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High-density symmetry energy and direct Urca process
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The symmetry energy of nucleonic matter is usually assumed to be quadratic in the isospin density. While this
may be justified at subsaturation densities, there is no need to enforce this restriction at supersaturation densities.
The presence of a quartic term can strongly modify the critical density for the direct Urca process which leads to
faster cooling of neutron stars. Neutron star cooling predictions which lie below the observational data can, for
some equations of state, be repaired with a quartic term which effectively turns off the direct Urca process.
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I. INTRODUCTION

The equation of state of nucleonic matter is often decom-
posed into an isospin-symmetric and an isospin asymmetric
part

E(n, δ) = Enuc(n, δ = 0) + δ2S(n) + δ4Q(n) + ..., (1)

where n = nn + np, δ = 1 − 2np/n,Enuc is the energy per
baryon of nuclear matter and S and Q are arbitrary functions
of density. Most often, Q is sufficiently small so that it can be
ignored, and then Esym = S(n) is the density-dependent and
isospin-independent symmetry energy.

Without the Coulomb interaction, the near isospin symme-
try of QCD predicts that pure neutron matter and pure proton
matter should have the same energy density. Terms in Eq. (1)
with odd-powers in delta are thus forbidden, assuming the
δ expansion is analytic. Near the nuclear saturation density,
it has been suggested that the truncation to order δ2 for
the potential energy part of the equation of state is a very
good approximation for densities below or near the nuclear
saturation density, 0.16 fm−3 [1–6]. In this article, the effect
of the quartic term in Eq. (1) at higher density is examined,
where no constraints on the quartic terms are known because
the uncertainty contained in many-body effects.

The major effect of a “quartic term” (i.e., a term that is of
fourth-order in the isospin deviation, δ) is to change the ratio
of protons to neutrons at higher densities. All other things
remaining equal, the effect on neutron star masses and radii
from a quartic term is typically small. However, the critical
density for the direct Urca cooling process [7],

n → p + e + ν̄e and p + e → n + νe, (2)

is very sensitive to the number of protons present in dense
matter. This process can only proceed when the conditions for
momentum and energy conservation can be simultaneously
satisfied, when the proton fraction is larger than about
10 percent. The presence of a quartic term in Eq. (1) can
either move the critical density for the direct Urca process to
much lower densities, or to densities larger than the central
density of the maximum mass neutron star.

Neutron stars cool much more quickly when the direct
Urca process is allowed [8,9]. Thus understanding the possible
magnitude of quartic terms is essential in describing the
cooling of neutron stars.

II. ORIGINS OF QUARTIC TERMS

For the present discussion, it is useful to separate the
equation of state into contributions to the potential and kinetic
energy. While this demarcation is not necessarily unique,
we use the term “kinetic energy part” to refer to the Fermi
gas portion (including the interactions present in the nucleon
effective mass) of the equation of state (whether relativistic
or non-relativistic) and “potential energy part” to refer to the
remainder. The kinetic energy part of the symmetry energy
naturally contains quartic terms in all equations of state. The
potential energy part of the equation of state is the primary
consideration here, but it should be noted that interactions can
affect the size of quartic terms in the kinetic energy through
their effect on the nucleon effective masses.

In relativistic mean-field models [10–14] the many-body
interactions have a nontrivial isospin dependence even in their
most trivial form. The linear Walecka model, for example,
already has quartic terms (albeit small) in the potential part of
the energy density. These quartic terms can be much stronger
when three- and higher-body contributions are included. An
example is a term proportional to σρ2 where σ is the scalar-
isoscalar meson and ρ is the vector-isovector meson. In the
context of a relativistic point-coupling model [15–17], such
a term would correspond to a three-body nucleon-nucleon
interaction of the form

ψ̄ψ(ψ̄γ µ�τψ) · (ψ̄γµ�τψ). (3)

In Skyrme-like models, no quartic term is present in the
potential energy part of the equation of state. The two-body
interaction present in the Skyrme model results in two powers
of density, and the three-body interaction is treated as a density-
dependent two-body interaction where the additional density
dependence is assumed to be exactly isospin symmetric.

Modern microscopic-macroscopic [18] and Hartree-Fock-
based [19] models of nuclear masses contain explicit non-
quadratic terms in the form of the phenomenological term
called the Wigner energy. This term is often thought to
originate in isovector pairing [20–25]. Pairing is thought to be
primarily a surface effect and vanishes in the infinite baryon
number limit. Thus it does not contribute to the equation of
state of infinite nucleonic matter here. However, if the Wigner
energy was shown to have a different origin, or if the pairing
energy was shown to be partially a volume effect (rather
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than a surface effect), then it would contribute to the isospin
dependence of the symmetry energy. Neutron star matter,
however, is typically sufficiently neutron-rich that isovector
pairing is not a strong contribution.

