1S0 channel, the potential at short distances
behaves as [7,11,12]

U1S0 → MC5,1S0

r5
, (87)

where

MC5,1S0 = M(1 + 10g2 − 59g4)

256π3f 4
. (88)

The singlet coefficient is negative, and, according to the
discussion in Sec. III, one has an undetermined short distance
phase which can be fixed by using the scattering length as
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TABLE VI. Convergence of threshold parameters of effective
range expansion k cot δ = −1/α0 + r0k

2/2 + v2k
4 + v3k

6 + v4k
8 in

the singlet 1S0 channel depending on the successive inclusion of
terms in the potential U = ULO + UNLO + UNNLO + · · ·. LO means
LO alone (and taking gπNN = 13.083 and gA = 1.26), NLO means
LO+NLO, and so on. The only input is the scattering length α0

besides the potential parameters. For the NNLO case, we use set IV
for the chiral constants c1, c3, and c4 given in Table I.

1S0 LO NLO NNLO Exp. Nijm II

α0 (fm) Input Input Input −23.74(2) −23.73
r0 (fm) 1.44 2.29 2.86 2.77(5) 2.67
v2 (fm3) −2.11 −1.02 −0.36 – −0.48
v3 (fm5) 9.48 6.09 4.86 – 3.96
v4 (fm7) −51.31 −35.16 −27.64 – −19.88

input. The effective range in the singlet channel is given by

r0 = 2.122 − 4.889

α0
+ 5.499

α2
0

(NLO), (89)

which, compared with the LO and NNLO results in Eq. (43),
shows a convergence rate. To show that this trend to conver-
gence is not fortuitous, we display in Table VI the threshold pa-
rameters of the effective range expansion k cot δ = −1/α0 +
r0k

2/2 + v2k
4 + v3k

6 + v4k
8 depending on the terms kept in

the expansion of the potential given by Eq. (1). As we see,
there is a clear trend to convergence, although the higher order
threshold parameters display a slower convergence rate since
they are increasingly sensitive to the shorter range regions. This
trend is confirmed in Fig. 13 for the phase shift. Obviously,
there is scale separation in the singlet potential; and higher
order potentials, although more singular at the origin, yield
contributions in the right direction.

B. The problem in the triplet 3S1–3D1 channel

The triplet 3S1–3D1 potential at short distances has the
behaviour [7,11,12]

U3S1 (r) → MC5,3S1

r5
,

UE1 (r) → MC5,E1

r5
, (90)

U3D1 (r) → MC5,3D1

r5
,

where

MC5,3S1 = 3M(−1 − 10g2 + 27g4)

256π3f 4
,

MC5,E1 = − 15Mg4

64
√

2π3f 4
, (91)

MC5,3D1 = 3M(−1 − 10g2 + 37g4)

256π3f 4
,

On the other hand, the diagonalized triplet coefficients are

MC5,+ = 3M(−1 − 10g2 + 17g4)

256π3f 4
,

(92)

MC5,− = 3M(−1 − 10g2 + 47g4)

256π3f 4
,

and the mixing angle is given by tan θ = √
2, differing by

−π from the OPE case [41]. For 0.5356 < g < 0.8217, one
would have an attractive-repulsive situation (see Sec. III), as
in the OPE case [41]; and in such a case, one could take
either the deuteron binding energy or the 3S1 scattering length.
However, for the physical value g = 1.26, one has two short
distance repulsive eigenchannels, and hence one must take
the exponentially decaying regular solutions at the origin.
Let us recall that according to Sec. III, finite renormalized
results can only be obtained by precisely choosing the regular
solution at the origin. In this case, there are no short distance
phases, and the scattering lengths, as well as the phase shifts,
are completely determined from the potential. The (finite)
renormalized results are depicted in Fig. 13. As we see, the
singlet 1S0 phase shift shows a very reasonable trend, since
NLO improves on the LO, and it is improved by the NNLO
potential. We recall that in the three cases, the scattering length
is exactly the same. However, not completely unexpectedly,
the triplet channel results worsen the LO ones. In the next
subsection, we show that demanding the standard Weinberg
counting requires the irregular solution at the origin, hence
yielding to divergent renormalized results.

C. Finite cutoffs and the Weinberg counting

The special status of the NLO calculation as compared
with the LO and NNLO ones has been recognized in previous
studies in momentum space [10] where regularization was
implemented by using a sharp cutoff �. As noted by these
authors, the allowed cutoff variations at NLO are smaller
(∼380–600 MeV) than at LO (∼700–800 MeV) or NNLO
(∼800–1000), but the reasons have not been made clear.
Let us focus on the triplet 3S1–3D1 channel. Within our
coordinate space renormalization scheme, this trend can be
easily understood. At LO, one fixes only one parameter, say
α0, and because one has attractive and repulsive potentials
at short distances, the system will naturally be driven into
the exponential regular solution at the origin. Obviously, if
one would fix some other parameter independently, say r0

(or equivalently using a counterterm C2), and not the one
predicted by the regular solutions, one would be driven instead
to the irregular solution and not be allowed to remove the
cutoff in practice. In such a situation, one would be forced
to keep the cutoff finite at the scale where the repulsive core
sets in. However, at LO the Weinberg power counting does
not allow one to fix this additional parameter and one can
comfortably reach higher cutoff values. On the contrary, at
NLO one has two repulsive eigenpotentials, and one cannot
fix any low energy parameter arbitrarily. Otherwise, one would
be attracted to the irregular solutions at short distances.
On the other hand, they are attractive at long distances, so
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that one would expect a stability region where the potential
becomes flat before turning into a repulsive core in both
eigenchannels. This is exactly what one observes in the NLO
calculation of Ref. [10]. The occurrence of such a plateau
is to some extent fortuitous since it is associated with the
critical points of the potential and not with some a priori
estimate of the validity range of the NLO potential. Finally,
in the NNLO calculation, because both eigenpotentials have
an attractive character, one can again increase the cutoff since
there are no irregular solutions in the problem to which one
can be attracted. It is very rewarding that our coordinate
space analysis of short distance singularities anticipates when
these features can be expected. On the other hand, this
does not imply that finite cutoff calculations are necessarily
wrong, but simply that the observed features when the cutoff
approaches the limit can be understood and, moreover, that
the cutoff becomes a crucial parameter if one insists on
finiteness.

The previous discussion can be illustrated in our approach
by looking at the short distance cutoff dependence of the
effective range r0 (in fm) and the deuteron wave function
renormalization AS (in fm−1/2), in the triplet 3S1–3D1 channel
at LO, NLO, and NNLO in the standard Weinberg counting,
as presented in Fig. 14. As described in Sec. III C, any
counterterms can be mapped into a given renormalization
condition. Once these conditions are fixed, we can ask whether
other properties are finite. Thus, at LO we fix the deuteron
binding energy (one counterterm), at NLO and NNLO we fix
the deuteron binding energy, the asymptotic D/S mixing η,

and the scattering length α0 (three counterterms). In all cases,
it is clear that by lowering the cutoff at LO and NNLO of
the approximation, one nicely approaches the experimental
values. This raises immediately the question of whether there
is a given value of the cutoff at which NLO improves over LO.
As we see, such a region does not exist. In addition, although
there is a nice clear trend in both LO and NNLO for distances
below 0.5 fm for AS down to the origin, this is not so at NLO.
So, in this case, it is not true that low energy properties are
independent of short distance details, in contrast to the standard
EFT wisdom. Moreover, Fig. 14 shows explicitly the conflict
between the Weinberg counting and the remotion of the cutoff
at NLO because r0 and AS diverge as a result of the onset
of the irregular solution, as anticipated in our study of short
distance solutions (see Sec. III). We have checked that this is
a general feature on both deuteron and scattering properties.
On the contrary, LO and NNLO have a rather smooth limit
because in these two cases, Weinberg power counting on
the short distance counterterms turns out to be compatible
with the choice of the regular solution at the origin. Thus,
in the 3S1–3D1 channel, the renormalized solution at NLO in
the Weinberg counting is divergent, while LO and NNLO are
convergent. In conclusion, the present analysis shows in a
somewhat complementary manner as done in Sec. VIII B that
indeed the NLO is problematic, at least nonperturbatively. In
Sec. IX, we will see that the problem is not solved if the NLO
contribution is computed within a perturbative framework
using the exact OPE distorted wave basis as a lowest order
approximation.
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FIG. 13. Renormalized eigenphase shifts
at LO, NLO, and NNLO as a function of
the c.m. np momentum k in the singlet 1S0

and triplet 3S1–3D1 channels compared to the
Nijmegen results [43] for different parameter
sets.
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FIG. 14. Cutoff dependence of the effective range r0 (in fm) and the deuteron wave function renormalization AS (in fm−1/2), in the triplet
3S1–3D1 channel at LO, NLO, and NNLO in the Weinberg counting. At LO, we fix the deuteron binding energy (one counterterm); at NLO and
NNLO, we fix the deuteron binding energy, the asymptotic D/S mixing η, and the scattering length α0 (three counterterms). We use set IV of
chiral coupling constants.

