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Deuteron photodisintegration with polarized photons at astrophysical energies
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Following precise experimental studies at the Duke Free-Electron Laser Laboratory, we discuss the
photodisintegration of deuterons with 100% linearly polarized photons using a model independent theoretical
approach taking together M1 and E1 amplitudes simultaneously. The isoscalar M1s contribution is also taken
exactly into account. From the existing experimental measurement on doubly polarized thermal neutron capture, it
is seen that the isoscalar M1s contribution could be of the same order of magnitude as the experimentally measured
cross sections at energies relevant to Big Bang Nucleosynthesis (BBN). Therefore appropriate measurements
on deuteron photodisintegration are suggested to empirically determine the M1s contribution at astrophysical
energies.
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The photodisintegration of the deuteron and its inverse
reaction viz., n − p fusion in the neutron energy range of
order 10 to 102 keV is of considerable interest to astrophysics.
It is important to the nucleosynthesis scenarios [1] from the Big
Bang to stellar evolution under various conditions. The earliest
estimates of the reaction rates by Fowler, Caughlan, and
Zimmerman [2] used theoretical calculations [3] of deuteron
photodisintegration normalized to the then available thermal
neutron radiative capture cross section measurements [4].
In a comprehensive evaluation of the reaction rates and
uncertainties in 1993, Smith, Kawano, and Malaney [5]
have pointed out: “With a binding energy of 2.22 MeV,
deuterium is the most fragile of the primordial isotopes:
it is rapidly destroyed in stellar interiors. . . . Given that
significant quantities of deuterium can only be produced during
primordial nucleosynthesis, detection of deuterium provides
important evidence in favor of the big bang model. . . Given the
range of D/H observed in the interstellar medium, it is difficult
to directly determine a lower limit. . . a determination of the
upper limit is plagued by uncertainties arising from chemical
evolution effects. The ratio of the primordial abundance of
deuterium to that observed today could be any where between
1 and 50” where D denotes 2H.

Laboratory measurements and decisive developments in
astronomical observations go hand in hand to remove crucial
ambiguities in nuclear physics input parameters and sharpen
theoretical predictions in the astrophysical context. Although
laboratory measurements with thermal neutrons date back to
1936 by Fermi and collaborators [6] it has not been possible
for a long time to measure the cross section at astrophysical
energies due to the tendency of the neutrons to thermalize at
low energies. The first cross section measurements between
20 keV and 64 keV have been reported in 1995 by Suzuki
et al. [7] and subsequently, by Nagai et al. [8] at 550 keV.
Burles and Tytler [9] measured the deuterium abundance in
high-red-shift-hydrogen clouds, where (it may be expected
that) almost none of the deuterium could have been destroyed
subsequent to the primordial stage. However, in a reexamina-
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tion of the estimates of the uncertainties in 1999 to sharpen
the predictions of big bang nucleosynthesis (BBN), Burles,
Nollett, Truran, and Turner [10] have observed: “Our method
breaks down for the process p + n → d + γ . This is because
of a near-complete lack of data at the energies relevant for
BBN. The approach used for this reaction is a constrained
theoretical model that is normalized to high precision thermal
neutron capture cross-section measurement.” The measured
cross section of 334.2 ± 0.5 mb by Cox, Wynchank, and Collie
[11] for thermal neutrons is considered as standard.

The thermal neutron cross section has traditionally been
interpretted in terms of a dominant isovector M1 amplitude
for radiative capture from the initial 1S0 state of the n − p

