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We propose a new approach in QCD sum rules applied for exotic hadrons with a number of quarks, exemplifying
the pentaquark �+(I = 0, J = 1/2) in the Borel sum rule. Our approach enables reliable extraction of the
pentaquark properties from the sum rule with good stability in a remarkably wide Borel window. The appearance
of its valid window originates from a favorable setup of the correlation functions with the aid of chirality of
the interpolating fields on the analogy of the Weinberg sum rule for the vector currents. Our setup leads to large
suppression of the continuum contributions which have spoiled the Borel stability in the previous analyses, and
consequently enhances importance of the higher-dimensional contributions of the OPE, which are indispensable
for investigating the pentaquark properties. Implementing the OPE analysis up to dimension 15, we find that the
sum rules for the chiral-even and odd parts independently give the �+ mass of 1.68 ± 0.22 GeV with uncertainties
of the condensate values. Our sum rule indeed gives rather flat Borel curves almost independent of the continuum
thresholds both for the mass and pole residue. Finally, we also discuss possible isolation of the observed states
from the KN scattering state on view of chiral symmetry.
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I. INTRODUCTION

The first discovery of the baryonic resonance with S = 1,

�+(1540), and its confirmation in subsequent low-energy
exclusive experiments in 2003 [1] triggered tremendous
amount of theoretical works on exotic hadrons in a short
time. Many of their studies have been devoted to clarifying
mainly its possible structure and its property such as spin and
parity, and further searching for other exotic states [2,3]. So
far, it is experimentally known that the �+ has minimal quark
contents, uudds̄, from observation of its decay mode into KN,
with I3 = 0 and most likely an isospin singlet I = 0 [4].

Yet the experimental evidence for the existence of �+ is
not so obvious. While new data with better statistics from the
LEPS Collaboration consolidate their positive evidence of the
�+ [5], the most recent experiment in low-energy exclusive
reaction with high statistics by the CLAS Collaboration [6],
however, showed negative evidence for the �+, suggesting that
their previous result would be just a statistical fluctuation. The
inclusive high-energy processes in e+e− or hadron collisions
have also claimed no evidence [7]. The disagreement between
the LEPS and the other experiments would possibly originate
from their differences of experimental setup and kinematical
conditions; the former experiment covers well the forward
angle, where the �+ would be produced by meson-exchange
production mechanism at low energy.

Theoretical study on existence of the �+ is also a very
important issue. Investigation of such an exotic hadron can be
the first step to explore the quark matter. To identify the exotic
state definitely, theoretical computations in direct approaches
of QCD with less assumptions and better accuracy are getting
more important. One of its possible analyses is the QCD sum
rule (QSR) [8], which is a powerful tool to address directly
nonperturbative dynamics peculiar to QCD as well as lattice

QCD and is a quite established approach for reproducing the
baryon masses [9] including their resonance states [10].

Indeed, a number of the QSR analyses for scrutinizing the
�+ mass were implemented with the help of the Borel sum
rules (BSR’s) [11–13] and the finite energy sum rules [14].
It is generally known that the former technique is superior
to the latter quantitatively, because in the former the highly
excited states can be controlled by the inverse Borel mass
(1/M) to isolate the desired pole contribution. To the best
of our knowledge, so far no BSR analyses for the �+
mass have focused upon desirable pole-dominance of the
�+, even accounting for higher corrections of the operator
product expansion (OPE). But rather they have stuck with an
undesirable continuum dominant region, so that they could
not establish valid Borel windows. The work in Ref. [14] has
closely viewed this problem and indeed they gave up relying
on the Borel technique.

Our main objective of this paper is to put forward a solution
to the problem in the BSR, by illustrating the I = 0 and
J = 1/2 case of the �+, in a general way for exotic hadrons
beyond the BSR. We here summarize the essential points of our
analysis: (I) In order to incorporate low-energy contributions
more into our analysis, we take into account the higher-
dimensional terms of the OPE up to dimension 15. (II) Through
a favorable linear combination of correlation functions, we
suppress the high-energy continuum contamination with the
aid of the chiral symmetry in analogy of the Weinberg sum
rule. These technical developments enable us to establish Borel
window wide enough to investigate the low energy hadronic
properties of the resonance and scattering states.

This paper is organized as follows. In Sec. II, we briefly
review the basic concepts of QSR’s with special emphasis on
the importance of the pole dominance and the higher order
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terms in the OPE, discussing the problems in the previous
works. In Sec. III, to overcome the problems in previous works,
we introduce a linear combination of the correlation functions
with the aim of suppressing the continuum contamination,
in which chiral symmetry plays an important role in this
cancellation. We also discuss calculation of the OPE and
show all the OPE terms used in our analysis. In Sec. IV,
we show our Borel analysis focusing on the criterion to set
up the Borel window. We confirm the pole dominance and
the OPE convergence. The values of the �+ mass and residue
obtained in this analysis are also shown. Sec. V is devoted to
a brief discussion on the KN scattering states and on relation
between experimental observation and our correlation function
analysis. Finally we summarize this work in Sec. VI.

