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Coupling of nuclear and electron modes in relativistic stellar matter
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The conditions under which nuclear collective modes couple to plasmon modes in asymmetric nuclear matter
(ANM) neutralized by electrons, which is of interest for the study of neutron stars and supernovae, are investigated.
The calculations were performed within a relativistic mean-field approach to nuclear matter, and the Coulomb
field was included. We show that the coupling may be so strong that it affects the onset of the nuclear mode at
low densities and may also affect its isovector/isoscalar character.
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I. INTRODUCTION

The understanding of compact stars, supernova cores, and
neutron stars requires a multidisciplinary theoretical effort,
including astrophysics, nuclear and particle physics, and
thermodynamics. From low density to few times the nuclear
saturation, these stellar objects are essentially composed of
neutrons, protons, electrons, and possibly, when their mean
free path is short enough, neutrinos. The electrons neutralize
the proton charge and thus suppress the diverging Coulomb
contribution to the energy. Not only does the equation of state
of stellar matter have to be understood, but also the neutrino
mean free path in the medium has to be well described.
It has been shown that the neutrino opacity is affected by
nucleon-nucleon interactions due to coherent scattering off
density fluctuations [1]. Both single-particle and collective
contributions have to be taken into account. It is, therefore,
important to have a through out understanding of the collective
modes in asymmetric nuclear matter to predict the behavior of
neutrinos.

Moreover, the liquid-gas phase transition also plays an
important role in the collapse of supernova into neutron stars
or black holes because stellar matter at low densities consists
of neutron-rich nuclei immersed in a gas of neutrons [2].
Hence, isospin asymmetry is a very important quantity when
phase transition takes place. Moreover, at very low densities,
a competition between the long-range Coulomb repulsion and
the short-range nuclear attraction can lead to the formation
of a nonhomogeneous matter known as nuclear pasta [3],
which can appear in different structures and its properties
have important consequences in the crust of neutron stars
and in the core-collapse of supernova [4–7]. The existence
of a nonhomogeneous phase is intrinsically related to the
appearance of collective unstable modes.

In a previous work [8] we studied the longitudinal
nuclear and mesonic collective stable and unstable modes
arising from small oscillations around a stationary state
in nuclear matter. This investigation was performed in the
framework of a relativistic mean-field hadronic model within
the Vlasov formalism. We also investigated the influence of the

electromagnetic interaction and of the presence of electrons
on the unstable modes [9] and compared the dynamical
instability region with the thermodynamical one. In the same
work we studied the role of isospin and the modification of
the distillation phenomenon due to the contribution of the
Coulomb field and electrons.

In the present work we investigate the role of isospin and the
presence of the Coulomb field and electrons on the collective
nuclear modes. It has been shown [8,10] that at lower densities
an isovector-like collective mode exists. The onset density
of the mode depends on the isospin asymmetry. At higher
densities, two to three times the saturation density, this mode
changes to an isoscalar-like mode and the authors of Ref. [10]
have even suggested that the experimental observation of
the neutron wave would identify the transition density. We
expect the presence of electrons to affect the properties of
these modes, namely the excitations with large wavelengths
when protons and electrons must move together. We restrict
ourselves to the zero-temperature case.

Collective electron modes known as plasmon modes have
already been extensively studied within nonrelativistic [11]
and relativistic [12] electron gas models. A comparison
between these two models has been investigated in a recent
work [13], where the one-photon pair creation (PC) appears
as a possible dissipation mechanism in the relativistic case. As
already stated, neutrino emission from the core of compact
stars depends on the dispersive properties of the matter
considered. In Ref. [14] dissipation and dispersion in plasmas
was investigated and it was shown that dissipation by PC
is not completely suppressed above the PC threshold. If PC
is allowed, photons decay much faster into pairs than into
neutrinos.