D. The roles of relativity and � resonance in the
renormalization problem

The requirement of renormalizability may be regarded as
a radical step, and renormalized LO calculations demand the
violation of dimensional power counting on the counterterms
[42] in noncentral waves such as 3P0, because of an attractive
1/r3 singularity. To reach a finite limit, the authors of Ref. [42]
propose to promote counterterms that are of higher order in
Weinberg’s power counting. However, it is intriguing that in
their proposal they choose to promote just one counterterm
in coupled channels, while they could have used a coupled
channel counterterm, i.e., three counterterms in total. In the
boundary condition approach, we know from the start how
many independent parameters must be exactly taken to reach
a finite and unique limit; the reference to power counting is
only specified at the level of the potential. Note that the power
counting in the potential fixes its short attractive-repulsive
singular character, and this is the origin of the conflict of
assuming an a priori power counting for the counterterms.
Finiteness requires not only that some forbidden counterterms
must be allowed (promoted) [42] but also that some allowed
counterterms must be forbidden (demoted). In such a frame-
work, our NLO calculations in the 3S1–3D1 channel lead to
finite but nonsensical results thanks to the repulsive-repulsive
1/r5 singularity (see Sec. VIII). On the other hand, if one fixes
the scattering length as required by the power counting, the
limit does not exist because one is driven to the exponentially
diverging solution at the origin [for instance, Eq. (67) gives
r0 → −∞]. How then can we reconcile finiteness with fixing
of the parameters?. As we pointed out already, the singular
short distance behavior of the chiral potential is in fact a long
distance feature which changes dramatically when changing
the long distance physics. Actually, one may reverse the
argument and use renormalizability as a selective criterion for
admissible long distance potentials. In the following, we want
to provide at least two possible scenarios for how this might
happen, i.e., how modifying the potential at long distances by

introducing physically relevant information changes the short
distance behavior of the potential.

In the first place, the chiral potential, Eq. (1), was derived
in the heavy baryon expansion. The short distance character
may change when such a limit is not taken, since the
combination Mr does make the order of limits ambiguous.
A proper treatment of relativistic effects requires the inclusion
of antinucleons in loops, and a satisfactory EFT treatment
of relativistic effects remains a challenging open problem
because of the nonperturbative divorce of the standard crossing
vs unitarity. Further more, one should use a satisfactory
relativistic two-body equation, which necessarily makes the
problem fully nonlocal in coordinate space. Nevertheless,
there exist “relativistic” potentials, where some of the terms of
higher power in 1/M than the TPE obtained in heavy baryon
ChPT are kept [25–27], which have 1/r7 van der Waals short
distance behavior with attractive-repulsive eigenpotentials
[64]; this means that as in the OPE case, there is one free
parameter. A calculation using these incomplete relativistic
potentials will be presented elsewhere [65].

A second scenario is related to the role played by the �

resonance, 19 which is not included in the present analysis. As
pointed out in Ref. [8], the � provides the bulk of the chiral
constants, yielding −c3 = 2c4 = g2

A/2�, with � = 293 MeV
the nucleon-delta mass splitting, yielding c3 = −2.7 GeV1

and c4 = 1.35 GeV−1. The difference in the parameters of
Ref. [20] may be due to some other resonances. On the other
hand, in terms of scales, one has � ∼ 2mπ , which might
be regarded as a small parameter. This obviously does not
mean that � vanishes in the chiral limit. In the standard
chiral counting of the potential, Eq. (1), the combinations
c̄1 = Mc1, c̄3 = Mc3, and c̄4 = Mc4 are considered to be
zeroth order, but according to the previous argument they
could be regarded to be enhanced by one negative power.

19We thank D. Phillips for drawing our attention to this point.
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Thus, the nominally NNLO terms containing c3 and c4

might become NLO contributions, thereby changing the
repulsive-repulsive 1/r5 singularity into an attractive-
attractive 1/r6 one. On the other hand, the c3 and c4

contributions of the standard NNLO dominate the short
distance van der Waals contributions. Actually, much of
the NNLO potential is built from these terms all over the
range. According to this reasoning, our NNLO calculation
may be closer to an NLO one where the N� splitting
is regarded as a small parameter. In fact, taking NLO+�

with −c3 = 2c4 = g2
A/2� and η = 0.0256, one gets AS =

0.8869 fm−1/2,QD = 0.2762 fm2, rm = 1.9726 fm, and Pd =
0.06 in overall agreement with Table III. It would be rather
interesting to look for further consequences of this � counting
at higher orders. The importance of the � in the NN

problem has been stressed already in several works on power
counting grounds [3,4,10,66], but the crucial role played in
the renormalization problem, i.e., the fact that the cutoff
can be completely removed, has not been recognized. Our
discussion suggests that the momentum space cutoff could
also be comfortably removed in this � counting, unlike the
�-less NLO.

The two possible scenarios outlined above do not prove
that the requirement of renormalizability is necessarily right,
but they do suggest that looking into the short distance
singular behavior of long distance chiral potentials, together
with the mathematical requirement of finiteness, may provide
a significant physical insight into the NN problem. In the
language of Ref. [42], which stressed the promotion of
counterterms on the basis of the renormalizability requirement,
we are perhaps led also to the demotion of counterterms (as
for relativistic potentials), or alternatively to the promotion
of terms in the potential (as in the � counting described
above).

E. Van der Waals forces, the molecular analogy, and
the chiral quark model

The previous arguments show that it is possible to change
the attractive/repulsive character of the potential at short
distances by organizing the calculation of the potential in
a different manner, but does not give a clue as to why
this actually happens. Remarkably, the analogy with atomic
neutral systems subjected to van der Waals forces illustrated
in Sec. VII goes farther and provides valuable insight into the
problem. In low energy molecular physics where one works in
a Born-Oppenheimer approximation, all atomic constituents,
electrons, and nuclei interact through the Coulomb force
arising from one photon exchange. At long distances between
distant electrons, the potential is a dipole-dipole interaction,
that is,

Vdip(R) = e2
∑
A,B

[
�rA · �rB

R3
− 3

(�rA · �R)(�rB · �R)

R5

]
, (93)

where the sum runs over electrons belonging to different atoms.
In second-order perturbation theory, the atom-atom energy at

a separation distance R reads

VAA = 〈AA|Vdip|AA〉

+
∑

AA �=A∗A∗

|〈AA|Vdip|A∗A∗〉|2
EAA − EA∗A∗

+ · · · , (94)

where |AA〉 and |A∗A∗〉 are the electron wave functions
corresponding to a pair of separated clusters in their atomic
ground state and excited states, respectively. The first-order
contribution vanishes for atoms with no permanent dipole
moment. The mutual electric polarization causes the van
der Waals interaction between the two atoms, C6/R

6 and,
because it is second-order perturbation theory, it is obvious
that the C6 contribution to the potential will always be
attractive. However, it is not clear that higher order terms
would always be attractive. It is remarkable that the theorem
of Thirring and Lieb [67] establishes that the Coulomb force
between constituents implies that all terms in the expansion
are attractive, without appealing to the dipole approximation.
Thus, according to this result, the long distance force will
always be singular and attractive at short distances, and that
is exactly what one needs. In such a situation, making a long
distance expansion of the potential, U = −R4

6/r6 − R6
8/r8 +

· · · and computing the scattering phase shifts by always
fixing the same scattering length, along the lines pursued
in this paper, makes much sense. Moreover, one expects the
results for the phase shifts to be convergent if there is scale
separation between the corresponding van der Waals radii
R6 � R8 � · · ·. Our experience with several atomic systems
confirms these expectations [68].