II. THE BASIC CONCEPTS OF QSR AND PROBLEMS IN
THE PREVIOUS WORKS

Following the standard way of the QCD sum rule, we start
with the time-ordered two-point correlation function defined
by

i

∫
d4xeiq·x〈0|T [J (x)J̄ (0)]|0〉 = q̂�0(q2) + �1(q2), (1)

where q̂ ≡ qµγµ and �0,1(q2) are called the chiral-even and
odd parts, respectively. Here 〈0| · · · |0〉 denotes a vacuum
expectation value (hereafter for brevity 〈· · ·〉). The interpo-
lating field J (x) for the �+ consists of five quark fields with
its quantum number. The QSR is then obtained through the
dispersion relation

Re�i(q
2) = P

∫ ∞

0
ds[Im�i(s)/π ]/(s − q2) (2)

for i = 0, 1. Im�i(s) satisfies the spectral conditions

Im�0(s) � 0,
√

sIm�0(s) − Im�1(s) � 0. (3)

For sufficiently large −q2, the left hand side of Eq. (2) can
be expressed by the OPE with products Ci of the Wilson
coefficients and the vacuum condensates:

�
ope
i (q2) =

5∑
j=0

C2j+i(q
2)5−j log(−q2) +

∞∑
j=1

C10+2j+i

(q2)j
. (4)

The OPE starts from (q2)5 log(−q2) reflecting the large
number of quark fields in the �+ interpolating field.

The imaginary part in the right hand side of Eq. (2) is
parametrized as the hadronic spectrum. We use the con-
ventional pole plus continuum spectrum with a single �+
resonance:

Im�h
i (s) � πλ2

i δ
(
s − m2

�+
) + θ (s − sth)Im�

ope
i (s). (5)

Here m�+ denotes the �+ mass, and the residue λi is the
coupling strength of interpolating field to the resonance,
satisfying

± m�+λ2
0 = λ2

1 (6)

for parity ±1, respectively. The second term represents a
model of continuum contribution with its threshold sth based

on the simple duality ansatz. The QSR (2) gives the physical
quantities (m�+ , λi) in terms of the known QCD parameters
appearing in Eq. (4) [8].

Our QSR’s are obtained from Eqs. (2) and (4) for the
chiral even and odd parts independently, by using the Borel
transformation technique [15], which qualitatively improves
isolation of the �+ pole:

λ2
i e

−m2
�+ /M2 =

∞∑
j=1

(−)j

�(j )

C10+2j+i

(M2)j−1

+
(∫ ∞

0
−

∫ ∞

sth

)
dse−s/M2

5∑
j=0

C2j+i s
5−j ,

(7)

where the continuum term in the hadronic spectrum
is transferred to the second integral in the right hand side using
the duality ansatz. It is worth noting here that, in this ansatz,
the continuum term is expressed in terms of the logarithmic
terms in Eq. (4) and it appears in the Borel sum rules (7)
as the integral of exp(−s/M2) weighted by polynomials of s.
For later convenience, we define

Ai(M
2; sth) ≡

∫ sth

0
ds e−s/M2 1

π
Im�

ope
i (s)

=
∞∑

j=1

(−)j

�(j )

C10+2j+i

(M2)j−1

+
∫ sth

0
ds e−s/M2

5∑
j=0

C2j+i s
5−j , (8)

Bi(M
2; sth) ≡

∫ ∞

sth

ds e−s/M2 1

π
Im�

ope
i (s)

=
∫ ∞

sth

ds e−s/M2
5∑

j=0

C2j+i s
5−j . (9)

Ai(M2; sth) is equal to the right hand side of Eq. (7). These
functions give portions of the Borel integration of �

ope
i for

given threshold sth.
In the pole-plus-continuum ansatz, the threshold sth is very

important parameter. It divides the hadronic spectral function
into two parts:

Im�h
i (s) = θ (sth − s) Im�i(s) + θ (s − sth) Im�i(s). (10)

The second term is approximated to the spectral function
calculated in the OPE, while the first term acts for the
low-energy hadronic contributions. In this sense, sth represents
an energy scale where the quark-hadron duality ansatz works
in the QSR analysis. Thus, sth does not necessarily match a
physical threshold of the hadronic scattering states. Here we
assume the first term in Eq. (10) as a pole term. This low-energy
contribution, however, can contain both the hadronic resonance
and scattering states below sth. The validity of the pole
assumption can be checked in the Borel stability analysis as
discussed below.
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The mass m�+ is obtained by logarithmic derivative of
Eq. (7) as

m2
�+ (M2; sth) = d log Ai/d(−1/M2). (11)

The pole residue is calculated together with the mass obtained
above as

λ2
i (M2; sth) = Ai exp

[
m2

�+(M2; sth)/M2
]
. (12)

The two physical quantities should be, in principle, indepen-
dent of the artificially introduced Borel mass M within the
“valid” Borel window that allows us reliable extraction of
the hadron property from this analysis. The lower and higher
boundaries of M2 are determined from the OPE convergence
and the pole dominance, respectively (see Sec. IV in detail).
The pole dominance means that the low-energy first term in
Eq. (10) is superior to the high-energy second term. This
is necessary to extract the low-energy contribution from the
integral of the correlation function. The threshold parameter
sth should be also determined in the Borel analysis so as to
make the mass and residue most insensitive to the change of
M2. Therefore, all the physical quantities, such as the mass,
residue and continuum threshold, are determined within the
Borel analysis without any control parameters.