Different relativistic phenomenological models have been
used in the description of nuclear and stellar properties. For
densities up to nuclear saturation density they predict similar
results for the equation of state of nuclear matter and ground-
state properties of nuclei. However, differences occur at large
densities and/or finite temperatures. They should, therefore,
be tested on a larger interval of densities and temperatures to
have predictive power.
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In what follows we call neutral matter composed of
protons, neutrons, and electrons npe matter and charged matter
composed only of protons and neutrons np matter. In Sec. II
we present a brief review of the Vlasov equation formalism
for nuclear matter, including electrons and the electromagnetic
field already discussed in Refs. [9,15]. A brief discussion of
the plasmon modes predicted within the present formalism
is also included. In Sec. III the numerical results are shown
and discussed. Finally, in the last section the most important
conclusions are drawn.

II. THE VLASOV EQUATION FORMALISM

We consider a system of baryons, with mass M interacting
with and through an isoscalar-scalar field φ with mass ms ,
an isoscalar-vector field V µ with mass mv , and an isovector-
vector field bµ with mass mρ . We also include a system of
electrons with mass me. Protons and electrons interact through
the electromagnetic field Aµ. The Lagrangian density reads:

L = ψ̄

[
γµ

(
i∂µ − gvV

µ − gρ

2
τ · bµ − eAµ 1 + τ3

2

)

− (M − gsφ)] ψ + 1

2

(
∂µφ∂µφ − m2

sφ
2) − 1

3!
κφ3

− 1

4!
λφ4 − 1

4
	µν	

µν + 1

2
m2

vVµV µ − 1

4
Bµν · Bµν

+ 1

2
m2

ρbµ · bµ − 1

4
FµνF

µν

+ ψ̄e[γµ(i∂µ + eAµ) − me]ψe, (1)

where 	µν = ∂µVν − ∂νVµ, Bµν = ∂µbν − ∂νbµ − gρ(bµ ×
bν), and Fµν = ∂µAν − ∂νAµ. The model comprises the
following parameters: three coupling constants gs, gv , and
gρ of the mesons to the nucleons; the nucleon mass M;
the electron mass me; the masses of the mesons ms,mv,mρ ;
the electromagnetic coupling constant e = √

4π/137; and the
self-interacting coupling constants κ and λ. We have used
the set of constants identified as NL3 taken from Ref. [16].
For this case, the saturation density that we refer as ρ0 is
0.148 fm−3.

A. Vlasov equation

The time evolution of the distribution function is described
by the Vlasov equation

∂fi

∂t
+ {fi, hi} = 0, i = p, n, e, (2)

where {, } denotes the Poisson brackets. Equation (2) expresses
the conservation of the number of particles in phase space and
is, therefore, covariant.

We denote by f (r, p, t) = diag(fp, fn, fe) the one-
body phase-space distribution function in isospin space
and by hi =

√
(p − V i)2 + (M − gsφ)2 + V0i , with i =

p, n, he = √
(p + eA)2 + m2

e − eA0 the one-body Hamilto-
nian, where V0i = gvV0 + gρ

2 τib0 + eA0
1+τi

2 , V i = gvV +

gρ

2 τib + eA 1+τi

2 , with i = p, n, τi = 1 (protons) or -1 (neu-
trons).

At zero temperature and for particles obeying Fermi-Dirac
statistics, the value of the distribution function is either 1
or 0, because the single-particle state is either occupied
by one particle or empty. The state that minimizes the
energy of asymmetric nuclear matter is characterized
by the Fermi momenta PFi, i = p, n, PFe = PFp and
is described by the distribution function f0(r, p) =
diag[�(P 2

Fp − p2), �(P 2
Fn − p2), �(P 2

Fe − p2)] and by
the constant mesonic fields [defined with a (0) superscript]
that obey the following equations m2

sφ
(0) + κ

2 φ(0)2 + λ
6 φ(0)3 =

gsρ
(0)
s , m2

v V
(0)

0 = gvj
(0)
0 , V

(0)
i = 0,m2

ρ b
(0)
0 = gρ

2 j
(0)
3,0, b

(0)
i = 0,

A
(0)
0 = 0, and A

(0)
i = 0.