The argument in the NN system is a straightforward
generalization of the molecular system above. It is well
known that there are no color hidden states between color
neutral systems, so that at long distances one may assume
only the exchange of colorless objects. The longest range
object will be the pion, and the mutual (chiral) polarizability
will cause attraction between the nucleons, exactly in the
same way as for atom-atom interactions. If we use as an
example the chiral quark model, assuming for simplicity
nonrelativistic constituent quarks, one obtains the OPE for
quarks. To second-order perturbation theory, we get the NN

potential in the Born-Oppenheimer approximation

VNN = 〈NN |VOPE|NN〉
+

∑
HH �=NN

|〈NN |VOPE|HH 〉|2
ENN − EHH

+ · · · , (95)

where VNN represents the potential in the NN operator basis.
This yields exactly when HH = N� the results found in
Ref. [3,4,8] and naturally explains why the contribution from
one � intermediate state is attractive at short distances.
Although this analogy with molecular systems is very sug-
gestive, the generalization to all orders along the lines of
the Lieb-Thirring theorem within a QCD context remains at
present an optimistic speculation.
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IX. RENORMALIZED PERTURBATION THEORY VERSUS
NONINTEGER POWER COUNTING

A. Perturbations on boundary conditions

In all our calculations, we have taken a long distance
potential calculated perturbatively and have computed the
scattering amplitudes nonperturbatively by fully iterating a
potential computed in perturbation theory, as initially sug-
gested by Weinberg [1]. We will call this form of solution
nonperturbative for brevity. This requires a nonperturbative
treatment of the renormalization problem, which naturally
implies that the short distance renormalization conditions (or
counterterms) are determined by the most singular contribution
of the long distance potential at the origin. 20 For the NN chiral
potential, it turns out that the higher the order the more singular
the potential. As a consequence, we have seen in Sec. VIII C
that, for instance, Weinberg counting at NLO in the 3S1–3D1

channel is incompatible with renormalization and finiteness
because of the short distance repulsive character of the NLO
potential. Although naively this looks counterintuitive, it is
important to realize that there are also situations, such as
LO and NNLO, where the regularity condition of the wave
function conspires against the singularity so that the net effect
is well behaved in the scattering amplitudes and deuteron
properties. Our results in Secs. IV and V suggest that the
pattern obtained when comparing LO and NNLO looks quite
converging numerically, although there appears to be no way
of making an a priori estimate of the corrections.

Perturbative treatments might circumvent this difficulty
since they have the indubitable benefit of allowing an a
priori estimate of the systematic error via dimensional power
counting. This causes no problem in the calculation of the
long distance potential. However, we anticipate already that
singular potentials are indeed singular perturbations, and
power counting may not work as one naively expects for the
full amplitudes. Kaplan, Savage, and Wise [69,70] suggested
such a perturbative scheme some years ago, where the lower
order approximation was a contact theory, while OPE and
higher order corrections could be computed in perturbation
theory. This is equivalent to considering mM/f 2 to be
first order and m2/f 2 second order, so that a calculation
involving the chiral constants would be N3LO in that counting.
Unfortunately, the expansion turned out to be nonconverging at
NNLO [71]. In our coordinate space formulation, this approach
corresponds to assuming for the S waves a boundary condition
fixing the scattering length α0 [41] (see Appendix A of that
work) and making long distance potential perturbations. In
our previous work, we verified that perturbation theory could
only account for a contribution to the deuteron and 3S1–3D1

scattering observables at first order. Unfortunately, the second
order was divergent, while nonperturbatively, i.e., exactly
solving the Schrödinger equation for the OPE potential, the
results were not only finite but also numerically quite close
to experiment. This deserves some explanation. In Fig. 15

20It should be stressed here that we are using nonorthodox renormal-
ization techniques, which do not find an obvious translation with the
standard EFT.
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FIG. 15. Dependence of the S-wave function normalization
AS(λ) in the deuteron and the effective range r0(λ) in the 3S1–3D1

channel when one scales the OPE potential ULO → λULO . In all
cases, we fix the deuteron binding energy to its experimental value.

we show the results in the deuteron channel when we scale
the OPE potential UOPE → λUOPE for the S-wave function
normalization AS(λ) and the effective range r0(λ) as a function
of the scaling parameter λ by keeping the deuteron binding
energy fixed to its experimental value. The nonperturbative
result is compared with the first-order perturbation theory used
in Ref. [41]. Clearly, perturbation theory fails even for weak
coupling. The experimental value for r0 could be obtained by
adding a counterterm C2 as done by Kaplan, Savage, and Wise
[69,70]. A nonvanishing C2 not only violates the orthogonality
of the zero energy and deuteron wave functions for a long
distance local potential but also introduces a new parameter,
reducing the predictive power. Moreover, the nonperturbative
inclusion of this C2 counterterm with the OPE potential yields
divergent results (see the discussion in Sec. VIII C). In fact,
much of the strength of C2 is naturally provided by the short
distance 1/r3 singularity of the OPE potential.

B. Perturbations of the OPE potential

Recently, Nogga, Timmermans, and van Kolck (NTvK)
[42] suggested treating the OPE effects nonperturbatively,
i.e., to all orders, while TPE and higher as well as � con-
tributions should be computed in perturbation theory (see also
Refs. [56,72,73] for related ideas). In this section, we analyze
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such a proposal disregarding the �. Our main conclusions
will not change, although numbers could be modified. In
such a situation, the perturbative expansion is equivalent
to considering the mM/(4πf 2) to be zeroth order while
m2/(4πf )2 is taken to be second order and m/M is first order,
so that the potential can be written as

U (0) = U
(0)
1π ,

U (2) = U
(2)
1π + U

(2)
2π , (96)

U (3) = U
(3)
1π + U

(3)
2π .

Nonperturbatively, U1π = U
(0)
1π + U

(0)
2π + U

(0)
3π + · · · amounts

to taking gπNN = 13.1 in the OPE piece, hence accounting for
the Goldberger-Treiman discrepancy. In perturbation theory,
we must take U

(0)
1π with gA = 1.26 and include OPE corrections

to higher order. Note that the missing first order implies
substantial simplification in the perturbative treatment. Indeed,
NNLO can be done within first-order perturbation theory
since going to second-order perturbation theory considers
U (2)2

which is N3LO. In the remainder of this section, we
analyze some aspects of such proposal by scaling the strength
of the perturbation and show that the appearance of nonana-
lytical behavior is intrinsic to singular potentials, yielding to
perturbative divergences. As we will see, finite perturbative
calculations, including chiral TPE to NNLO, would require
four counterterms for the singlet 1S0 and six counterterms for
the triplet 3S1–3D1 channel. Our nonperturbative results, i.e.,
fully iterated NNLO potentials, are based on just one and three
counterterms, respectively.

C. Singlet 1S0 channel in distorted OPE waves

Let us examine first the 1S0 channel and consider the effect
of the NLO and NNLO TPE potentials on top of the LO OPE
potential in long distance perturbation theory. The fact that
they are taken second and third order, respectively, means that
the effect will be additive at NNLO in the scattering properties.
For the total potential in Eq. (96), we write the wave function
as

uk(r) = u
(0)
k (r) + u

(2)
k (r) + u

(3)
k (r) + · · · , (97)

and the phase shift becomes

δ0 = δ
(0)
0 + δ

(2)
0 + δ

(3)
0 + · · · . (98)

At LO, the scattering length α
(0)
0 is a free parameter which

we fix to the physical value, α
(0)
0 = α0. As we did in our

nonperturbative treatment in Sec. VIII A, we will keep the
scattering length fixed to its experimental value at any order of
the approximation, so that differences may be only attributable
to the potential. In the normalization of Eq. (44), the correction
to the phase shift is just given by

δ
(2)
0 = −k sin2 δ

(0)
0

∫ ∞

rc

U (2)(r)u(0)
k (r)2dr, (99)

and a similar expression for δ
(3)
0 which can be deduced by

the standard Lagrange identity. Here, a short distance cutoff
rc has been assumed because at short distances the NLO

potential diverges as UNLO ∼ 1/r5. The previous formula
yields a change also in the scattering length, so that we may
eliminate the cutoff radius by subtracting off the zero energy
contribution by fixing α

(2)
0 = 0. It is convenient to recast the

result in the form of an effective range expansion in the OPE
distorted wave basis,

k cot δ0 + 1

α0
= k cot δ(0)

0 + 1

α
(0)
0

+
∫ ∞

rc

drU (2)(r)
[
u

(0)
k (r)2 − u

(0)
0 (r)2

]
+

∫ ∞

rc

drU (3)(r)
[
u

(0)
k (r)2 − u

(0)
0 (r)2

]
,

(100)

which guarantees α
(2)
0 = α

(3)
0 = 0, due to the one subtraction.