system in the continuum. The first theoretical calculations [12]
based on potential models led to a 10% discrepancy with the
experimental measurements. Breit and Rustgi [13] proposed a
polarized target-beam-test to detect the possibility of radiative
capture from the initial 3S1 state as well, which can take
place through isoscalar M1 and possibly also isoscalar E2
transitions. However, the surprising accuracy with which Riska
and Brown [14] explained the 10% discrepancy by including
meson exchange current (MEC) contributions, set the trend
for theoretical discussion in later years. It has been noted by
Nagai et al. [8] that the measured cross section is in agreement
with the theoretical calculations by Sato et al. [15] including
MEC’s, isobar currents and pair currents. They have also
pointed out that “the theory is in good agreement with the
cross section measured for neutrons above 14 MeV, but it
deviates by about 15% from the measured cross section of
the d(γ, n)p reaction by using the γ ray of between 2.5 and
2.75 MeV [16], corresponding to neutron energies of 550 and
1080 keV” [8]. Experimental studies on photodisintegration
of the deuteron for photon energies from 2.62 MeV and above
is well documented [17]. The cross section at 2.62 MeV
is 1.30 ± 0.029 mb which increases slowly to 2.430 ± 0.17 mb
at 4.45 MeV and starts slowly decreasing with energy
thereafter. The disintegration process is dominantly through
E1 transitions leading to final triplet P -states of the n − p

system in the continuum. Apart from the 15% discrepancy
with the measured cross section noted by Nagai et al. [8],
the measured angular distribution and neutron polarization

0556-2813/2006/74(5)/052801(5) 052801-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.052801


RAPID COMMUNICATIONS

G. RAMACHANDRAN AND S. P. SHILPASHREE PHYSICAL REVIEW C 74, 052801(R) (2006)

at photon energy of 2.75 MeV [18] and in the range 6 to
13 MeV [19] were found to be in disagreement with theoretical
predictions which included the meson exchange currents.
Measurements of the analyzing power [20] in p(�n, γ )d at
neutron energies of 6.0 and 13.43 MeV were consistent with
Ref. [19] and theoretical calculations [21] showed that meson
exchange currents produce a significant change but the effect
is to move the theoretical curve to more negative values, thus
making the discrepancy between theory and experiment more
pronounced. An observable which is sensitive to the presence
of isoscalar M1 and E2 transitions from the triplet S-state is
the circular polarization of the emitted radiation with initially
polarized neutrons. The first measurement [22] to detect the
presence of isoscalar amplitudes was not quite encouraging
but a subsequent measurement [23] yielded a value Pγ =
−(2.29 ± 0.9) × 10−3. An attempt [24] to explain the large
measured value by introducing a six quark admixture in the
deuteron wave function led however to a disagreement with
the well known deuteron magnetic moment. Later calculations
[25] in the zero range approximation and the wave function for
a Reid soft core potential led to a theoretical prediction Pγ of
the order of −1.1 × 10−3 with an estimated accuracy of 25%.
The measured value [26] of Pγ = −(1.5 ± 0.3) × 10−3 is in
reasonable agreement with the theoretical calculation [25]. The
importance of measuring the photon polarization with initially
polarized neutrons incident on a polarized proton target has
been pointed out [27]. When the initial preparation of the
neutron and proton polarizations P (n) and P (p) are such that
they are either opposite to each other or orthogonal to each
other, the interference of the small isoscalar amplitudes with
the large isovector amplitude could substantially contribute to
the observable photon polarization.

Anticipating the experimental results of polarized thermal
neutron capture by polarized protons by Müller et al. [28],
the possibility of the initial 3S1 state contributions at thermal
neutron energies was discussed using two different versions
of effective field theory [29,30] Although the measured
value of (1.0 ± 2.5) × 10−4 for the γ anisotropy η was not
sufficiently sensitive to distinguish between the two theoretical
predictions, we may use Eq. (2) of Müller et al. [28] to estimate
the ratio R of the triplet to singlet capture cross sections to
be 1.202 × 10−3. If we multiply R by the well-known cross
section [11], we get an estimate of 401.7 µb for the 3S1

contribution to the cross section at thermal neutron energies.
Quite surprisingly, this number is of the same order as the
measured cross sections for capture at astrophysical energies
of 20, 40 and 64 keV [7]. In fact, it is even larger by a factor of
10 than the measured cross section at 550 keV [8]. This raises
an open question as to what could possibly be the ratio R at
astrophysical energies relevant to BBN.