A detailed description of the formalism with all the
definitions for the meson fields, densities, etc., is given in
Refs. [8,9,15], for instance.

B. Linearized Vlasov equation

Collective modes in the present approach correspond to
small oscillations around the equilibrium state, and they are
described by the linearized equations of motion [17]. We take
for the distribution function f = f0 + δf . As in Ref. [17] we
introduce a generating function S(r, p, t) = diag

(
Sp, Sn, Se

)
,

defined in isospin space such that the variation of the
distribution function is

δfi = {Si, f0i} = −{Si, p
2}δ(P 2

Fi − p2
)

. (3)

In terms of this generating function, the linearized Vlasov
equations for δfi are equivalent to the following time evolution
equations

∂Se

∂t
+ {Se, h0e} = δhe = −e

(
δA0 − p · δA

ε0e

)
, (4)

∂Si

∂t
+ {Si, h0i} = δhi = −gsδφ

M∗

ε0
+ δV0i

− p · δV i

ε0
, i = p, n, (5)

where δV0i = gvδV0 + τi
gρ

2 δb0 + e 1+τi

2 δA0 and δV i =
gvδV + τi

gρ

2 δb + e 1+τi

2 δA, which has to be satisfied only for
p = PFi . In Eq. (4) ε0e = √

p2 + m2
e and in Eq. (5) h0i =√

p2 + M∗2 + V0i = ε0 + V0i . The linearized equations of
the fields are obtained using the procedure already presented
in Ref. [8]. The longitudinal modes, with momentum k
and frequency ω, are well described by the ansatz Fi =
Fi,ω exp[i(ωt − k · r)] for the fields and for the generat-
ing functions Sj (r, p, t) = Sj

ω(cosθ ) exp[i(ωt − k · r)], j =
e, p, n, where θ is the angle between p and k. A different
choice of the generating function would allow us to study the
transverse modes [18]. This, however, will not be carried out
in the present work. For the longitudinal modes δV x

ω = δV
y
ω =

0 , δbx
ω = δb

y
ω = 0, and δAx

ω = δA
y
ω = 0.
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C. Dispersion relation

Equations (4) and (5) are written in terms of the amplitudes
Aωi related to the transition densities by δρi = 3

2
k

PFi
ρ0iAωi,

and they read
 1 + FppLp FpnLp C

pe

A Lp

FnpLn 1 + FnnLn 0
C

ep

A Le 0 1 − Cee
A Le





Aωp

Aωn

Aωe


 = 0, (6)

with Aωi = ∫ 1
−1 xSωi(x)dx, Li = L(si) = 2 − si ln (si + 1/

si − 1), where si = ω/ωoi = ω/(kVFi), VFi
= PFi

/εFi
being

the Fermi velocity of particle i, εF i =
√

P 2
Fi + M∗2, i =

p, n, εFe =
√

P 2
Fe + me

2, and with F ij = C
ij
s − C

ij
v

− τiτj C
ij
ρ − C

ij

A δipδjp. We also have

Cij
s = 1

2π2

M∗2g2
s

ω2 − ω2
s

1

PFi

PFjVFj ,

Cij
v = 1

2π2

g2
v

ω2 − ω2
v

(
1 − ω2

k2

)
P 2

Fj

VFi

,

Cij
ρ = 1

2π2

g2
ρ

4
(
ω2 − ω2

ρ

) (
1 − ω2

k2

)
P 2

Fj

VFi

,

C
ij

A = − e2

2π2

1

k2

P 2
Fj

VFi

,

where ω2
s = k2 + m2

s,eff, ω2
v = k2 + m2

v, ω
2
ρ = k2 + m2

ρ , with
m2

s,eff = m2
s + κφ0 + λ

2 φ2
0 + g2

s dρ
0
s .

