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Maximum freeze-out baryon density in nuclear collisions
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Using simple parametrizations of the thermodynamic freeze-out parameters extracted from the data over a
wide beam-energy range, we reexpress the hadronic freeze-out line in terms of the underlying dynamic quantities,
the net baryon density ρB and the energy density ε, which are subject to local conservation laws. This analysis
reveals that ρB exhibits a maximum as the collision energy is decreased. This maximum freeze-out density has
µ = 400–500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of
20–30 GeV/nucleon.
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In recent years, it has become abundantly clear that the
collision energy plays an important role in determining the
properties of the final state in relativistic heavy ion collisions.
While the extracted freeze-out temperature generally increases
monotonically with the collision energy, the corresponding
net baryon density exhibits a more complicated behavior: It
initially increases steadily as the collision energy is raised,
but ultimately, at sufficiently high energies, it decreases as a
result of nuclear transparency. Therefore, there is a certain
beam energy for which the resulting baryon density at freeze-
out acquires a maximum value. In this paper, we discuss this
optimal beam energy on the basis of the most up-to-date results
on the properties of hadronic freeze-out.

For this purpose, we employ statistical considerations
which have been quite successful in accounting for the
observed yields of most hadronic species (see Refs. [1–5], for
example). In fact, the evidence has become truly overwhelming
in recent years that chemical equilibrium is established in
relativistic heavy ion collisions throughout the entire range
of collision energies. The resulting picture shows that the
freeze-out temperature T increases steadily with the collision
energy as the corresponding baryon chemical potential µB

decreases steadily toward zero.
However, it is not always convenient to work with the

thermodynamic variables T and µB . This is particularly
true within a dynamic context, since they are not subject
to any conservation laws, in contrast with the more basic
dynamic variables, namely, the energy density ε and net baryon
density ρB . Furthermore, when a first-order phase transition
is present, T and µB become nonmonotonic functions of ε

and ρB throughout the associated phase-coexistence region
of the phase diagram (as does the pressure p). This feature
in turn causes the inverse functions to be multivalued, a
clearly inconvenient situation. It is therefore of interest to
reexpress the thermodynamic freeze-out information in terms
of the dynamic quantities. The resulting representation also
serves to more clearly demonstrate that the freeze-out density
exhibits a maximum value, a feature that may be important in
the planning of experiments that seek to explore compressed
baryonic matter.

In the grand-canonical ensemble of hadron species i, the
partition function factorizes into separate contributions for

each specie, Z = �iZi , with
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where plus is for bosons and minus is for fermions. The
hadron mass is mi and gi = 2Ji + 1 is the spin degeneracy.
The fugacity associated with the hadron specie i is

λi(T , {µ}) = exp [(µBBi + µQQi + µSSi)/T ], (2)

where Bi,Qi , and Si denote its baryon number, electric charge,
and strangeness, respectively. The ensemble is characterized
by the temperature T and the three chemical potentials {µ} =
{µB,µQ,µS}. Finally, V denotes the enclosing volume of the
system (which plays no role in the analysis since only yield
ratios are considered).

The corresponding spatial number density of a given specie
is then readily obtained as
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In the first line, the factors are arranged such that the terms in
the sum are regular in the small-mass limit, mi → 0, where
K2 diverges, and the second line exhibits the leading term
representing the classical result. Since the sign of the second
term in (3) depends on the quantum-statistical nature of the
specie, the leading term overestimates fermion densities while
it underestimates boson densities. For all the parameter values
employed in the yield estimates, the first term in the expansion
(4) is an excellent approximation for all baryon species, being
accurate to within a few per thousand. For kaons it is off by
a few percent, and even the pion densities are underestimated
by at most 10%. The first term in (4) would thus be a quite
reasonable approximation for rough estimates of the yields.

Once we know the number density of each specie, it is
straightforward to calculate the corresponding baryon, charge,
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and strangeness densities. In particular, the net baryon density
is

ρB(T , {µ}) = T
∂ lnZ
∂µB

=
∑

i

Bini(T , {µ}). (5)

Furthermore, the total energy density is ε = ∑
i εi , where the

contribution by a particular specie i is

εi(T , {µ}) = −∂ lnZi
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where the last line [Eq. (7)] is the classical result.
As it turns out, it is possible to fit the observed yield ratios

reasonably well with the statistical model by adjusting the
Lagrange multipliers at each particular collision energy [1–5].
In this analysis, T and µB are treated as free parameters,
while the values of µS and µQ are fixed by requiring overall
strangenss neutrality, 〈S〉 = 0, and that the ratio of the net
charge to the net baryon number be equal to that of the collision
system, e.g., 〈Q〉 = 0.4〈B〉 for Au+Au. As discussed in
Ref. [6], the effect of the small change in this ratio in going
to Pb+Pb is negligible. The extracted values of the freeze-out
temperature can be approximately represented as [6]

T (µB) ≈ 166 − 139µ2
B − 53µ4

B, (8)

where T and µB are expressed in MeV.
Using the relationship (8), we have calculated the cor-

responding freeze-out values of the net baryon density ρB

[Eq. (5)] and the energy density ε [Eq. (6)]. The result is
displayed in Fig. 1. Before turning to the calculated results,
we note that the lower-right section of the ρB-ε plane is not
physically accessible, since a given net baryon density ρB gives
rise to a certain minimum energy density. [The corresponding
curve, εmin(µB), is simply the pressure at zero temperature and
is therefore occasionally, and somewhat misleadingly, referred
to as the equation of state.] In the ideal-gas scenario, where
binding and compression effects are absent, this lower bound
is given by εmin = mNρB , which is indicated on the figure.