The influential paper of Burles, Nollett, Truran and Turner
[10] has inspired several theoretical [31,32] as well as
experimental [33,34] studies. Since photodisintegration of
the deuteron is well documented [17] for photon energies
of 2.62 MeV and above and is known to be dominated by
E1 transitions leading to final triplet P -states in the n − p

continuum, these studies [31–35] were motivated towards the
determination of the relative M1 and E1 contributions to the
process at astrophysical energies. The experiment [33] was

concerned with the measurement of the near threshold beam
analyzing power using for the first time a laser based γ -ray
source at 3.58 MeV. This was followed by measurements at
seven γ -ray energies between 2.39 and 4.05 MeV [34]. These
measurements with 100% linearly polarized photons have been
analyzed, making several simplifying assumptions viz.,

(i) only l = 0, 1 partial waves were considered in the final
state due to the low energies involved,

(ii) of the allowed two M1 and four E1 transitions, the
isoscalar E1 leading to 1P1 is set to zero,

(iii) the isoscalar M1 term leading to 3S1 is neglected, using
the traditional arguments for its suppression,

(iv) the three isovector E1 terms were combined to form a
single P -wave amplitude,

using the theoretical formalism [36], where M1 and E1
contributions were calculated separately.

The purpose of this Rapid Communication is to study
d( �γ , n)p theoretically, using a model independent formalism,
without making any simplifying assumptions except that only
the dipole transitions are considered with l = 0, 1 partial waves
in the final state. Since the strength of the isovector M1v

amplitude which is dominant at thermal neutron energies is
known to decrease [15,31,32] by several orders of magnitude
as energies relevant to BBN is approached and an estimate of
401.7 µb of the contribution of the isoscalar M1s amplitude
to the cross section at thermal neutron energies is seen to be
of the same order of magnitude as the measured cross sections
[7,8] at energies relevant to BBN, it is not unreasonable
to pay attention to the contribution of the isoscalar M1s

amplitude at the energies of astrophysical interest. Moreover,
spin observables are generally sensitive to the interference
of a leading amplitude with other amplitudes which are not
expected to be large. It is therefore appropriate to study the
sensitivity of the beam analyzing powers to the isoscalar M1s

amplitude leading to final 3S1 state at astrophysical energies.
We choose the linearly polarized photon momentum k in the

c.m. frame to be along the z-axis and the linear polarization to
be along the x-axis of a right handed Cartesian coordinate
system and the neutron momentum p in the c.m. frame
to have polar coordinates (p, θ, φ), following Ref. [33]. If
the left and right circular states of photon polarization are
defined following Rose [37] through uµ = −µξµ, µ = ±1,
the above state of linear polarization may be represented by

1√
2
(u+1 + u−1). The ξµ denote the helicity states of the photon

with spin 1. We use natural units, h̄ = c = 1. The unpolarized
differential cross section for the reaction d(γ, n)p, in the c.m.
frame at energy E is given by

dσ0

d�
= 1

6

EnEpEd |p|
(2πE)2

∑
µ=−1,1

T r(T(µ)T†(µ))

= 1

6

∑
µ=−1,1

T r[M(µ)M†(µ)], (1)

where Tr denotes the trace or spur and T(µ) denotes the on-
energy-shell matrix for d( �γ , n)p, when photons are in the
polarized state uµ. The c.m. energies of the neutron, proton,
and deuteron are denoted, respectively, by En,Ep, and Ed .
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Following Ref. [38], we express

M(µ) =
1∑

s=0

s+1∑
λ=|s−1|

(Sλ(s, 1) · Fλ(s, µ)), (2)

in terms of irreducible tensor operators, Sλ
ν (s, 1) of rank λ in

hadron spin space [39] connecting the initial spin 1 state of the
deuteron with the final singlet and triplet states, s = 0, 1 of the
n − p system in the continuum. Making use of the multipole
expansion for uµeik·r [37] and expressing the continuum states
of the n − p system in terms of partial waves, the irreducible
tensor amplitudes, Fλ