From Eq. (6) we get the following dispersion relation[
1 − Cee

A Le

]
[1 + LpFpp + LnF

nn

+LpLn(FppFnn − FpnF np)]

−C
ep

A C
pe

A LeLp(1 + LnF
nn) = 0. (7)

D. Plasmon modes

As stated in the Introduction, the longitudinal response of
a relativistic degenerate gas of electrons was first studied by
Jancovici [12]. If we discard the nucleon degrees of freedom
the dispersion relation reduces to

1 − Cee
A L(se) = 0. (8)

The left-hand side term of Eq. (8) gives the dielectric constant
of the electron gas in the limit k � kFe and ω � εFe, [12],
which corresponds to the range of validity of the Vlasov equa-
tion. This is the semiclassical approximation that is obtained
neglecting the quantum recoil terms [13]. To understand the
coupling of the nuclear modes to the plasmon modes given by
Eq. (8), we represent the response of the free electron gas in
the figures of next section, whenever adequate, with thin lines.
There are two modes: a soundlike mode and a zero-sound
mode with a frequency

ω0 =
√

e2ρe

εFe

, (9)

at zero-momentum transfer.
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FIG. 1. Collective modes as a function of the momentum transfer
k for two different densities ρ0 and 2ρ0 and two proton fractions
yp = 0.1 and 0.2. The plasmon frequency at zero momentum ω0 is
defined in Eq. (9).

III. RESULTS AND DISCUSSION

In the present section we discuss the results obtained from
Eq. (7). We first discuss the behavior of the energy of the
collective modes in terms of the momentum transfer and the
proton fraction.

Figure 1 shows, for high isospin asymmetry, the dependence
of the energy of the collective modes on the momentum
transfer. The plasmonlike modes are represented by squares
and triangles and the nuclear mode by crosses. We also include
the results for np matter (thin dotted line) and for a relativistic
gas of free electrons (full thin lines). Above a given kmax

the plasmonlike modes do not propagate, which means that
Eq. (8) has no solution. The existence of low-lying nuclear
modes depends on the density and on the proton fraction: for
ρ = ρ0 and yp = 0.1 they do not exist for any value of k;
for ρ = ρ0 and yp = 0.2 it propagates until a kmax =
25 MeV; for ρ = 2ρ0 and yp = 0.2 the nuclear and plasmon
modes couple and they only exist as independent modes above
k = 14 MeV. Under the last conditions, the plasmonlike mode
propagates up to a value of kmax = 55 MeV. For large values
of k, the nuclear mode propagates in npe matter just as in
np matter.

We have just seen that the appearance of the collective
nuclear mode and its possible coupling to the plasmon
mode depend both on the density and the proton fraction.
We therefore study the collective modes as a function of
the proton fraction. In Fig. 2 we plot the energy of the collective
modes for k = 10 MeV and two different densities: ρ0 and 2ρ0.
We identify three modes: the two modes with larger energies
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FIG. 2. Collective modes as a function of the proton fraction. The
thin full lines are the plasmon energies of a gas of free relativistic
electrons and the thin dotted line the nuclear mode of np matter.

are plasmonlike modes and the low-lying mode is a nuclear
mode that also exists in np matter. Figure 2 represents two
different situations: for ρ = ρ0 the plasmon modes do not
couple to the nuclear mode for any proton fraction, whereas
the opposite occurs for ρ = 2ρ0. A first conclusion is that
the plasmonlike modes depend on the proton fraction that is
equal to the electron fraction, whereas the collective mode is
almost independent of this quantity. The energy of the highest
mode, corresponding to the zero-sound mode of a free electron
gas, increases with the electron fraction. In fact, in npe matter
this mode increases more with the electron fraction than the
prediction from the free electron gas. The energy of the lower
plasmon like mode decreases with the electron fraction and, if
the energy of the nuclear mode is high enough, the two modes
couple.