III. CONVENIENT PARAMETERIZATION OF THE
QUARTIC DEPENDENCE

A standard alternative to Eq. (1) is to define the symmetry
energy using the second derivative with respect to the isospin
asymmetry

Esym(n, δ) = 1

2

d2E(n, δ)

dδ2
= S(n) + 6Q(n)δ2, (4)

where ε is the energy density. In this work, Eq. (4) will be
taken to be the definition of the symmetry energy. If there are
no quartic terms in Eq. (1), then Esym = S(n) is independent of
the isospin asymmetry, δ. In the presence of quartic terms, this
definition of the symmetry energy in Eq. (4) is more closely
connected to the experimental observables based on nuclei
which like close to the N = Z line than the alternative of
defining the symmetry energy as the energy difference between
pure neutron matter and isospin-symmetric nuclear matter.

A convenient way to parametrize the addition of a quartic
term is to define η as

η(n) = E(n, 1) − E(n, 1/2)

3[E(n, 1/2) − E(n, 0)]
= 4S(n) + 5Q(n)

4S(n) + Q(n)
. (5)

This parameter is unity when the quartic term is zero and
greater or less than one depending on whether the symmetry
energy is increased or decreased by the quartic term. This
parameter is more convenient for numerical work than using
the generalization of Eq. (4) [6],

Esym,4(n) = 1

24

d4E(n, δ)

dδ4
= Q(n), (6)

since numerical fourth derivatives can be difficult to compute
accurately. The value of η is restricted by ensuring that the
derivative of the energy per baryon as a function of delta does
not vanish at any point other than at δ = 0 corresponding
to isospin-symmetric nuclear matter. This guarantees that, at
fixed density, nuclear matter is always the most energetically
favored configuration and neutron matter is always the most
costly configuration (when ignoring the Coulomb interaction
and possible constraints from β-equilibrium). The proper lim-
its on η, 3/7 < η < 5 are easily obtained from the definition
above. Sometimes it is useful to distinguish the value of η as
obtained from the “kinetic” part of the EOS, ηkin, that obtained
from the “potential” part of the EOS, ηpot, and that obtained
from the full EOS, ηtot. Note that ηtot is not trivially related to
the individual contributions ηkin and ηpot.

Enforcing a particular density-dependence of η on the
potential part of a given equation of state is straightforward.
Defining T as

T (xp) = 4

1 + 3η

[ − 3xp + 19x2
p − 32x3

p + 16x4
p

+ 7xpη − 23x2
pη + 32x3

pη − 16x4
pη

]
, (7)

where xp = np/n, one can construct a new equation of state
from any equation of state of neutron and nuclear matter using

Epot(n, δ) = T Epot,nuc(n) + (1 − T )Epot,neut(n). (8)

[Note that the limit η → 1 gives the correct expression for a
purely quadratic symmetry energy, 1 − (1 − 2xp)2.] Only the
potential energy part of the equation of state has been modified,
and the kinetic energy part remains unchanged. The quantity
T is density dependent if η is density dependent, as is typical
for many equations of state. The corresponding potential parts
of the neutron and proton chemical potentials are given by

µpot,n = T µpot,nuc,n + (1 − T )µpot,neut,n

+ T ′(xp)
(xp − 1)

n
(µpot,neut,n − µpot,nuc,n)

(9)
µpot,p = T µpot,nuc,p + (1 − T )µpot,neut,p

+ T ′(xp)
xp

n
(µpot,neut,p − µpot,nuc,p).

The effective masses are not modified here since they are in
the kinetic energy part of the EOS.

The behavior of the energy per baryon as a function of δ

at saturation density in the equation of state (EOS) of Akmal
et al. (APR) [26] constructed as above to have varying values
of ηpot is given in Fig. 1. The deviation is not large, at most
a couple MeV near saturation density for the most extreme
values of η.

IV. THE VALUE OF η FOR MODERN EQUATIONS OF
STATE

In addition to APR from above, several relativistic mean-
field (RMF) models are used in this work, all of which are
constrained to have the following properties at saturation

n0 = 0.16 fm−3

E/A = −16 MeV

K = 230 MeV (10)

Esym = 34 MeV

M∗/M = 0.8,
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FIG. 1. (Color online) The energy per baryon of the APR EOS
at saturation density as a function of the proton fraction, xp , for the
trivial and limiting values of ηpot.
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TABLE I. The couplings for the RMF, RMFlo, and RMFhi
models. The units are all given so that the Lagrangian has units
MeV4 when the meson fields are in MeV and the nucleon fields in
MeV3/2. Omitted couplings are equal to zero.