If we expand in powers of the energy the LO wave function
we get

u
(0)
k (r) = u

(0)
0 (r) + k2u

(0)
2 (r) + k4u

(0)
4 (r) + · · · . (101)

where

− u
(0)′′
0 (r) + U (r)u(0)

0 (r) = 0,

−u
(0)′′
2 (r) + U (r)u(0)

2 (r) = u
(0)
0 (r), (102)

−u
(0)′′
4 (r) + U (r)u(0)

4 (r) = u
(0)
2 (r),

and so on. These equations can be solved recursively. Thus,
the NLO correction to the effective range is given by

r
(2)
0 = 4

∫ ∞

rc

U (2)(r)u(0)
2 (r)u(0)

0 (r)dr. (103)

To estimate the short distance contribution, we use the OPE
exchange potential in the form ULO = −e−mr/(Rsr), with
Rs = 16f 2π/g2m2M the characteristic length 1S0-channel
scale. Note that the OPE potential in the 1S0 channel is
Coulomb-like at short distances for which the complete regular
plus irregular solution is known. One could then use a short
distance expansion of the general analytical Coulomb solution.
This facilitates guessing the solution at short distances for
the zeroth energy wave function. The higher energy wave
functions can be computed straightforwardly, yielding for
r → 0

u
(0)
0 (r) ∼ c0

[
1 + mr − 3r

2Rs

− r

Rs

log

(
r

Rs

)]
+ c1r,

u
(0)
2 (r) ∼ −c0rRs + O(r3),

u
(0)
4 (r) ∼ 1

3!
c0r

3Rs + O(r5), (104)

u
(0)
6 (r) ∼ − 1

5!
c0r

5Rs + O(r7),

u
(0)
8 (r) ∼ 1

7!
c0r

7Rs + O(r9),

as can be readily checked by solving the Schrödinger equation
in powers of energy, Eq. (102). The coefficients c1 and c0

correspond to the linearly independent regular and irregular
solutions, respectively, and are determined by matching to the
integrated in asymptotic condition u

(0)
0 (r) → 1 − r/α0 at large
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FIG. 16. Dependence of the effective range r0(λ) in the 1S0

channel when the scaled potentials U = ULO + λUNLO and U =
ULO + λ(UNLO + UNNLO) are considered. In all cases, we fix the
scattering length to its experimental value.

distances and at zero energy. Obviously, the irregular solution
contributes, c0 �= 0, because α0 is taken to be independent of
the potential, and hence terms proportional to the coefficient
c1 are subleading. Thus, we get

r
(2)
0 ∼ 4

∫
rc

dr
MC5

r5
(−c2

0Rs)r. (105)

Thus, we conclude that the first-order perturbative result
is badly divergent. This is very puzzling, since the non-
perturbative calculation in Sec. VIII A yields a finite num-
ber [see Eq. (89)], and suggests nonanalytical dependence
on the coupling constant. To enlighten the situation, let us
scale the NLO potential by a factor λ,UNLO → λUNLO , and
compute nonperturbatively the effective range as a function
of the scaling parameters, r0(λ), with the obvious conditions
r0(0) = r

(0)
0 and r0(1) = rNLO

0 . The result is presented in
Fig. 16. The infinite slope at the origin can be clearly seen.
Numerically, we find that for small λ � 0.1, the correction to
the effective range behaves as r0 − r

(0)
0 ∼ √

λ; whereas for
λ ∼ 1, it behaves as r0 − r

(0)
0 ∼ λ

1
3 . This fractional power

counting λα , with 0 < α < 1, is evident from the universal
low energy theorem (39) for a potential with a single scale,
U (r) = F (r/R)/R2, and appears when the short distance
regulator is removed.21 An explicit example is provided by
Eq. (82), when a pure van der Waals potential acts as a
perturbation to a boundary condition (a contact theory with
only α0), since the strength of the potential is λMC6 = R4, but
r0 contains R ∼ λ1/4, R2 ∼ λ1/2, and R3 ∼ λ3/4. It would be
interesting to predict a priori this nonperturbative noninteger
power counting analytically for potentials with multiple scales,
as we have done here numerically [68]. 22

Obviously, to prevent the perturbative divergence, one could
subtract an energy-dependent contribution and provide the

21In Ref. [48], a potential well was used as a short distance regulator
which was not removed; hence, the nonanalyticity was not seen.
22Fractional power counting has also been reported to occur in the

EFT analysis of the three-body problem for the pionless theory [56,
73].

effective range as an input parameter. 23 Then one would obtain

k cot δ = k cot δ(0) + 1

2

(
r0 − r

(0)
0

)
k2

+
∫ ∞

rc

dr[U (2)(r) + U (3)(r)]

× [
u

(0)
k (r)2 − u

(0)
0 (r)2 − 2k2u

(0)
0 (r)u(0)

2 (r)2
]
.

(106)

Note that this equation requires that we assume r0 − r
(0)
0 =

O(λ), while nonperturbatively we find r0 − r
(0)
0 = O(λ

1
2 ).

Now the NLO and NNLO corrections to the v2 parameter
would come as a prediction, that is,

v
(2)
2 + v

(3)
2 =

∫ ∞

rc

dr[U (2)(r) + U (3)(r)]

× [
2u

(0)
4 (r)u(0)

0 (r) + u
(0)
2 (r)2

]
, (107)

which is also divergent since the leading behavior of the
integrand is ∼1/r3 at NLO and ∼1/r4 at NNLO for small
r , see Eq. (104). Thus, a further subtraction would be needed,
predicting the correction to v3 as

v
(2)
3 + v

(3)
3 =

∫ ∞

rc

dr[U (2)(r) + U (3)(r)]

×
[
2u

(0)
6 (r)u(0)

0 (r) + 2u
(0)
2 (r)u(0)

4 (r)
]
,

(108)

which is logarithmically divergent because of Eq. (104).
Finally, if a fourth subtraction is implemented, a convergent
prediction is obtained for v4 at NLO and NNLO,

v
(2)
4 + v

(3)
4 =

∫ ∞

rc

dr[U (2)(r) + U (3)(r)]

× [
2u

(0)
8 (r)u(0)

0 (r) + 2u
(0)
2 (r)u(0)

4 (r) + u
(0)
4 (r)2

]
.

(109)

These four subtractions, needed to make a renormalized
perturbative prediction of the 1S0 phase shift at NNLO ,
actually correspond to having four counterterms, i.e., fixing
α0, r0, v2, and v3. This result disagrees with the standard
Weinberg counting (two counterterms at NLO and NNLO
in the 1S0 channel). Moreover, besides the loss of predictive
power as compared to the nonperturbative result where
only one counterterm is needed, the deduced renormalized
value for v4 is worsened in perturbation theory, since v

(0)
4 =

−50.74 fm7, v
(2)
4 = −10.45 fm7, and v

(3)
4 = −2.88 fm7. The

situation is summarized in Table VII, where we show our
numerical results obtained in perturbation theory as explained
above and compare them with the NijmII and Reid93 potential
model calculations (see, e.g., Ref. [59]). Although these are not
directly experimental data, it is noteworthy that they differ by a
few percent while the perturbative calculation is about a factor
of 3 larger. The integrals for v4 are rather well converging, and

23This is equivalent to using a short distance energy-dependent
boundary condition in the solution and hence to violating the
orthogonality conditions discussed in Sec. III.
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TABLE VII. Threshold parameters of the effective range expansion
k cot δ = −1/α0 + r0k

2/2 + v2k
4 + v3k

6 + v4k
8 in the singlet 1S0 chan-

nel in OPE distorted wave perturbation theory. We take U (0) = U
(0)
1π with

gA = 1.26. For the NNLO case, we use set IV for the chiral constants
c1, c3, and c4 given in Table I.

1S0 LO NLOpert N2LOpert Exp. Nijm II Reid93

α0 (fm) Input Input Input −23.74(2) −23.73 −23.74
r0 (fm) 1.383 Input Input 2.77(5) 2.67 2.75
v2 (fm3) −2.053 Input Input – −0.48 −0.49
v3 (fm5) 9.484 Input Input – 3.96 3.65
v4 (fm7) −50.74 −61.19 −64.07 – −19.88 −18.30

the matching between the numerical solution and the short
distance solutions, Eq. (104), is quite stable in the region
around r ∼ 0.1 fm.

Thus, in this particular example of the 1S0 channel, one
sees that our nonperturbative approach based on the choice of
the regular solutions at the origin predicts the phase shift and
hence all low energy parameters from α0 and the potential
as displayed in Table VI. A perturbative treatment of the
amplitude based on OPE distorted waves requires us to fix
α0, r0, v2, and v3 at NNLO. The phenomenological success
and converging pattern observed when the potential considered
at LO, NLO, and NNLO is solved nonperturbatively is
very encouraging. The price to pay is to face nonanalytical
behavior which implies a noninteger power counting. The
trend observed here can be generalized to other channels.
A more thorough discussion of this issue will be presented
elsewhere [68].

