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Nuclear matter saturation point and symmetry energy with modern nucleon-nucleon potentials
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We determine the saturation properties of nuclear matter within the Brueckner-Hartree-Fock approach based on
a large set of modern nucleon-nucleon potentials and confirm the validity of the Coester band. The improvement
of the saturation point when including nuclear three-body forces is pointed out and comparison with the Dirac-
Brueckner-Hartree-Fock results is made.
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Since the early 1980s we have known that the classical
Brueckner-Hartree-Fock (BHF) approach to nuclear matter [1]
is unable to reproduce exactly the empirical saturation point
of symmetric nuclear matter, i.e., the saturation density ρ0 ≈
0.17 fm−3 and binding energy per nucleon B/A ≈ (−16 ±
1) MeV [2]. Instead the BHF saturation points obtained
with different realistic nucleon-nucleon (NN ) potentials were
found to lie within a narrow band, close to the so-called Coester
line [3], yielding either a too large saturation density or a too
small binding energy.

However, the concept of the Coester line was originally
established based on BHF calculations using the simple but
rather unrealistic gap choice prescription for the single-particle
energies [1,3], whereas nowadays the continuous choice is
routinely used. Moreover, the numerical accuracy of the BHF
calculations has been greatly improved due to more advanced
computational facilities. Nevertheless it has been confirmed
that this deficiency persists up to the third order in the hole-line
expansion [4], hinting at the necessity of including the effect
of three-nucleon forces (TBF) [5–7] in the BHF approach.
Indeed, such a procedure leads to substantial improvement of
the saturation properties [6–8]. Furthermore, new accurate NN
potentials based on novel theoretical concepts have become
available, for example, the N3LO potential of Ref. [9] based
on chiral symmetry or the strongly nonlocal IS potential of
Ref. [10].

We therefore think it is useful to give an update of the
situation employing the most recent NN potentials and also
to demonstrate the improvement of saturation achieved by
including three-body forces within the BHF scheme. This
is the main purpose of the present report. In addition we
present results for the symmetry energy obtained with the
different potentials, which is of great importance in particular
for astrophysical applications: It essentially determines the
proton fraction of β-stable matter and thus influences physical
properties like the equation of state (EOS) and cooling
processes [8,11]. Furthermore, the density derivative of the
symmetry energy appears to be strongly correlated with the
difference between neutron and proton rms radii (neutron skin
thickness) of heavy nuclei [12].

We begin with a short review of the theoretical framework:
The microscopic Brueckner-Bethe-Goldstone description of

nuclear matter is based on a linked cluster expansion of the
energy per nucleon of nuclear matter [1]. The basic ingredient
is the Brueckner reaction matrix G, which is the solution of
the Bethe-Goldstone equation,

G[ω; ρ] = V +
∑

ka,kb>kF

V
|kakb〉〈kakb|

ω − e(ka) − e(kb) + iε
G[ω; ρ],

(1)

where V is the bare nucleon-nucleon interaction, ρ is the
nucleon number density, and ω the starting energy. The
single-particle energy is

e(k) = e(k; ρ) = k2

2m
+ U (k; ρ) (2)

and the propagation of intermediate nucleon pairs is con-
strained above the Fermi momentum kF . The BHF approx-
imation for the single-particle potential U (k; ρ) using the
continuous choice prescription is

U (k; ρ) = Re
∑

k′ � kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉a, (3)

where the subscript a indicates antisymmetrization of the ma-
trix elements. Because of the occurrence of U (k; ρ) in Eq. (2),
Eqs. (1)–(3) constitute a coupled system of equations that
needs to be solved self-consistently. In the BHF approximation
the energy per nucleon is given by

B

A
= 3

5

k2
F

2m
+ 1

2ρ
Re

∑
k,k′ � kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉a. (4)

The basic input quantity in the Bethe-Goldstone equation (1) is
the NN interaction in free space, V . In this work we perform a
survey adopting a large number of modern potentials, namely
the Paris potential [13]; the Argonne V14 [14] and V18 [15]
potentials; the Bonn A, B, C [16] and CD-Bonn [17] potentials;
the Reid 93 and Nijmegen 93, I, and II potentials [18]; as well
as the most recent N3LO [9] and IS [10] potentials.

