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Relative kinetic energy correction to self-consistent fission barriers
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The effect of spurious relative kinetic energy removal on the fission barriers is discussed within the Skyrme
Hartree-Fock method. Calculations for medium-heavy nuclei show that this correction is large and in the right
direction.
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Fusion and fission barriers are crucial to the understanding
of nuclear reactions and collective decay. Currently, they
can be computed only by using either phenomenological
macroscopic-microscopic or self-consistent mean-field meth-
ods. Within such models, the barrier height, i.e., the energy
difference between the ground state and the spatially deformed
lowest saddle configuration of a nucleus, reflects the com-
ponent of nuclear energy that scales with nuclear surface.
Somewhat paradoxically, difficult-to-measure fission barriers
in medium-heavy nuclei may better characterize the surface
energy term than those in spontaneously fissioning heavy
species. This is due to near-scission configurations at the
barrier for A≈70–100. To check mean-field models against
such experimental data, one needs a precise evaluation of
nuclear potential for two separating fragments.

In this work, we consider the effect that the removal of
spurious relative kinetic energy of the two nascent fragments
has on the self-consistent fission barriers. We have calculated
some fusion and conditional fission barriers in medium-heavy
nuclei within the self-consistent Skyrme Hartree-Fock method
and compared our results with the data. It turns out that by sub-
tracting relative kinetic energy, one can dramatically improve
the agreement between the calculated and experimental fission
barriers.

The problem we address here may be stated as follows:
Kinetic energy of the relative motion of two subsystems
contributes to the binding energy of a composed system
(by decreasing it), but not to the binding energies of two
separate subsystems. Hence, any Hamiltonian or energy
functional required to reproduce the binding energy for each
configuration of equilibrium must depend on the partition
of the system. In fission, as two subsystems separate, the
kinetic energy of their relative motion becomes spurious as
a part of binding energy and must be subtracted from the
energy functional (for tripartition, one should subtract two
relative kinetic energies of three fragments, etc.). A precise
formula for this subtraction is not known, since for identical
nucleons it is difficult to disentangle the energy of the relative
motion of two subsystems until they are well separated. This
difficulty obscures the definition of the nuclear potential close
to scission.

Within nuclear mean-field theory, this difficulty is com-
bined with the breaking of translational symmetry. A localized

Slater determinant is a superposition of many momentum
eigenstates, and the theory approximately eliminates spurious
kinetic energy of the center of mass (c.m.) by means of
the so-called c.m. energy correction Ec.m. (for a competent
review, see Ref. [1]). When we neglect the neutron-proton mass
difference, the expectation value of the c.m. kinetic energy for
a Slater determinant describing A nucleons reads

Ec.m.(A) = 1

2AM




A∑
k=1

〈k|p2|k〉 −
A∑

k �=l

|〈k|p|l〉|2

 , (1)

with k, l labeling the occupied single-particle states, and M the
nucleon mass [only exchange two-body terms are present in
Eq. (1) as the diagonal matrix elements of momentum vanish
in the time-reversal invariant states]. Some Skyrme forces
contain the full correction of Eq. (1); others, only the one-body
average kinetic energy term 〈t̂〉 = ∑

k−occ〈k|p2|k〉/(2AM).
Crude estimates of both quantities may be obtained from
schematic models: For a Fermi gas enclosed in a hard-wall
container with a radius R = r0A

1/3, 〈t̂〉 = 3εF /5 ≈ 20 MeV
for r0 = 1.2 fm. Assuming an effective harmonic oscillator
mean field with the frequency h̄ω = 41A−1/3 MeV, one obtains
Ec.m. ≈ 3h̄ω/4 ≈ 10.5 MeV for A = 25 and 5.25 MeV for
A = 200. Independent of its form, Ec.m. has to be subtracted
from the expectation value of the Hamiltonian to obtain the
correct binding energy.