D. Triplet 3S1–3D1 channel in distorted OPE waves

We turn now to the triplet 3S1–3D1 channel. The reasoning is
a straightforward, although tedious, coupled channel general-
ization of the 1S0 case, with the additional feature that the short
distance behavior is dominated by a 1/r3 singularity (instead
of 1/r); therefore, the short distance behavior is different. It is
convenient to introduce the potential matrix as

U(r) =
(

U3S1 (r) UE1 (r)
UE1 (r) U3D1 (r)

)
, (110)

and the matrix wave function,

uk(r) = A
(

uk,α(r) uk,β(r)
wk,α(r) wk,β(r)

)
, (111)

with A a constant energy-dependent matrix, subject to a
slightly different normalization than Eq. (75),

uk(r) → 1

k
ĵ(kr)D−1M̂ − ŷ(kr)D. (112)

Here, M̂ is the effective range matrix defined by its relation to
the unitary S matrix,

DSD−1 = (M̂ + ikD2)(M̂ − ikD2)−1, (113)

and D = diag(1, k2). The reduced Bessel functions matri-
ces are given by ĵ = diag(ĵ0, ĵ2) and ŷ = diag(ŷ0, ŷ2) with

ĵl(x) = xjl(x) and ŷl(x) = xyl(x). At low energies, one has
the effective range expansion(see, e.g., [59] and references
therein),

M̂ = −(a)−1 + 1
2 rk2 + vk4 + · · · . (114)

Here, we have introduced the scattering length matrix

a =
(

α0 α02

α02 α2

)
, (115)

the effective range matrix

r =
(

r0 r02

r02 r2

)
, (116)

and so on. These parameters have been determined in [59]
from the potentials of Ref. [44]. Proceeding similarly as in the
one channel case, one gets, after one subtraction at zero energy
the effective range function in perturbation theory,

M̂ + (a)−1 = M̂(0) + (a(0))−1

+
∫ ∞

rc

dr
[
u(0)†

k U(2)u(0)
k − u(0)†

0 U(2)u(0)
0

]
(117)

The condition α
(0)
0 = α0 must be imposed, since α

(0)
02 and

α
(0)
2 are predicted from α

(0)
0 (at LO one only needs one

counterterm). This formula implies that one introduces two
new conditions to fix now α02 and α2 to their experimental
value.Along similar lines as done before, we analyze the finite-
ness of the previous expression by computing the effective
range matrix. To this end we expand the coupled channel wave
function in powers of momentum

u(0)
k (r) = u(0)

0 (r) + k2u(0)
2 (r) + k4u(0)

4 (r) + . . . (118)

to get

r(2) =
∫ ∞

rc

dr
[
u(0)†

2 U(2)u(0)
0 + u(0)†

0 U(2)u(0)
2

]
(119)

The LO OPE short distance behavior of the triplet wave
functions has been worked out in our previous work [41].
It is convenient to define the triplet length scale as

Rt = 3g2
AM

32πf 2
π

, (120)
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for which Rt = 1.07764 fm. One has the general structure

u(r) = 1√
3

(
r

Rt

)3/4 [ − C1Rf1R(r)e+4
√

2
√

Rt
r

−C2Rf2R(r)e−4
√

2
√

Rt
r +

√
2C1Af1A(r)e−4i

√
Rt
r

+
√

2C2Af2A(r)e4i
√

Rt
r

]
,

(121)

w(r) = 1√
3

(
r

Rt

)3/4 [√
2C1Rg1R(r)e+4

√
2
√

Rt
r

+
√

2C2Rg2R(r)e−4
√

2
√

Rt
r + C1Ag1A(r)e−4i

√
Rt
r

+C2Ag2A(r)e4i
√

Rt
r

]
,

where the constants C1R, C2R, C1A, and C2A depend on the
energy and the OPE potential parameters. The regular solution
is selected when one takes C1R = 0. The functions appearing
in this formula are of the form

f (r) =
∞∑

n=0

an

(
r

Rt

)n/2

,

(122)

g(r) =
∞∑

n=0

bn

(
r

Rt

)n/2

.

For the present calculation we only need the power behavior
(see Appendix B of Ref. [41])

u(0)
0 (r) ∼ r3/4,

u(0)
2 (r) ∼ r3/4+5/2, (123)

u(0)
4 (r) ∼ r3/4+5,

which shows that, again, the first-order correction to the
effective range matrix is logarithmically divergent because
the NLO potential diverges as 1/r5 and U(2)u0u2 ∼ 1/r .24 As
previously, the situation could be amended by adding three
new counterterms to fix the effective range matrix r, and then
v would come as a prediction. So, at NLO in perturbation
theory, one needs a total of six counterterms to generate a
coupled channel finite amplitude. When adding the NNLO
contribution, this number of counterterms remains the same
since U(3)u(0)

0 u(0)
4 ∼ r1/2 and U(3)[u(0)

2 ]2 ∼ r1/2.
An illustration of nonanalytical nonperturbative behavior

in the 3S1–3D1 channel is given in Fig. 17. There, we see the
behavior of the S-wave function normalization AS(λ) in the
deuteron and the effective range r0(λ) in the 3S1–3D1 channel
when the TPE potential is scaled as U = ULO + λ(UNLO +
UNNLO) and the deuteron binding energy, the asymptotic D/S

ratio η, and the S-wave scattering length α0 are fixed to their
experimental values.

24There is a subtlety here. The terms containing the regular
exponential at the origin are convergent, regardless of the power
of r in the denominator. Naively, logarithmically divergent integrals
would become convergent when combined with oscillating functions.
However, these functions appear squared so that the logarithmic
divergence prevails.

E. The deuteron in distorted OPE waves

To conclude our analysis of perturbation theory we study
now the deuteron bound state. According to Fig. 17, some
tiny nonanalyticity appears for very small couplings in the
asymptotic S-wave normalization AS . Note that there is an
apparent linear behavior, with the exception of the very small
λ region, making one suspect that the result might be obtained
in perturbation theory. We will see below by an explicit
perturbative calculation that this is not so. We have checked
that this trend also occurs for other quantities such as the
quadrupole moment Qd , the matter radius rm, and the D-state
probability PD . Here, we show, as it has been done above for
the scattering problem, that this can be traced to a first-order
divergent renormalized result.

We define the two-component deuteron state as

uγ (r) =
(

uγ (r)
wγ (r)

)
. (124)

In perturbation theory, we expand the potential

U(r) = U(0)(r) + U(2)(r) + U(3)(r) + · · · , (125)

and thus the deuteron wave function for fixed energy (or γ )
becomes

uγ (r) = u(0)
γ (r) + u(2)

γ (r) + u(3)
γ (r) + · · · , (126)

where [u(0)
γ (r), w(0)

γ (r)] correspond to the lowest order solu-
tions of the problem and [u(2)

γ (r), w(2)
γ (r)] and [u(3)

γ (r), w(3)
γ (r)]

satisfy

− u(0)
γ (r) + [U(0)(r) + γ 2] u(0)

γ (r) = 0,

−u(2)
γ (r) + [U(0)(r) + γ 2] u(2)

γ (r) = −U(2)(r)u(0)
γ (r), (127)

−u(3)
γ (r) + [U(0)(r) + γ 2] u(3)

γ (r) = −U(3)(r)u(0)
γ (r).

We look for normalized solutions, so that perturbatively

1 =
∫ ∞

0
dru(0)†

γ (r)u(0)
γ (r),

0 =
∫ ∞

0
dr

(
u(2)†

γ (r)u(0)
γ (r) + u(0)†

γ (r)u(2)
γ (r)

)
, (128)

0 =
∫ ∞

0
dr

(
u(3)†

γ (r)u(0)
γ (r) + u(0)†

γ (r)u(3)
γ (r)

)
.

The zeroth-order equation was solved in our previous work
[41], which showed that γ was a free parameter; therefore,
γ (0) = γ , and the regular solution at the origin was selected
[see Eq. (121)] to ensure normalizability at the origin. We
will always keep the same fixed value at any order of
the approximation, so that γ (2) = γ (3) = 0. To analyze the
NLO and NNLO problem analytically, we proceed by the
variable coefficients method. The zeroth-order equation is
a homogenous linear system with four linearly independent
solutions,

u(0)
i (r) =

(
ui(r)
wi(r)

)
, i = 1, 2, 3, 4. (129)
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one scales the TPE potential U = ULO + λ(UNLO + UNNLO). In all cases, we fix the deuteron binding energy, the asymptotic D/S ratio η, and
the S-wave scattering length α0 to their experimental values.

The first-order equation is an inhomogeneous linear system,
which solution can be written as

u(2)
γ (r) + u(3)

γ (r) =
4∑

i=1

ci(r)ui(r),

(130)

w(2)
γ (r) + w(3)

γ (r) =
4∑

i=1

ci(r)wi(r).