Having identified the main features of the plasmonlike and
nuclear modes, we next investigate the way the nuclear mode
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FIG. 3. Sound velocity of the collective modes for k = 50 and
100 MeV and proton fraction yp = 0.4. The thin dotted line stands
for np nuclear matter and the thin full lines are the plasmon modes of
a free relativistic electron gas.
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FIG. 4. Sound velocity as a function of density for k = 50 MeV
and yp = 0.1, 0.2, 0.4. Thin lines as described in the legend to Fig. 3.

is affected by the presence of electrons, in particular we study
under which conditions the coupling between the nuclear mode
and the plasmon mode is stronger. We discuss both the behavior
of the sound velocity of the nuclear mode and of the density
fluctuations for protons, neutrons, and electrons in terms of
the density and the proton fraction.

In Fig. 3 we represent the sound velocity in units of the
neutron Fermi velocity corresponding to the collective modes
of npe matter as a function of density. We include the results
for np matter (thin dotted line) and for a relativistic gas of free
electrons (full thin lines). As discussed in Ref. [9], the influence
of the electrons on the collective modes depends strongly
on the momentum transfer. For k = 100 MeV the presence

s n
s n
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FIG. 5. Sound velocity as a function of density for k = 10 MeV
and yp = 0.1, 0.2, 0.4. Thin lines as described in the legend to Fig. 3.
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FIG. 6. Density values at which the nuclear np (thin dotted line)
and the low-lying npe (full line) mode start propagating for different
values of k given in MeV versus the proton fraction.

of electrons has almost no effect on the nuclear modes,
but taking k = 50 MeV we have a different situation. The
soundlike plasmon mode couples with the nuclear mode at ρ ∼
0.5 fm−3. Above this density the nuclear modes disappears.
At low densities the presence of electrons affects the nuclear
mode giving rise to higher sound velocities.

In Fig. 4 we compare the behavior of the nuclear collective
modes for k = 50 MeV and different proton fractions yp as a
function of the density. We have already discussed the main
features for yp = 0.4 in Fig. 3. For the lower values of proton
fraction the coupling of the nuclear to the plasmon mode
occurs at much larger densities (0.7 fm−3 for yp = 0.2 and
above 1 fm−3 for yp = 0.1). Also the energy of the mode is
not affected below the density at which the coupling occurs.
Decreasing the proton fraction is equivalent to decreasing the
electron fraction and therefore the effect of electrons on the
nuclear modes is weaker for lower yp. However, if a smaller
momentum transfer is considered the results also change for
yp = 0.1, as seen in Fig. 5. For yp = 0.4 the isovector mode
below 0.2 fm−3 has a much higher sound velocity due to the
coupling to the plasmon mode. A similar effect occurs for
yp = 0.2: the onset of the mode occurs at lower densities than
would occur in np matter [8]. This effect is not so strong
for yp = 0.1 but for still lower momentum transfers it would
also be strong for this proton fraction, when the onset of the
isovector mode occurs at much lower densities and the mode is
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FIG. 7. The ratio of electron to proton density fluctuations as a
function of density for yp = 0.4 and (a) k = 10 MeV; (b) k = 50 MeV.
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FIG. 8. The ratio of proton to neutron density fluctuations as
a function of density for yp = 0.4 and (a) k = 10 MeV; (b) k =
50 MeV. The thin dotted line stands for the nuclear mode of
np matter.

well separated from the boundary sn = 1 below which Landau
damping does not allow the mode to propagate.

In Fig. 6 we compare the values of the onset density of the
nuclear mode in np and npe matter, for k = 5, 10, and 50 MeV,
respectively. In np matter, and independently of the momentum
transfer, at yp ∼ 0.25 there is a sudden drop on the density,
from ∼0.2 fm−3 to a small value close to zero. In npe matter the
behavior is similar for k = 50 MeV, with a drop on the density
for yp ∼ 0.24. However, for k = 5 and 10 MeV the drop occurs
at much lower values of yp, respectively, yp ∼ 0.12 and 0.15,
and is much steeper. The smaller the value of k the smaller the
value of yp at which the jump occurs. This is clearly due to
the effect of electrons, namely the attractive proton-electron
contributions that give rise to the last term in the dispersion
relation (7).