It follows from the above that one c.m. correction should be
applied for a system in one piece, while two c.m. corrections,
one for each fragment, are required for separated entities. The
magnitude of Ec.m., although depending on the approximation,
does not depend strongly on the nuclear mass A (except for
light systems). Thus, to obtain a potential correct in both
limits of one- and two-piece systems (i) the outer part of the
fission barrier should be reduced by ∼Ec.m. with respect to
the prediction obtained for one undivided system, or (ii) the
inner part of the fusion barrier should be raised by ∼Ec.m.

with respect to the prediction based on separate fragments.
Unfortunately, a discontinuity results close to the scission
point.

To relate this to barriers, consider a static potential V (R)
between nuclei 1 and 2 at zero orbital angular momentum,
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defined by

V (R) = E(R) + B1 + B2, (2)

where E(R) is the (negative) Hartree-Fock (HF) energy of
a dinuclear complex at the distance R, and Bi are the
(positive) binding energies of separate fragments. For two
separated fragments of A1 and A2 nucleons, A1 + A2 = A,
with vanishing mutual momentum overlaps, 〈k1|p|l2〉 = 0, one
obtains from Eq. (1) the relation

Ec.m.(A1) + Ec.m.(A2) = Ec.m.(A)

+ A2Ec.m.(A1) + A1Ec.m.(A2)

A
. (3)

The second term on the right-hand side is just the expectation
value of kinetic energy of the fragments’ relative motion,
Ec.m.(rel), which becomes spurious for a two-piece system.
Observe, that V (R) tends to Ec.m.(rel) when R tends to infinity.
The usual meaning of the entrance channel potential and fusion
barrier requires that this asymptotic term be subtracted from
Eq. (2). This has been noted by Berger and Gogny [2] who tried
to obtain within collective theory a deformation-dependent
correction that would tend to Ec.m.(rel) for large fragment
distances—apparently without success. In the frozen density
calculations of fusion barriers [3,4], Ec.m.(rel) was simply
subtracted without touching upon the question, How much
of it is really required for a barrier corresponding to an
undivided one-piece shape? On the other hand, to the best of
our knowledge, the spurious kinetic term was never subtracted
in calculations of fission barriers.

One may ask whether fission data actually call for any such
correction, even if the correction itself seems pretty obvious. It
happens that a correction of similar properties and magnitude,
but based on completely different grounds, has been introduced
in macroscopic-microscopic calculations [5,6]. It originated
from terms in macroscopic energy that are roughly constant
for all or a majority of nuclei, such as the “congruence” or
“Wigner” energy. To assure a unique definition of potential
energy, such a term has to double during fission or diminish
by half during fusion. To make its change continuous during
fusion and fission its dependence on nuclear shape was
evoked [7]. It was then argued that the shape-dependent
congruence energy lowers the calculated fission barriers in
light- and medium-heavy nuclei just enough to remove the
discrepancy between the calculations and the data. (In fact,
some discrepancies of a few MeV remain, see Fig. 15 in
Ref. [8]). Quite independent of the macroscopic-microscopic
studies, the recent work [9] shows that the self-consistent
Skyrme HF calculations without such a correction severely
overestimate conditional fission barriers in 70Se.

The largest effect of eliminating spurious relative kinetic
energy on fission barriers is expected for relatively light nuclei,
with barriers so close to the scission point that (nearly) the
whole asymptotic value of Ec.m.(rel) should be subtracted (see
Fig. 1). In this work, we study the conditional fission barriers in
nuclei 70Se, 96Zr, 90Mo, and 98Mo for the following partitions:
38Ar + 32S, 58Ni + 12C, 48Ca + 48Ca, 50Ti + 40Ca, and 50Ti +
48Ca. Our basic assumption is that the configuration of the
conditional saddle for a given partition is the same as that
at the top of the fusion barrier of the inverse reaction. This
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FIG. 1. Density profiles for 38Ar + 32S system around fusion
barrier at (from left to right) R = 10.77, 10.40, and 9.84 fm, obtained
with the Skyrme force SLy6. Contour lines are 0.01 fm−3 apart. The
middle distance corresponds to the barrier top.

assumption is consistent with the results of the liquid drop
studies [10], with the recent mean-field results [9] for 70Se, and
with our checks: Compact fusionlike scission configurations
in these nuclei have energies lower than or very close to those
of more elongated saddles. However, one has to admit that
our assumption, although very plausible, is not proven; our
calculations considered only nearly axially symmetric nuclear
shapes.