The variable coefficients satisfy

4∑
i=1

c′
i(r)ui(r) = 0,

4∑
i=1

c′
i(r)wi(r) = 0,

(131)
4∑

i=1

c′
i(r)u′

i(r) = Fu(r),

4∑
i=1

c′
i(r)w′

i(r) = Fw(r),

where we have defined the driving term

F(r) =
(

Fu(r)
Fw(r)

)
= −U(2)(r)u(0)

γ (r) − U(3)(r)u(0)
γ (r), (132)

which at short distances behaves as

F(r) ∼ r3/4C5r
−5 + r3/4C6r

−6. (133)

Whereas at large distances, one has

F(r) ∼ e−γ re−mr . (134)

To proceed further, we choose the following linearly indepen-
dent solutions fulfilling the asymptotic boundary condition at

infinity

u1(r) → e−γ r ,

w1(r) → 0,

u2(r) → 0,

w2(r) → e−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
,

(135)
u3(r) → eγ r ,

w3(r) → 0,

u4(r) → 0,

w4(r) → eγ r

(
1 − 3

γ r
+ 3

(γ r)2

)
.

Any of these solutions has a short distance behavior of the
general form given in Eq. (121). Therefore, all these solutions
are necessarily singular at the origin. Using Krammer’s rule,
the solutions to the linear differential system, Eq. (131), which
are regular at infinity read

c1(r) = 1

W

∫ r

0
dr ′

∣∣∣∣∣∣∣
0 u2 u3 u4

0 w2 w3 w4

Fu u′
2 u′

3 u′
4

Fw w′
2 w′

3 w′
4

∣∣∣∣∣∣∣ , (136)

c2(r) = 1

W

∫ r

0
dr

∣∣∣∣∣∣∣
u1 0 u3 u4

w1 0 w3 w4

u′
1 Fu u′

3 u′
4

w′
1 F ′

w w′
3 w′

4

∣∣∣∣∣∣∣ , (137)

c3(r) = − 1

W

∫ ∞

r

dr ′

∣∣∣∣∣∣∣
u1 u2 0 u4

w1 w2 0 w4

u′
1 u′

2 Fu u′
4

w′
1 w′

2 Fw w′
4

∣∣∣∣∣∣∣ , (138)

c4(r) = − 1

W

∫ ∞

r

dr ′

∣∣∣∣∣∣∣
u1 u2 u3 0
w1 w2 w3 0
u′

1 u′
2 u′

3 Fu

w′
1 w′

2 w′
3 Fw

∣∣∣∣∣∣∣ , (139)
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where W is the Wronskian

W =

∣∣∣∣∣∣∣
u1 u2 u3 u4

w1 w2 w3 w4

u′
1 u′

2 u′
3 u′

4
w′

1 w′
2 w′

3 w′
4

∣∣∣∣∣∣∣ = −4γ 2. (140)

At asymptotically large distances, we have

u(2)(r) → c
(2)
S e−γ r ,

(141)

w(2)(r) → c
(2)
D η(0)e−γ r

(
1 + 3

γ r
+ 3

(γ r)2

)
,

and similarly for the N2LO correction. Note that the normal-
ization condition, Eq. (128), implies a linear relation between
c

(2)
S and c

(2)
D as well as c

(3)
S and c

(3)
D . The total D/S ratio obtained

by including the zeroth-order contribution is given by

η = η(0) 1 + c
(2)
D + c

(3)
D

1 + c
(2)
S + c

(3)
S

. (142)

If we fix η, we get a relation between cS and cD . The
coefficients c

(2)
S and c

(2)
D are given by

c
(2)
S + c

(3)
S = c1(∞),

(143)
η(0)

(
c

(2)
D + c

(3)
D

) = c2(∞).

The long distance behavior of the integrands is well behaved
since, up to inessential powers in r , one has

c′
1(r) ∼ e−2mr,

c′
2(r) ∼ e−2mr,

(144)
c′

3(r) ∼ e−(2m+2γ )r ,

c′
4(r) ∼ e−(2m+2γ )r .

However, the leading short distance behavior of the integrand
is given as

c′
i(r) ∼ r3/4(e4

√
2R/r )2

(
C5

r5
+ C6

r6

)
r3/4e±i4

√
R/r . (145)

So, we expect the coefficients cS and cD to diverge if the
short distance cutoff is removed, rc → 0. It is unclear how this
divergence might be avoided. Unlike the scattering problem
in perturbation theory, where energy-dependent (and hence
orthogonality-violating) subtractions are needed, it would be
difficult to accept a bound state not normalized to unity unless
one includes, besides pn, other Fock state components such as
pnπ . This short distance analysis holds also when the 1/r6 �

contributions are taken into account perturbatively.
Thus, perturbation theory on the distorted OPE basis for

the deuteron makes sense only as a finite cutoff theory. In
the Appendix, we develop further such an approach to NLO,
where η is an input, and to NNLO, where both AS and η

should be fixed. We also show that in the cutoff theory, the
NLO yields tiny corrections to deuteron properties whereas
the NNLO dominates. This proves that, at least perturbatively
and in the absence of the �, the (integer) power counting to
NNLO in deuteron properties is obviously not convergent. To
some extent, this result resembles qualitatively the findings
of Ref. [71] based on the idea that OPE and TPE can be
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FIG. 18. Deuteron wave functions at LO, NLO, and NNLO in
perturbation theory when a short distance cutoff rc = 0.5 fm is
considered for the perturbative corrections. At LO we fix γ , at NLO
we fix γ and η, and at NNLO we fix γ, η, and AS . Solutions are
perturbatively normalized. The LO wave functions are normalized by
taking AS = 1.

included perturbatively [69]. Of course, an amelioration of
the convergence in the cutoff theory when �’s are included
is not precluded and deserves further investigation. However,
the very need of a finite cutoff will still hold, as our analytical
study shows.

In Fig. 18, we show LO, NLO, and NNLO order wave
functions when a finite short distance cutoff rc = 0.5 fm is
considered. The strong divergence of the wave function at the
origin can be clearly seen.

X. CONCLUSIONS

In the present work, we have extended to the TPE potential
the coordinate space renormalization of central waves in NN

interaction discussed in our previous work [41] for the OPE
potential. As we have stressed throughout the paper, the main
advantage of such a framework is that the (renormalized)
potential is finite everywhere except at the origin where a van
der Waals attractive singularity takes place. This suggests using
a radial cutoff which provides a compact support for the short-
range part of the potential, thus making scheme-dependent
contact interactions innocuous for the long-range solution. As
a result, model-independent long-range correlations between
NN observables can be deduced if the renormalized potential
is iterated to all orders. Although the regularization and
renormalization techniques employed along this work are
somewhat unconventional from the standard EFT viewpoint, it
is rewarding to know that renormalized EFT OPE calculations
do not significantly differ from our results. It remains to be
seen if the TPE extension of Ref. [42] confirms this plausible
equivalence.

Important constraints can be deduced from the requirement
of a small wave function in the unknown short distance
region. As a consequence, the boundary condition for the
wave function at short distances becomes energy independent
if the long-range contribution to the potential is also energy
independent. We stress here that such requirements, although
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quite natural from a physical viewpoint, may not appear
obvious within the EFT framework so far, and it would be
very interesting to provide further arguments within EFT itself
supporting our unconventional framework [58]. Actually, we
find that the singularity structure of the potential at short
distances determines uniquely how many parameters must
be regarded as unknown, nonpredictable information. This is
done in terms of short distance phases or equivalently via
suitable mixed boundary conditions at the origin. Moreover,
for an energy-independent potential, the orthogonality of wave
functions precludes a possible energy dependence of the
boundary conditions. In the particular cases studied in this
paper, namely, 1S0 and 3S1–3D1 channels, we have found that
besides the NNLO TPE potential parameters, one can use
the S-wave scattering lengths in both channels as well as the
deuteron binding energy and the asymptotic D/S ratio of the
deuteron wave functions as independent input information.
The remaining scattering or bound state properties in the triplet
channel are then predicted unambiguously. This reduction
of parameters contradicts EFT counting arguments on the
structure of short distance interactions, but amazingly TPE
potentials do saturate the bulk of finite-range observables
rather accurately. Based on the superposition principle of
boundary conditions, we have found analytical and simple
universal rational relations that clearly exhibit these features.
These universal relations would be very difficult to deduce
in momentum space and, moreover, they are free from
uncertainties attributable to finite cutoff effects. So, the cutoff
has been effectively eliminated. On a numerical level, the
fact that our problem is an initial value problem for the
Schrödinger equation starting at infinity makes it possible to
obtain any solution by competitive algorithms with adaptable
integration steps with any prescribed accuracy. This allows
one to faithfully describe the short distance oscillations of the
wave function. This is in contrast to the standard Lippmann-
Schwinger treatments, where matrix inversion methods may
eventually run into computer space limitations with a natural
loss of space resolution as a side effect. The nontrivial os-
cillating structure of the wave functions with ever-decreasing
periods of the wave functions close to the origin would actually
be very difficult to reproduce within a momentum space
framework.