ν (s, µ) of rank λ are given, in general, by

Fλ
ν (s, µ) = 1

2

∞∑
L=1

∞∑
l=0

l+s∑
j=|l−s|

∑
I=0,1

(i)L−l

× [1 − (−1)l+s+I ](−1)j+L−l[L][j ]2[s]−1

×W (L1ls; jλ)F Ij

ls;Lf λ
ν (l, L, µ), (3)

where l, I denote the orbital angular momentum and isospin
in the final state, j denotes the conserved total angular
momentum, L denotes the total angular momentum of the
photon and the shorthand notation [L] stands for

√
2L + 1.

The partial wave multipole amplitudes F
Ij

ls;L depend only on
the c.m. energy E, while the

f λ
ν (l, L, µ) = 4π

√
2π (iµ)π

+

×C(l, L, λ; ml,−µ, ν)Ylml
(θ, φ), (4)

take care of the angular dependence and also the dependence
on photon polarization. The projection operators

π± = 1
2 {1 ± (−1)L−l} (5)

assume either of the values 0,1 such that, if π+ = 1 implies
π− = 0 and vice versa. The F

Ij

ls;L denotes electric 2L-pole
amplitudes, if π+ = 1 and magnetic 2L-pole amplitudes, if
π− = 1. It may be noted that the reaction is completely
characterized at any energy by the set of four irreducible tensor
amplitudes Fλ

ν (s, µ), given by Eq. (3). But the contributing
partial wave multipole amplitudes F

Ij

ls;L increase as the c.m.
energy increases.

In the region of interest to BBN, we may restrict ourselves
to only L = 1 and to l = 0, 1 partial waves as in Ref. [33].
Then, we clearly have two M1 amplitudes viz., the isovector
M1v leading to the final 1S0 state, the isoscalar M1s leading to
the final 3S1 state and four E1 amplitudes viz., three isovector
E1j=0,1,2

v leading to the final 3Pj states and an isoscalar E1s

leading to the final 1P1 state. In terms of these limited number
of partial wave multipole amplitudes, the four irreducible
tensor amplitudes Fλ

ν (s, µ) may explicitly be written as

F1
ν (0, µ) = −iM1vf

1
ν (0, 1, µ) −

√
3E1sf

1
ν (1, 1, µ), (6)

F0
0 (1, µ) = 1

3E1v(0)f 0
0 (1, 1, µ), (7)

F1
ν (1, µ) = − 1

6E1v(1)f 1
ν (1, 1, µ) + iM1sf

1
ν (0, 1, µ), (8)

F2
ν (1, µ) = 1

6E1v(2)f 2
ν (1, 1, µ). (9)

The E1v(λ) amplitudes contributing to the triplet irreducible
tensor amplitudes Fλ

ν (1, µ) with λ = 0, 1, 2 are related to the

E1j
v amplitudes with j = 0, 1, 2 through

E1v(0)
E1v(1)
E1v(2)


 =


 1 3 5

2 3 −5
2 −3 1





E1j=0

v

E1j=1
v

E1j=2
v


 . (10)

The differential cross section relevant to Refs. [33,34] for
d( �γ , n)p with linearly polarized photons is given, in the c.m.
frame, by

dσ

d�
= 1

6
T rMM†, (11)

where

M = M(+1) + M(−1). (12)