RMF

gσ 7.721 gω 7.955
gρ 8.608 κ 21.40
λ −6.227 ×10−4

RMFlo
gσ 7.692 gω 7.998
gρ 14.00 κ 18.9
λ 5.188 ×10−3 ζ 0.03801
ξ 1.499 a1 69.6
a2 1.052 b1 0.05251
a3 8.446 ×10−3 a4 −2.063 ×10−5

b2 −8.085 ×10−6

RMFhi
gσ 7.677 gω 8.021
gρ 7.551 κ 17.50
λ 8.361 ×10−3 ζ 0.05880
ξ 0.02870 a1 −35.30
a2 −0.66605 b1 0.2719
a3 1.281 ×10−3 a4 2.062 ×10−5

b2 1.127 ×10−5

where n0 is the saturation density, E/A is the binding energy,
K is the compressibility, Esym is the symmetry energy at the
saturation density, and M∗/M is the reduced Dirac effective
mass. In addition to the standard RMF model with no nonlinear
couplings except for the cubic and quartic self-interactions
among the scalar mesons, two RMF models are constructed
with small (“RMFlo”) and large (“RMFhi”) values of ηpot in
order to demonstrate the variations that are possible within this
formalism. These two models do not necessarily represent the
most extreme cases, as a full optimization was not performed.
The couplings are given in Table I and utilize the Lagrangian
and notation described in Ref. [27]. All of these couplings are
within a factor of two of the constraints required by naturalness
[13,28].

The Skyrme [29] model “SLy230a” [30] is used for com-
parison. This model matches the binding energies and charge
radii of several ground-state nuclei, the known properties of
saturated nuclear matter, and results in reasonable neutron star
properties.

The momentum dependence of the nucleon optical potential
is essential for transport simulations of heavy-ion collisions.
The MDI (momentum-dependent interaction) EOS [31], which
has successfully described aspects of heavy-ion collisions
at intermediate energies, is included here. In addition to
providing for reasonable properties of saturated nuclear matter,
the isoscalar potential of the MDI EOS coincides with pre-
dictions from the variational many-body theory using inputs
constrained by nucleon-nucleon scattering data [3,32], and the
isovector potential agrees with the momentum dependence
of the Lane potential extracted from (p,n) charge exchange
reactions up to about 45 MeV [32,33]. We use the formulation
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FIG. 2. (Color online) The density dependence of ηpot and ηtot

determined from Eq. (5) for the equations of state considered in this
work as described in the text. The kink in APR is due to the phase
transition to the high-density phase.

as described in Ref. [31] with the symmetry energy parameter,
x, set equal to zero.

The APR and Skyrme EOSs are special in that ηpot = 1
independent of density. In the case of the Skyrme models, this
results from the structure of the interaction, and in the case of
APR, ηpot = 1 by construction.

In Fig. 2, the intrinsic values of η (the procedure described
in Eqs. (7)–(10) has not yet been employed) as obtained from
the EOSs described above are plotted, as well as that obtained
by fitting the results in Ref. [5]. Note that only the total energy
per baryon was reported in this latter reference, so there are
no results for the top panel. The value of ηpot for the typical
RMF model is quite close to unity, while RMFlo and RMFhi
(by construction) have values significantly different from 1.
The maximum value of ηpot for the RMFhi EOS, even though
it lies outside the graph, is below the limit η < 5 mentioned in
the introduction. The MDI EOS has a large value of ηpot, even
at lower densities where most models have ηpot ∼ 1

The values of ηtot shown in the bottom panel show a little
more variation. The value of ηtot from the BHF calculation is
quite close to 1, even at lower densities where other models
(except RMFlo) predict larger values. This is typical; in order
to get ηtot equal to unity at low densities, one frequently has
ηpot < 1 in order to cancel the effect of ηkin which is most
often larger than one. It is also quite clear that the effects
of the kinetic part of the equation of state are not trivial in
determining ηtot. The ordering of the values of η for the RMFlo
and RMFhi EOSs reverses depending on whether or not one
is considering the total equation of state or only the potential
energy part.

V. DIRECT URCA

When the neutron star temperature is small enough that it
can be ignored in comparison to the Fermi momenta of the
consituents, the critical density for direct Urca is equivalent
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FIG. 3. (Color online) The critical density for the direct Urca
process for the APR EOS as a function of ηpot. Points with ηpot < 1/2
were not plotted because the Urca process is not allowed at any
density for this range of η.

to the condition that one be able to form a triangle with the
neutron, proton, and electron Fermi momenta. This triangle
may be formed if the squared area obtained by Heron’s formula
is positive, i.e.,

s(s − kFn)(s − kFp)(s − kFe) > 0, (11)

where s is the semiperimeter defined by s = (kFn + kFp +
kFe)/2. This reduces the familiar condition kFn < kFp + kFe

for neutron-rich matter and is more easily generalizable to
other Urca-like processes.