According to our analysis, there are finite cutoff effects
in previous works dealing also with TPE potentials in both
coordinate and momentum space. The induced corrections
are larger than the experimental uncertainty of the computed
observables; so in some cases, agreement with data may
be clearly attributed to the choice of a finite cutoff. In our
energy-independent boundary condition treatment, we found
short distance cutoffs of about rc = 0.1–0.2 fm to be rather
innocuous. Within a Wilsonian viewpoint of renormalization,
changes in the cutoff should correspond to decimation, i.e.,
halving, and not to linear changes in the scale. If we associate
this coordinate space cutoff with a momentum space ultraviolet
cutoff of � = π/2rc [74], then we are dealing with an
equivalent momentum scale of about 1.5–3 GeV, which is
much larger than the scales below 1 GeV usually employed in
momentum space calculations where only linear sensitivity to
changes of the cutoff is implemented. Nevertheless, it is fair

to say that the calculations based on sets III and IV provide
discrepancies that are not too large.

As one naturally expects in a renormalized theory, errors
are dominated by uncertainties in the input data and not by
cutoff uncertainties. Indeed, we seem to reach a limit in the
accuracy of the predictions, paralleling the findings in ChPT
for mesons at the two loop level. At the OPE level, one can
predict bound state and scattering properties in the singlet 1S0

and triplet 3S1–3D1 channels solely from the deuteron energy
and the 1S0 scattering length. At the TPE level, one needs
not only the additional chiral constants c1, c3, and c4 but also
the triplet S-wave scattering length and the asymptotic D/S

ratio. Although the TPE central value predictions improve,
the induced TPE errors turn out to be larger than the OPE
uncertainties. In fact, because of these large uncertainties,
the TPE calculation, within errors, becomes compatible with
experimental data at the 1σ level. This suggests that in order to
evaluate in a statistically significant sense other effects, such as
electromagnetic, relativistic, and three-pion effects, one must
first improve on the input data. Otherwise, predictive power
is lost. Nevertheless, given the finite cutoff effects detected
in previous works, the role of these corrections beyond TPE
should be reanalyzed within the present approach.

One of the important consequences of our treatment is that
the chiral constants c1, c3, and c4 can be determined from low
energy data and deuteron properties. Specifically, we have
used the singlet and triplet effective ranges as well as the
asymptotic S-wave deuteron wave function to c1, c3, and c4

with errors varying all input data within their experimental
uncertainties. The decision on what set of data should be
used to pin down the chiral coefficients is not entirely trivial,
because it should become clear which hypothesis we want
to verify or to refute. The absence of cutoff effects makes
this test cleaner; we just check whether the TPE potential
holds from zero to infinity. Obviously, this cannot be literally
true, but one expects that at low energies, other short-range
effects can be considered negligible. Let us remember that
error analysis within NN calculations was only carried out
in a large-scale partial wave analysis of data in Ref. [11].
The determinations of chiral constants based on a fit to NN

databases [43–45] for phase shifts lack any error estimates
because the databases themselves are treated as errorless. The
determination of chiral constants from peripheral waves has
similar drawbacks. From the chiral theory point of view, we
see that it is possible to determine these parameters precisely
in the regime where we trust the theory most, namely, in the
description of low energy NN data. A fit becomes possible, and
the values it yields only differ by 2σ with the determination
from πN data. We do not exclude that our values for the
chiral constants may eventually spoil the successful overall fit
of phase shifts in all channels presented in the past, after all
renormalization has been carried out. If so, the situation on the
effectiveness of the effective field theory would be in a less
optimistic shape than assumed hitherto. A preliminary analysis
of the problem shows what van der Waals coefficients in the
TPE potential correspond to attractive short-range interactions
and, hence, what phase shifts are completely determined in
terms of coupled channel scattering lengths. This issue is
very relevant and would require a detailed channel-by-channel
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analysis and renormalization, taking as input the scattering
lengths documented in our previous work [59] and integrating
in from large distances along the lines of the present approach.
Full details are reported elsewhere [75].

Nevertheless, despite the good convergence in the 1S0

channel for LO, NLO, and NNLO calculations, we have
noted a difficulty for the triplet 3S1–3D1 channel at NLO
of the potential. In contrast to dimensional power counting
expectations, one cannot use the scattering length α0, the
effective range r0, and α02 as arbitrary input parameters at
NLO in the potential (one could equally take γ, η, and α0),
but they are entirely predicted from the potential as required
by finiteness of the phase shifts. Otherwise, the scattering
amplitude diverges, as we have shown. We have also seen
that even if one assumes a finite value of the cutoff the NLO is
worse than the LO, suggesting that the problem may indeed be
related to the power counting on the long distance potential.
Remarkably, these parameters must be fixed at NNLO where,
according to the standard approach, no further low energy
parameters should be fixed. This mismatch in orders can be
understood if one considers the N� splitting to be a small
parameter, making much of the NNLO contributions to the
potential NLO ones, because c3 and c4 would be order of
−1. In such a case, our interpretation goes hand in hand
with the standard approach; one needs three independent low
energy parameters at NLO in this counting. The consequences
of this � counting to higher orders within the context of
renormalization will be explored elsewhere. Of course, we
should point out that despite the rather tantalizing description
achieved at NNLO, the existence of a consistent power
counting guaranteeing the success of the present approach
to all orders remains to be proved. A key ingredient of
such a power counting would be the correct incorporation of
all long-range physics. Apparently, within Weinberg’s power
counting, the NLO in the deuteron channel misses important
contributions.

Finally, we have analyzed the consequences of a pertur-
bative expansion of TPE effects taking the OPE results as a
zeroth-order approximation as suggested recently [42]. Our
nonperturbative calculations based on iterating a perturba-
tive potential to all orders exhibit unequivocal nonanalytic
dependence on the expansion parameter, due to the singular
character of the chiral potentials at the origin. This is equivalent
to a noninteger enhancement of the power counting λα with
0 < α < 1 in the potential strength λ, and it would be
interesting to know the general rules of such a counting a
priori [68]. Thus, perturbation theory based on standard power
counting becomes divergent and can only yield finite results
at the expense of introducing more perturbative counterterms
than are needed in a nonperturbative treatment. This is just a
manifestation of the fact that singular potentials require infinite
counterterms in perturbation theory, while only a few are
needed nonperturbatively. Specifically, our analysis shows that
it would be necessary to include at least four counterterms for
the singlet 1S0 and six for the triplet 3S1–3D1 channel at NNLO.
This proliferation of counterterms is expected to occur also in
other partial waves because the singularity of the potential
dominates over the centrifugal barrier at short distances. In
the 1S0 channel, we have seen that adding more counterterms

in fact worsens the results for the effective range expansion
parameters. In contrast, our nonperturbative calculations are
based on just one and three counterterms, respectively. The
good quality of our results suggests that our choice of fewer
counterterms cannot be refuted on the basis of phenomenology.
In the deuteron case, we have made a calculation to NNLO
in perturbation theory. Our analysis shows that such a
perturbative approach only makes sense if a finite cutoff is
introduced. In any case, the cutoff theory has less predictive
power, does not provide a better phenomenological description
of the deuteron than our nonperturbative renormalized results,
and is nonconvergent since NNLO corrections are numerically
much larger (two or three orders of magnitude) than NLO
ones, despite being parametrically small. In our view, this is
a perturbative manifestation of the short distance dominance
which has been unveiled nonperturbatively. In addition, the
difficulties faced by a perturbative treatment are simply absent
in the nonperturbative approach.

One of the main goals of nuclear physics is the determina-
tion of the nucleon-nucleon interaction. From a theoretical
viewpoint, the disentanglement of such an interaction in
terms of pion exchanges based on chiral symmetry requires
dealing with nontrivial and, to some extent, unconventional
nonperturbative renormalization issues in the continuum, but
it is crucial because it shows our quantitative understanding
of the underlying theory of quarks and gluons in the chirally
symmetric broken phase. Our results also show that the sin-
gular chiral van der Waals forces are not necessarily spurious
and inconvenient features of the chiral potential. Instead, as
we have shown, the singularities alone in conjunction with
renormalization ideas explain much of the observed S-wave
phase shifts with natural values of the chiral constants, and
provide an appealing physical picture. In this regard, it is
interesting to realize that based on the analogy with molecular
systems, which also exhibit a long-range van der Waals force,
the liquid drop model was formulated more than 60 years
ago. Chiral dynamics may provide not only a closer analogy
and perhaps more quantitative insights into the hydrodynamic
and thermodynamic properties of nuclei but also a theoretical
justification from the underlying theory of strong interactions.
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APPENDIX A: THE DEUTERON IN OPE-DISTORTED
PERTURBATION THEORY WITH A CUTOFF TO NNLO

In this Appendix, we illustrate the situation discussed
in Sec. IX by solving numerically the set of perturbative
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PD(rc) in the deuteron in perturbation theory to NLO and NNLO on the short distance cutoff. We use set IV for the NNLO. In each case, the
first-order solution is fixed to be normalized and to reproduce the asymptotic D/S ratio η. We compare with the experimental value and the
OPE result.