Using known properties [38] of the irreducible tensor operators
and standard Racah algebra, we have

dσ

d�
= 2π2

6
[a + b sin2 θ (1 + cos 2φ) − c cos θ ], (13)

where

a = [
8|M1v|2 + 24|M1s |2 + 36|E1s |2 + 8

∣∣E1j=0
v

∣∣2

+ 18
∣∣E1j=1

v

∣∣2 + 26
∣∣E1j=2

v

∣∣2 − 16 Re
(
E1j=0

v E1j=2∗
v

)
− 36 Re

(
E1j=1

v E1j=2∗
v

)]
, (14)

b = [
9
∣∣E1j=1

v

∣∣2 + 21
∣∣E1j=2

v

∣∣2 + 24 Re
(
E1j=0

v E1j=2∗
v

)
+ 54 Re

(
E1j=1

v E1j=2∗
v

) − 18|E1s |2
]
, (15)

and

c = 4
√

6 Re
[(

2E1j=0
v + 3E1j=1

v − 5E1j=2
v

)
M1∗

s

]
. (16)

It is readily seen from Eq. (16) that the third term c cos θ in
Eq. (13) arises due to the interference of the M1s amplitude
with the E1v amplitudes. This term does not find place in
Ref. [36], since the calculations there have been carried out
separately for the E1 and M1 transitions. If we identify
2π2F IJ

ls;1 with 32 λ̄2Ilsb of Ref. [36] where b denotes j , there
is complete agreement between our expressions given by
Eqs. (14) and (15) for a and b and the corresponding
expressions in Ref. [36]. If it is assumed that

E1j=0
v = E1j=1

v = E1j=2
v = E1v, E1s = 0 (17)

it follows that a, b, c simplify to

a = 8(|M1v|2 + 3|M1s |2); b = 108|E1v|2; c = 0, (18)

leading to the beam analyzing power 
(θ ) defined by Eq. (2)
of Ref. [33] which now assumes the form


(θ ) = 27

2
|E1v|2 sin2 θ/D, (19)

where the denominator

D = |M1v|2 + 3|M1s |2 + 27
2 |E1v|2 sin2 θ, (20)

is proportional to the unpolarized differential cross section.
The 
(θ ) was determined experimentally at θ = 150◦ in
Ref. [33] at γ−ray energy 3.58 MeV and at θ = 90◦ in
Ref. [34] at seven γ−ray energies between 2.39 and 4.05 MeV.
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The measurements of 
(θ ) in Ref. [33] have led to empirical
estimates of

X = |M1|2/|E1v|2 = (|M1v|2 + 3|M1s |2)/|E1v|2, (21)

if M1s is not set equal to zero. Under the same simplifying
assumptions, it is interesting to note that the tensor target
analyzing power [38] is given by

A2
0 = 1√

2

[
|M1v|2 − 3

2
|M1s |2

] /
D. (22)

Thus experimental measurements of A2
0 can lead to an

empirical estimate of

Y = (|M1v|2 − 3
2 |M1s |2

)/|E1v|2 (23)

in the energy region of astrophysical interest. Since X and Y

are known empirically as functions of energy, it is possible to
estimate

R = |M1s |2
|M1v|2 = 2

3

(X − Y )

(X + 2Y )
, (24)

to study the energy dependence of R empirically in the energy
region of interest to astrophysics.

Finally, we may point out that, when the above simplifying
assumptions of Eq. (17) are not made, the unpolarized
differential cross section (1) itself is given by

dσ0

d�
= 2π2

6
[a + b sin2 θ − c cos θ ], (25)

where the coefficient c in third term can be determined by
taking the difference between measurements of dσ0

d�
at two

angles θ ( �= π/2) and π − θ . It can also be determined in the
same way from dσ

d�
given by Eq. (13). For, e.g., Schreiber et al.,

[33] have measured Eq. (13) at θ = 150◦ and for φ = 0 and

90◦. Additional measurements at θ = 30◦ for the same angles
φ and at the same energy, could easily estimate c at 3.58 MeV.
The measurements by Tornow et al. [34] at lower energies
have been carried out at θ = 90◦ and therefore not suitable
for this purpose. It would therefore be desirable to carry out
measurements at θ �= 90◦ and at π − θ at the lower energies,
to determine c. The coefficient b is readily determined by
taking the difference between Eqs. (13) and (25) at any angle
θ �= 0 or π and for any value of φ �= π/4. Since b and c