In order to illustrate the importance of adjusting µQ and
µS to ensure average conservation of charge and strangeness
(see above), we have also calculated those values of ρB and ε

that would result if µQ and µS were taken to vanish. As can
be seen from Fig. 1, the failure to adjust µQ and µS increases
the values of both densities by amounts that are especially
significant in the region of maximal density [7]. These results
were calculated both classically (first terms only) and quantally
(all terms) to illustrate how unimportant this distinction is for
the present analysis.

At the highest energies, freeze-out occurs for a negligible
value of the chemical potential µB (and hence the net
baryon density ρB is practically zero), and the energy density
ε is nearly one-half GeV/fm3. As the collision energy is
lowered, ρ increases rapidly while T initially remains fairly
constant but gradually begins to drop. Then, in the range of
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FIG. 1. (Color online) The hadronic freeze-out line in the ρB − ε

phase plane as obtained in the statistical model with the values of
µB and T that have been extracted from the experimental data in
Ref. [6]. The curves on the right have been calculated for µQ =
µS = 0 using either quantal (solid) or classical (dashed) statistics,
while the curve on the left employs values of µQ and µS that have
been adjusted to ensure 〈S〉 = 0 and 〈Q〉 = 0.4〈B〉 for each value of
µB . Also indicated are the beam energies (in GeV/nucleon) for which
the particular freeze-out conditions are expected at either RHIC (solid
squares, total energy in each beam), starting at 100+100 and going
down to 2+2, or FAIR (solid dots, kinetic energy of the beam for
a stationary target), starting at 5 and going up to 40. as based on
fits to existing data [6]. The triangular area (grey) corresponds to
energy densities below the minimum required at the given net baryon
density, ε = mNρB (ignoring binding and compression), and is thus
inaccessible.

T = 140–130 MeV, the freeze-out line (ρB, ε) exhibits a back-
bend and approaches the origin. The resulting maximum value
of the net baryon density at freeze-out is about three-quarters
of the normal nuclear saturation density of ρ0 ≈ 0.15 fm−3.

The value of the baryon chemical potential µB extracted
from the data decreases monotonically with the collision
energy and can be parametrized on a simple form [6]

µB(
√

s) ≈ 1308

1000 + 0.273
√

s
, (9)

where µB as well as the NN c.m. energy
√

s are expressed
in MeV. By using this result, it is possible to attach beam
energies along the freeze-out curves shown in Fig. 1. This
has been done for both collider experiments, such as those
being carried out at the BNL Relativistic Heavy Ion Collider
(RHIC), or for a fixed target, as has been done at the CERN
Super Proton Synchrotron (SPS) and the BNL Alternating
Gradient Synchrotron (AGS) and is being planned at Facility
for Antiproton and Ion Research (FAIR).

We note that if this region of maximum freeze-out density
were to be explored with RHIC, the appropriate beam kinetic
energies would be about 2–4 GeV/nucleon, corresponding to
s = (6–10 GeV/nucleon)2, which would be a rather challeng-
ing proposition. By contrast, it appears that the region would
be well within reach of FAIR which is planned to bombard
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fixed targets with heavy ion beams having kinetic energies of
5–40 GeV/nucleon.

Finally, according to the most refined lattice QCD studies
[8–12], it appears that the region of highest freeze-out density
lies well beyond the critical region where the transformation
between the quark-gluon plasma and the hadronic resonance
gas changes from being merely a crossover to being a genuine
first-order phase transition. This fact is helpful to the prospect
of probing this phase transition by means of heavy ion
collisions.

Let us briefly summarize: Analyses of experimentally
obtained hadronic yield ratios at a variety of collision energies
have shown that the data can be well reproduced within
the conceptually simple statistical model that describes an
ideal hadron resonance gas in statistical equilibrium. Fur-
thermore, the extracted freeze-out values of the temperature
and the baryon chemical potential exhibit a smooth and
monotonic dependence on the collision energy and can be
simply parametrized. We have used these results to examine

how freeze-out appears when represented in terms of the
basic baryon and energy densities, rather than chemical
potential and temperature. These quantities are more basic,
and they are of more direct relevance to the collision dynam-
ics, because they are subject to corresponding conservation
laws.

We have found that the freeze-out value of the net baryon
density exhibits a maximum as the collision energy is being
scanned, with a value of about three-quarters of the saturation
density. In a fixed-target configuration, this maximum freeze-
out density is reached for a beam kinetic energy of 20–
30 GeV/nucleon. This is well within the range of the planned
FAIR at GSI, and it may also be accessible in the low-energy
campaign now under preparation at RHIC.
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