In Figs. 7 and 8 we plot, respectively, the ratios of the
electron-to-proton and proton-to-neutron density fluctuations
in npe matter. In Fig. 8 we also include the result obtained for
np matter. We take the proton fraction 0.4 and two values of
k, 10 and 50 MeV. For the larger k value the nuclear mode in
npe matter at densities below the crossing density, 0.3 fm−3,
has properties similar to the ones already found in np matter
[10,19]: the mode is isovector-like with a slightly larger
proton-to-neutron density fluctuation. In Fig. 7 we see that,
for this mode, protons and electrons move in phase, but the
ratio δρe/δρp is smaller for larger k values. From Fig. 7 we
also confirm the plasmonlike behavior of the higher energy
modes (squares and triangles) because both modes present
large negative values for the quantity δρe/δρp, i.e., electrons
and protons move out of phase. This behavior is disturbed only
by the coupling of the plasmon to the nuclear mode. For a small
k value, e.g., Figs. 7(a) and 8(a) obtained with k = 10 MeV, as
expected, we observe at smaller densities a stronger coupling
of the nuclear mode to the plasmon mode. This gives rise to a
strong isovector-like character to the nuclear mode: |δρp/δρn|
is much larger for npe matter than for np matter. At higher
densities the nuclear mode gets a plasmonlike character that
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can be seen from the large negative values the quantity δρe/δρp

gets. However, the ratio |δρp/δρn| takes very small positive
values: it seems that the proton fluctuations are frozen.

IV. CONCLUSIONS

In the present work, we studied the collective modes of
nuclear neutral matter that is of interest for the study of neutron
stars and supernovae. In particular, we studied the effect on
the collective modes of including the Coulomb interaction and
the possibility of the occurrence of a coupling between the
nuclear and the plasmon modes. The longitudinal response of
a degenerate relativistic electron gas presents two modes: a
soundlike mode at lower energies and a zero-sound branch
at higher energies. These modes only exist below a cutoff
frequency. We have shown that the soundlike branch may
couple to the nuclear mode at densities for which this mode has
an isovector character if the wave number of the perturbation
is low enough. For larger wave numbers/small proton fractions
it will couple to the nuclear mode at densities above the
isovector-isoscalar crossing density, ∼0.3 fm−3. However, for
sufficiently small wave numbers and large enough proton
fractions the coupling occurs even at small densities. We have
also shown that due to this coupling, the onset density of
the nuclear isovector mode is particularly sensitive to both
the proton fraction and the wave number of the perturbation
in npe matter. For np matter this onset depends only on the
proton fraction: it occurs at ∼0.2 fm−3 for yp < 0.25 and for
larger asymmetries it drops to a small density close to zero. In
npe matter the drop in density occurs at smaller yp values for

k < 50 MeV. This is due to proton-electron interaction. The
calculations were performed within a relativistic mean-field
approach to nuclear matter, namely the NL3 parametrization
of the NLWM but we believe that the main conclusions do
not depend on the model. Density-dependent models [20,21],
however, may show a slightly different dependence on the
momentum transfer.

The present results have implications mainly in astrophys-
ical objects and the related transport properties because we
are dealing with neutral matter. In particular, it is known
that neutrino interactions are crucial in the dynamics of the
core-collapse supernovae because they carry most of the
energy away. The properties of the plasmon modes are of
importance for the neutrino emission from dense compact
matter. In particular, one of the possible mechanisms of the
neutrino emissions involves the decay of a plasmon into a
neutrino-anti neutrino pair. All the calculations were done at
T = 0 MeV. The effect of including the Coulomb field at finite
temperature is under investigation.
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