are thus known, one can determine a by measuring Eq. (13)
or even Eq. (25). Thus a, b, c given by Eqs. (14), (15), and
(16) are determinable empirically without making simplifying
assumptions as in Ref. [33]. We may note from Eq. (16) that c

goes to zero either if M1s is zero or if Eq. (17) holds exactly. On
the other hand, if an empirical determination leads to c �= 0,
it implies simultaneously that M1s �= 0 and the simplifying
assumption (17) is invalid.

Therefore an empirical determination of c appears desir-
able before carrying out the more incisive analysis of the
experimental data suggested above. If c is found to be zero
experimentally and Eq. (17) is assumed to be valid, the
measurements of Eq. (19) along with Eqs. (13), (22), and
(25) hold promise for the more incisive empirical analysis,
wherein R given by Eq. (24) also gets determined as a
function of energy along with Eq. (21), where |M1|2 represents
|M1v|2 + 3|M1s |2. This will lead to a better understand-
ing of the photodisintegration of deuterons at astrophysi-
cal energies of relevance for sharpening the predictions of
BBN.

We are grateful to Professors B. V. Sreekantan, R. Cowsik,
J. H. Sastry, R. Srinivasan, and S. S. Hasan for the facilities
provided for research at the Indian Institute of Astrophysics.

[1] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle,
Rev. Mod. Phys. 29, 547 (1957); N. Hata et al., Phys. Rev. Lett.
75, 3977 (1995); D. N. Schramm and M. S. Turner, Rev. Mod.
Phys. 70, 303 (1998); K. Langanke and M. Wiescher, Rep. Prog.
Phys. 64, 1657 (2001).

[2] W. A. Fowler, G. R. Caughlan, and B. A. Zimmerman, Annu.
Rev. Astron. Astrophys. 5, 525 (1967).

[3] H. A. Bethe, Phys. Rev. 76, 38 (1949); H. A. Bethe and
Longmire, ibid. 77, 647 (1950).

[4] D. J. Hughes and R. B. Schwartz, Brookhaven National Lab.
Rep. BNL 325, 2nd ed. (1958).

[5] M. S. Smith, L. H. Kawano, and R. A. Malaney, Astrophys. J.
Suppl. Ser. 85, 219 (1993).

[6] E. Fermi, Ricerca Scient. 7, 13 (1936); I. E. Amaldi and Fermi,
Phys. Rev. 50, 899 (1936).

[7] T. S. Suzuki, Y. Nagai, T. Shima, T. Kikuchi, H. Sato, T. Kii,
and M. Igashira, Astrophys. J. 439, L59 (1995).

[8] Y. Nagai et al., Phys. Rev. C 56, 3173 (1997).
[9] S. Burles and D. Tytler, Astrophys. J. 499, 699 (1998); 507, 732

(1998).
[10] S. Burles, K. M. Nollett, J. W. Truran, and M. S. Turner, Phys.

Rev. Lett. 82, 4176 (1999).
[11] A. E. Cox, S. A. R. Wynchank, and C. H. Collie, Nucl. Phys.

74, 497 (1965).

[12] N. Austern, Phys. Rev. 92, 670 (1953); N. Austern and E. Rost,
ibid. 117, 1506 (1960).

[13] G. Breit and M. L. Rustgi, Nucl. Phys. A161, 337 (1971).
[14] D. O. Riska and G. E. Brown, Phys. Lett. B38, 193 (1972).
[15] T. Sato, M. Niwa, and H. Ohtsubo, in Proceedings of the Inter-

national Symposium on Weak and Electromagnetic Interactions
in Nuclei, edited by H. Ejiri, T. Kishimaw, and T. Sato (World
Scientific, Singapore, 1995), p. 488.

[16] G. R. Bishop et al., Phys. Rev. 80, 211 (1950).
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