Our calculations of adiabatic fusion barriers for the reac-
tions 38Ar + 32S, 58Ni + 12C, 48Ca + 48Ca, 50Ti + 40Ca, and
50Ti + 48Ca were based on Eq. (2). We used two realistic
Skyrme forces with very different c.m. correction methods:
SkM∗ [11] with Ec.m. = 16–19 MeV given by the one-body
term alone, and SLy6 [12] with typical Ec.m. = 5–8 MeV
given by the whole expression (1). To have a numerically
consistent treatment, Bi, i = 1, 2, and E(R) in Eq. (2) were
calculated with the same HF code. We note that the calculated
binding energies Bi depend on the Skyrme functional and
usually differ from the experimental values by a few MeV.
Pairing is included as given by the delta interaction with the
energy cutoff defined in Ref. [13], which allows for a smooth
transition between one- and two-piece nuclear configurations.
We fixed the strength of the delta interaction for neutrons
and protons at the values from another study that reproduce
experimental gaps in 252Fm (Vn = 272, Vp = 315 MeV fm3

for SkM∗ Vn = 316, Vp = 322 MeV fm3 for SLy6). The
potential V (R) and the fusion barriers were calculated by
subtracting the total value of Ec.m.(rel) from the expression
in Eq. (2), V (R) = E(R) + B1 + B2 − Ec.m.(rel).

The HF plus BCS equations have been solved on a spatial
mesh. Initially, two sets of wave functions corresponding to
two fragments at their ground states are placed at a chosen
distance. We use a uniform step in initial distances of 0.345 fm,
half of the step of the spatial mesh. During HF iterations, the
constraints are imposed on the center of mass of the total
system and its quadrupole moment. The adiabatic potential is
built by the local minima of the energy functional to which
the initial configuration converged. The distance R between
two fragments is calculated as the distance between the mass
centers of two half-spaces containing A1 and A2 nucleons.

The HF iterations show two distinct patterns depending
on whether the initial distance R (or the quadrupole moment
Q) is greater or smaller than some distance Rc(Qc) close to
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or a little smaller than the position of the top of the barrier
Rb(Qb).

A moderate number of iterations leads to a unique potential
value when R > Rc, with the final values of R and V

close to the initial ones. A possible difficulty in this regime
occurs when the Fermi levels in the two fragments are
unmatched and nucleons redistribute between the fragments
during HF iterations. Then one obtains the potential value that
corresponds to another entrance channel. A shift in the mass
and charge partition by quite a few units is possible, up to
10 mass units for the reaction 50Ti + 40Ca with SkM∗. The
required entrance channel can be obtained only by imposing
additional constraints. To fix the mass and charge partition,
we adjust pairing separately in each fragment which keeps
occupations of single-particle levels close to the initial ones.

This works as long as the fragment densities do not overlap
substantially, which for the considered nuclei means up to and
a little inward of the scission point. We further refer to such a
calculation as the constrained one.

Starting HF iterations from the initial distance a little
smaller than Rc, which means somewhat smaller than at the
configuration of two touching fragments, one obtains after
many HF iterations the final minimum with the values of R

and V much smaller than the initial ones. This reflects the
onset of the buildup of the neck between the two fragments,
associated with the increase in the hexadecapole moment Q40

at the constant Q. This change in the HF iteration pattern
signals that the barrier has been crossed from the outside.