Eqs. (127). As we have mentioned, such a calculation only
makes sense within a finite cutoff scheme.

In practice, we integrate from large distances (∼25 fm)
with the conditions specified by Eq. (141) with some pre-
scribed values of cS and cD .25 This can be advantageously
done using the superposition principle of boundary conditions,
Eq. (60), yielding in perturbation theory

uγ (r) = u(0)
γ (r) + u(2)

γ (r) + u(3)
γ (r) + · · · ,

(A1)
wγ (r) = u(0)

γ (r) + u(2)
γ (r) + u(3)

γ (r) + · · · .
At LO, the wave function can be written as

u(0)
γ (r) = u

(0)
S (r) + η(0)u

(0)
D (r),

(A2)
w(0)

γ (r) = w
(0)
S (r) + η(0)w

(0)
D (r),

and η(0) is determined from the regularity condition at the
origin [41]. At LO, the normalization factor is

1(
A

(0)
S

)2 =
∫ ∞

0
dr

(
u(0)

γ (r)2 + w(0)
γ (r)2

)
. (A3)

25This is a numerically more efficient and stable procedure than
the direct use of the explicit expressions in Eq. (143) involving
determinants.

The NLO and NNLO contributions are

u(2)
γ (r) = c

(2)
S u

(2)
S (r) + η(0)c

(2)
D u

(2)
D (r),

w(2)
γ (r) = c

(2)
S w

(2)
S (r) + η(0)c

(2)
D w

(2)
D (r),

(A4)
u(3)

γ (r) = c
(3)
S u

(3)
S (r) + η(0)c

(3)
D u

(3)
D (r),

w(3)
γ (r) = c

(3)
S w

(3)
S (r) + η(0)c

(3)
D w

(3)
D (r).

The advantage is that the functions appearing here only depend
on the potential and the deuteron binding energy, whereas the
coefficients must be determined by some additional conditions.
In the first place, normalization to NLO and NNLO requires
orthogonality of the wave functions to the LO solution,

0 =
∫ ∞

0
dr(u(0)(r)u(2)(r) + w(0)(r)w(2)(r)),

(A5)

0 =
∫ ∞

0
dr(u(0)(r)u(3)(r) + w(0)(r)w(3)(r)).
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TABLE VIII. Comparison of finite cutoff perturbation theory, rc = 0.5 fm, with renormalized nonperturbative results for the deuteron
properties. We use the nonrelativistic relation γ = √

2µnpB with B = 2.224575(9). The errors quoted in the perturbative calculations reflect
the uncertainty in the input parameters γ, η, and AS . Similarly, the errors quoted in the TPE reflect the uncertainty in the nonpotential
parameters γ and η. We use set IV of low energy constants c1, c3, and c4.

rc γ (fm−1) η AS (fm−1/2) rm (fm) Qd (fm2) PD 〈r−1〉 (fm−1)

Nonperturbative:
U1π 0 Input 0.02633 0.8681(1) 1.9351(5) 0.2762(1) 7.31(1)% 0.476(3)
U1π + U2π 0 Input Input 0.884(4) 1.967(6) 0.276(3) 8(1)% 0.447(5)

Perturbative:
U

(0)
1π 0 Input 0.02555 0.8625(2) 1.9233(5) 0.2667(1) 7.14(1)% 0.484(3)

U
(2)
1π + U

(2)
2π 0.5 fm Input Input 0.862(2) 1.923(4) 0.2667(3) 7.14(1)% 0.484(3)

U
(3)
1π + U

(3)
2π 0.5 fm Input Input Input 1.962(2) 0.2705(2) 7.12(1)% 0.484(3)

Potentials:
NijmII — 0.231605 0.02521 0.8845(8) 1.9675 0.2707 5.635% 0.4502
Reid93 — 0.231605 0.02514 0.8845(8) 1.9686 0.2703 5.699% 0.4515
Exp. — 0.231605 0.0256(4) 0.8846(9) 1.971(6) 0.2859(3) — —

This implies the couple of linear relations 26

− η(0) c
(2)
D

c
(2)
S

=
∫ ∞

0 dr
(
u(0)(r)u(2)

S (r) + w(0)(r)w(2)
S (r)

)
∫ ∞

0 dr
(
u(0)(r)u(2)

D (r) + w(0)(r)w(2)
D (r)

) ,

(A6)

−η(0) c
(3)
D

c
(3)
S

=
∫ ∞

0 dr
(
u(0)(r)u(3)

S (r) + w(0)(r)w(3)
S (r)

)
∫ ∞

0 dr
(
u(0)(r)u(3)

D (r) + w(0)(r)w(3)
D (r)

) .

Further relations can be obtained by imposing renormalization
conditions. Note that the required number of conditions
increases with the order. This is similar in spirit to the proce-
dure of adding more counterterms for the scattering problem
discussed in Sec. IX. For instance, using the perturbative
expansion for AS and AD

AS = A
(0)
S

(
1 + c

(2)
S + c

(3)
S + · · · ),

(A7)
AD = A

(0)
D η(0)

(
1 + c

(2)
D + c

(3)
D + · · · ) = ηAS.

In practice, we use a short distance cutoff rc for the NLO and
NNLO contributions only. Deuteron properties can be written
to NNLO as follows

rm = r (0)
m + c

(2)
S r (2,S)

m + η(0)c
(2)
D r (2,D)

m

+ c
(3)
S r (3,S)

m + η(0)c
(3)
D r (3,D)

m + · · · , (A8)

Qd = Q
(0)
d + c

(2)
S Q

(2,S)
d + η(0)c

(2)
D Q

(2,D)
d

+ c
(3)
S Q

(3,S)
d + η(0)c

(3)
D Q

(3,D)
d + · · · , (A9)

where the potential contributions have explicitly been factored
out. The numerical solution requires some care, due to the
short distance instabilities and oscillations. This requires
using an adaptive grid to optimize the convergence. Since
solutions of different orders must be mixed in the evaluation
of the orthogonality conditions, Eq. (A6), and observables,
Eq. (A9), we solve simultaneously all LO, NLO, and NNLO
equations to provide all functions on the same grid.

26For instance, at rc = 0.5 fm, we get c
(2)
D = −5.865c

(2)
S and c

(3)
D =

−5.545c
(3)
S .

At NLO and fixing r = rc, we demand the experimental
value of η, from Eq. (142) and Eq. (A6). This way, a solution
which we denote by (c(2)

S |NLO, c
(2)
D |NLO) can be obtained.

From there, we can obtain deuteron properties to NLO,
as a function of the perturbative cutoff rc. In Fig. 19, we
show the dependence of AS, rm,Qd , and pd on rc. As we
see, the NLO correction is tiny and stable for rc > 0.2 fm.
At NNLO, we fix η and AS . The solution is now
(c(2)

S |NNLO, c
(2)
D |NNLO) and (c(3)

S |NNLO, c
(3)
D |NNLO). Note that in

general the NLO coefficients c
(2)
S and c

(2)
D must be readjusted.

In this case, the correction is much larger than the NLO case
(see Fig. 19), and the cutoff dependence is stronger thanks to
the the 1/r6 singularity of the NNLO potential. As a curiosity,
we mention that at short distances worrisome negative D-wave
probabilities show up below rc = 0.17 fm at NNLO, a spurious
feature which can only take place in perturbation theory
and sets a unitarity bound on the short distance perturbative
cutoff. Numerical results are provided in Table VIII for
set IV. Typically, we find that results do not depend dramat-
ically on the chosen chiral couplings. We take rc = 0.5 fm
as a standard choice. As we see, finite cutoff perturbation
theory does not work better than our nonperturbative results of
Sec. V, and in fact requires one more counterterm. Actually,
this is a perturbative indication that NNLO is more impor-
tant than NLO, casting doubt on the convergence of the
approach.

Finally, we have checked that taking the LO to be the full
OPE potential U1π and the perturbation to be U(2)

2π + U(3)
2π as a

whole and keeping the cutoff rc > 0.1 fm does not change
the results significantly. Actually, the perturbative result
does not account for the value obtained nonperturbatively,
despite the apparent linear behavior observed when changing
numerically the scaling parameter λ in the region λ � 0.1 (see
Fig. 17). This supports our conclusion that perturbation
theory does not compute the slope of AS(λ) at the origin. In
addition, even if we disregard the divergence by introducing
a cutoff, the perturbative calculation does not account for the
nonperturbative renormalized result.
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