Technically, we have tried to obtain accurate results by
enforcing the self-consistency condition Eq. (3) up to k =
9 fm−1 in momentum space and by including a large number
of partial waves (Jmax = 9) in the expansion of the G matrix.
The remaining angle-average approximation for Pauli operator
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and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑
σk,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.
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FIG. 3. Correlation between deuteron D-state probability and
saturation density for the BHF results with different potentials.

correlated with the value of the deuteron D-state probability
PD = ∫

d3ru2
L=2(r), i.e., with the strength of the tensor force

of the given potential [3]. We test this supposition in Fig. 3.
In fact, a definite linear dependence is found only for the
various Bonn and the N3LO potentials, whereas the remaining
potentials do not exhibit any well-defined correlation between
the two quantities.

Finally, Fig. 4 shows the symmetry energies, defined as
difference between the binding energies of pure neutron
matter and symmetric matter, obtained with the different

FIG. 4. (Color online) Symmetry energy obtained with different
potentials within the BHF approach with (upper, red curves) and
without (lower, black curves) TBF. The inset shows the values at
normal density ρ0 = 0.17 fm−3 on a magnified scale.

TABLE I. Properties of nuclear matter obtained with different
potentials.

ρ (fm−3) −B/A (MeV) Esym (MeV) PD (%)

Paris 0.270 17.6 29.4 5.8
Argonne V14 0.276 18.1 28.6 6.1
Argonne V18 0.259 17.3 29.9 5.76
Bonn A 0.419 28.4 32.1 4.4
Bonn B 0.341 22.0 31.8 5.0
Bonn C 0.257 16.4 28.5 5.6
CD-Bonn 0.374 21.9 31.1 4.85
Reid 93 0.328 19.8 30.0 5.70
Nijmegen 93 0.285 19.6 30.4 5.76
Nijmegen I 0.348 20.7 30.5 5.66
Nijmegen II 0.326 19.4 29.5 5.64
N3LO 0.408 24.5 31.2 4.51
IS 0.412 26.0 32.6 3.60
Paris + TBF 0.220 17.3 30.1
V14 + TBF 0.225 15.6 29.8
V18 + TBF 0.211 15.0 32.1

models. One observes in all cases values that increase nearly
linearly with increasing density. Generally, including TBF
increases strongly the symmetry energy at high densities
and leads therefore in astrophysical applications to larger
proton fractions in β-stable matter, a stiffer EOS, and larger
maximum neutron star masses than the (unrealistic) pure BHF
results [8]. In particular, the threshold value of an 11% proton
fraction allowing direct Urca cooling is easily traversed with
the EOS including TBF. The symmetry energies obtained
at saturation density ρ = 0.17 fm−3 range from 28.5 MeV
(Bonn C) to 32.6 MeV (IS) and are shown in the inset of the
figure.

We summarize our results for the saturation point, sym-
metry energy, and D-state probability obtained with the
different potentials in Table I. In conclusion, we have reviewed
the current status of the Coester line, i.e., the saturation
points of nuclear matter obtained within the BHF approach
using continuous single-particle energies and employing the
most recent accurate nucleon-nucleon potentials. Our results
confirm the concept of a “line” or “band,” density and energy of
the various saturation points being strongly linearly correlated.
The BHF results including TBF (as well as the DBHF results),
predict saturation in close proximity of the empirical point,
whereas some of the most recent potentials yield strong
overbinding of nuclear matter within the Brueckner scheme.
The supposition of a strict correlation between the deuteron
D-state probability and saturation is not generally confirmed
by our extended data set. Furthermore, all calculations yield
symmetry energies of about 30 MeV at normal density,
which are increasing monotonously and roughly linearly with
density.

For the future we recommend studying and refining in
even more detail the microscopic TBF to narrow the margin
of uncertainty associated with these forces. Also, DBHF
calculations employing potentials other than the Bonn ones
or including the effect of TBF are thus far unavailable and
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would be very useful for drawing more definite conclusions
regarding this theoretical approach.
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