Our calculations with the SLy6 force are illustrated in
Fig. 2. Two kinds of points, open and solid squares, for three
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FIG. 2. Fusion barriers (squares) and mass-symmetric fission valleys of compound nuclei (crosses) obtained with the Skyrme force SLy6.
For other explanations, see text.
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asymmetric reactions can be seen for large distances. These
correspond to the calculations without (lower points) and with
the imposed constraint on the mass and charge partition (upper
points). The magnitude of the energy differences between them
varies from 1 MeV for the 38Ar+32S system to 4 MeV for the
50Ti+40Ca reaction. Clearly, this induces some arbitrariness in
the value of V (R) at the barrier, related to the uncertainty
of the point at which one switches from the constrained
to the unconstrained results. Consider as an example the
system 38Ar+32S. With the SLy6 force, we obtain from
the unconstrained calculation V (R = 10.31fm) = 36.95 MeV
and from the constrained one V (R = 10.40 fm) = 39.13 MeV
(Q = 37.5 b). In both calculations, the system is nearly
completely divided at this distance, see Fig. 1. Since the
unconstrained calculation changes the mass partition to a more
asymmetric one, we choose the potential value given by the
constrained calculation. For the smaller distances, the neck
develops (see Fig. 1), so only the values of V (R) from the
unconstrained calculations are relevant there. Since they are
all smaller than 39.13 MeV (cf. Fig. 2), the latter value gives
the height of the fusion barrier. Similar reasoning applies
to the other cases. For the reactions 48Ca+48Ca and
58Ni+12C, the unconstrained calculations give the correct
partition, and the barrier height may be read out from the V (R)
curve. As mentioned above, only the constrained calculations
give the asked mass division for the reaction 50Ti+40Ca, and
we take as the fusion barrier the value of V (R) at the touching
distance R = 11.1 fm.

The unconstrained (in mass and charge partition) minima at
distances R < Rc shown in Fig. 2 are, in general, conditional.
They have been obtained within the described method of
calculations after a reasonably long iteration. With decreasing
Q, their moments Q40 smoothly interpolate between the fusion
barrier and the fission valley. The latter defines the absolute
minima for R < Rc, with much larger Q40, for three heavier
compound nuclei. These minima, shown as crosses in three
lower panels in Fig. 2, were obtained by the conventional
method of stretching the nucleus. The change from the
conditional minimum to the one at the same Q in the fission
valley corresponds to an abrupt shape change and decrease in
R and V , as depicted by points (pluses) connected by lines
for two reactions with 48Ca in Fig. 2. It should be emphasized
that the part of the potential curve for R < Rc is arbitrary to
some degree, as a choice of a descent path from the given
elevation over the fission valley. This reflects the arbitrariness
of the inside part of the fusion potential in the static approach.
At the same time, the height of the adiabatic fusion barrier is
defined (up to the uncertainty discussed above) as long as large
deformations of separate fragments are forbidden.

Calculated fusion barriers are given in Table I. Whether
obtained with the SkM∗ or SLy6 force, they are remarkably
similar in spite of the very different Ec.m.(rel) corrections.
Experimental values mentioned in Table I correspond to the
peak positions in the measured barrier distributions [14,15].
The low-energy edges of these distributions lie lower by
∼2 MeV. Probably, some intermediate barrier height would
be relevant when comparing with our adiabatic HF results.

Conditional fission barriers, with and without the relative
kinetic energy subtraction, are presented in Table II, together

TABLE I. Calculated fusion barriers vs data (in MeV).

System Bfus(SkM∗) Bfus(SLy6) Bfus(exp)

38Ar+32S 38.97 39.13 –
58Ni+12C 23.62 23.95 –
50Ti+40Ca 56.14 56.38 57 [14]