When an EOS has a proton fraction which is small, true of
the APR EOS and some EOSs based on Skyrme interactions,
the presence of a quartic term can drastically affect the critical
density for the direct Urca process. This is demonstrated in
Fig. 3, where the critical density is plotted as a function of
ηpot, assuming that ηpot is density independent. Depending on
the relative strength of the quartic dependence, Urca either
proceeds in all neutron stars with masses larger than about
1.4 solar masses or in no neutron stars of any mass. Although
values of ηpot less than 1/2 are allowed, the corresponding
critical densities are already above the central density for the
maximum mass configuration. The maximum mass and radius
of the maximum mass neutron star as a function of ηpot are also
plotted in Fig. 3. These quantities are essentially unaffected
by the modification of ηpot.

RMF models typically have a large symmetry energy and
a large proton fraction, and thus allow the direct Urca process
at low densities. However, this is not required, and Ref. [27]
constructed a couple RMF models with small neutron star radii
(named SR1, SR2, and SR3) which do not allow direct Urca
at any density lower than the central density of the maximum
mass configuration. These models also typically have a smaller
symmetry energy at saturation density than the models utilized
here. The models RMF, RMFlo, and RMFhi, have critical
densities of 0.306, 0.275, and 0.806 fm−3, respectively. Note
that RMFhi has a rather large critical density for direct Urca
which could easily be made larger by decreasing the value of
the symmetry energy at saturation density.

Reference [34] compared the radii of 1.4 M� neutron stars
with the MDI EOS using different symmetry energies and com-
paring with isospin diffusion data from intermediate-energy
heavy-ion collisions. This reference found that the threshold
for the direct URCA process was signficantly different for the
APR EOS and for the MDI EOS (with x = 0) even though they
had nearly identical symmetry energies. This is, in large part,
due to the signficant presence of quartic terms in the MDI EOS
as demonstrated above. This does not contradict the constraint
on neutron star radii from Ref. [34], since neutron star radii
are insensitive to quartic terms, as demonstrated in Fig. 3.

VI. DISCUSSION

Quartic terms play an important role in determining the
critical density for the direct Urca process in neutron stars.
These terms can be easily generated within the context of
RMF models of high-density nucleonic matter. While this
work means that it will be more difficult to interpret neutron
star cooling data without more information on the value of η

at large densities, it also means that more neutron star cooling
data is essential to understanding the nature of the high-density
equation of state. Observations of neutron stars masses and
radii will have difficulty constraining the value of η.

Ref. [35] studied in detail the cooling of neutron stars
constructed with the APR EOS. They found that, because of
the direct Urca process, stars with masses larger than about
1.7 M� cool sufficiently rapidly as to be cooler than nearly
all of the observed neutron stars. As these authors point out,
this is somewhat sensitive to the assumptions about the pairing
interaction, and sufficiently cool neutron stars with large mass
may be difficult to observe. Nevertheless, this work offers
another possible interpretation: the actual value of ηpot may
be sufficiently small at high density to turn off the direct
Urca process thus making the computed cooling curves match
the comparatively warm neutron stars which are given in the
experimental data.

Protoneutron star cooling (during the first minute when
the core is still hot) always contains a significant contribution
from direct Urca (e.g., see the review in Ref. [36]) since the
finite temperature allows momentum conservation to be easily
fulfilled. However, the proton fraction of the hot neutron star
matter dictates the flavor content of the associated neutrino sig-
nal and this will be modified by the presence of quartic terms.

Reference [27] pointed out that there is a correlation
between the threshold for direct Urca and the neutron skin
thickness of lead. This work clearly indicates that the cor-
relation is predicated on the implicit assumption that ηpot is
nearly unity for the relevant densities. This will also, for some
models, impact the suggested correlation between the direct
Urca process and neutron star radii [37], since quartic terms
are important for the former but not for the latter.

It might be interesting to explore the effect of a quartic
term on the symmetry energy at finite temperature. The value
of η for the kinetic part of the equation of state could become
closer to unity since finite-temperature effects are proportional
to T 2. Nevertheless, various experiments are now probing the
temperature-dependence of the symmetry energy and might
provide constraints on a quartic behavior [38–40].
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The effects of a phase transition to hyperons, Bose-
condensates (except for that already present in APR), or quarks
have been ignored. It might be interesting to explore the
value of η for equations of state involving phase transitions.
Although quark matter is often more isospin-symmetric, it also
frequently has a significant gap, which prohibits the direct Urca
process for low enough temperatures.
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