48Ca+48Ca 50.35 50.84 51.2 [15]
50Ti+48Ca 54.75 54.85 –

with the existing data. Note that, unlike Eq. (2), they involve
binding Bc (taken as positive) of the compound nucleus, Bfis =
E(R) + Bc or E(R) + Bc − Ec.m.(rel). This is determined by
the same HF code for consistency. The salient feature of
the results in Table II is that the subtraction of Ec.m.(rel)
brings the calculated conditional fission barriers closer to their
experimental values, while without this subtraction they are
considerably overestimated. The latter fact was previously
established for 70Se and SkM∗ force [9]. The barrier of
51.5 MeV for the 39K+31P partition found there (without any
additional corrections) agrees well with the value 49.8 MeV
without Ec.m.(rel) correction for the close channel 38Ar+32S
(Table II). (In fact, the barrier of 50 MeV should be reported
in Ref. [9], cf. the panel for 39 b in Fig. 8 there, in even closer
agreement with our result.) The agreement for the 58Ni+12C
partition is worse: 35.1 MeV (Table II) vs 40.9 MeV [9], but
the latter is an upper bound rather than the barrier (cf. Fig. 17
in Ref. [9]).

Fission barriers including the Ec.m.(rel) correction with the
SkM∗ force are systematically lower than those with the SLy6.
This might look like a correlation with the larger magnitude of
the Ec.m. correction for the SkM∗ force. In fact, the differences
between the fission barriers for both forces are equal, within
0.5 MeV, to the differences in the calculated reaction Q values,
B1 + B2 − Bc (Table II, the difference between the last two
columns). Thus, the differences in Bfis reflect the quality of
each force in reproducing the ground state binding energies:
One may expect that the calculated barrier is by �Q = Q −
Qexp too low. For the studied nuclei, the SLy6 force better
reproduces the reaction Q values. We also note that the barriers
obtained with the SLy6 force leave some room for additional
corrections that lower the fission barrier (like the rotational
one, see Ref. [9]).

The conditional fission barrier for 90Mo is definitely too
high with both forces, while the corresponding fusion barrier
agrees well with the data. Perhaps, the fission and fusion
barriers are different in this case. One also has to mention that
the experiment [8,16] determined only the charge partition,
while the mass partition was not measured and might differ
from the one assumed here.

In summary, we have shown that the removal of spurious
relative kinetic energy considerably lowers fission barriers in
medium-mass nuclei. This brings the self-consistent results
closer to the experimental data and solves a big part of the
problem of too high barriers reported in Ref. [9]. Moreover,
the necessity of the applied correction is evident in contrast
to the concept of the deformation-dependent congruence term
used in the macroscopic energy plus Strutinsky shell correction
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TABLE II. Calculated conditional fission barriers vs data and differences �Q = Q − Qexp between
calculated and experimental reaction Q values (in MeV, Q = B1 + B2 − Bc). In parentheses: barriers
without relative kinetic energy correction.

System Bfis(SkM∗) Bfis(SLy6) Bfis(exp) �Q(SkM∗) �Q(SLy6)

70Se → 38Ar + 32S (49.8) 32.7 (49.3) 40.8 35.35 [16] 7.5 −0.4
70Se → 58Ni + 12C (35.1) 18.2 (38.4) 28.2 25.3 [16] 7.3 −2.4

90Mo → 50Ti + 40Ca (64.2) 47.2 (59.8) 51.7 41.5 [8] 2.9 −1.45
96Zr → 48Ca + 48Ca (56.8) 39.2 (51.5) 43.4 – 8.16 4.4

98Mo → 50Ti + 48Ca (57.4) 39.6 (53.2) 45.1 44.5 [8] 7.7 2.15

method (as long as it is not sure that congruence energy
extends over the whole nuclear chart as a global term). Thus,
the correction should be used in the self-consistent studies of
fission barriers.

The lowering of the potential energy by ∼Ec.m.(rel) around
the scission point will lower fission barriers in nuclei with the
scission configuration lying above or a little below the ground
state energy. Modifications may be expected for medium-
heavy and some actinide nuclei. Short barriers, such as those
in super-heavy species, should not be affected. However, it
is clear that to improve predictions of fission barriers, one
has to specify some satisfactory prescription to account for
a gradual transformation of kinetic energy of the fragments’
relative motion into potential energy of the combined system.

Finally, since the macroscopic-microscopic approach is an
approximate version of the self-consistent HF, the relative
kinetic energy problem, although hidden, is pertinent to it as
well.
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