Now let us explain the problem in the pentaquark QSR.
In the QSR analysis, the pole dominance to the continuum
contribution in the spectral function is essential to extract
the desirable pole information. In the �+ case, however, the
continuum contributions are potentially large, since the loga-
rithmic terms appear widely up to higher orders of the OPE.
This stems from the higher mass dimension of the correlation
function than the ordinary baryon case owing to the larger
number of quark fields in the �+ interpolating field. Conse-
quently, despite improvement of the Borel transformation [15]
to Eq. (2), it is hard to establish the pole dominance in the
spectral function, and thus this makes the prediction of the
�+ mass much less reliable. In fact the prior pentaquark
BSR’s [11–13] evaluated the mass under a condition of small
pole contribution ( <∼20%), as claimed in Ref. [14]. In the BSR
the magnitude of the continuum suppression can be measured
by checking the Borel window, within which one searches for
the Borel stability. When obtaining better suppression, one
may have a wider window if the OPE convergence is also
realized.

It is worth mentioning the importance of the higher-
dimensional terms in the OPE and the pole dominance. When
one neglects the higher-dimensional terms and/or the pole
dominance, one cannot establish the Borel window enabling
reliable extraction of the physical quantities, and also would
encounter “artificial” Borel stability, which is independent
of the threshold parameter. Then the threshold is merely an
adjustable parameter to reproduce the other physical quantities
such as the mass and residue. But if one includes the higher-
dimensional terms and establishes the pole dominance, then
the threshold parameter is not adjustable any more but has a
meaningful role for stabilizing the physical quantities within
the Borel window for the change of Borel mass. This is also
the case even in the ρ-meson sum rule, where we indeed need
inclusion of the dimension 6 terms in the OPE to avoid the

“artificial” stability, so that we can obtain ρ-meson mass close
to the experimental data.

III. CALCULATION OF THE LINEAR COMBINATION OF
THE CORRELATORS

A. Linear combination of the correlators

To overcome the problems discussed in the previous
section, i.e., to find out true pole-dominance from the �+
correlation function, we propose a new setup of the �+
correlation function which couples to less continuum states
with the help of chirality of the interpolating fields. This idea
is to make use of an interesting property in the Weinberg
spectral function sum rule [16], where the unlike chiral-
ity combination of the vector and axial-vector correlators,
〈Vµ(x)Vν(0) − Aµ(x)Aν(0)〉, vanishes in the limit of x → 0.
This means that leading-orders are suppressed in the OPE. As
favorable, it inevitably requires that one takes into account
higher-dimensional operators which reflect the low-energy
physics, beyond the logarithmic terms. Let us consider the
following interpolating fields with I = 0 and J = 1/2 based
on the diquark picture [3]:

P = εcfgQcQ
f

µ5γ
µCsT

g , S = εcfgQc
5Q

f

µ5γ
µγ5CsT

g , (13)

where the diquark operators are defined by

Qc = εabc
{
uT

a Cdb

}
, (14)

Qc
5 = εabc

{
uT

a Cγ5db

}
, (15)

Qc
µ5 = εabc

{
uT

a Cγµγ5db

}
, (16)

having the Lorentz covariant pseudoscalar, scalar and vector
structures, respectively, with color indices a, b, c, . . . , the
charge conjugation matrix C and the transpose T [17]. Note
that these interpolating fields definitely have J = 1/2 due to
the γµ acting on s̄T [18].

In the above construction of the interpolating field, the
pseudoscalar and scalar diquarks, Qa and Qa

5, have been
introduced into P and S, respectively. The essential point
to reduce the leading orders of the OPE is that the linear
combinations between these diquarks, Qa ± Qa

5, have the
opposite chirality each other [10]. When one takes a relevant
linear combination between the correlators with such an
opposite chirality, the leading-orders suppression takes place
in the same way as the Weinberg sum rule for the vector
currents. Motivated by this observation, we consider the
following linear combinations of two correlators P (x)P̄ (0)
and S(x)S̄(0) with a mixing parameter t :

i

∫
d4xeiq·x〈0|T [P (x)P̄ (0) − tS(x)S̄(0)]|0〉

≡ [
�P

0 (q2) − t�S
0 (q2)

]
q̂ + [

�P
1 (q2) + t �S

1 (q2)
]
, (17)

where �
P [S]
0(1) are chiral-even (odd) parts of the correlation

function for the currents P [S]. The leading-orders suppression
in the OPE is realized in t = 1 and t = −1. In the former
(later) case, the OPE starts from dimension 6 (7) in the
chiral even (odd) part. [See Eq. (18) for the explicit OPE
forms]. The mixing parameter t will be fixed according to the
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Ioffe’s optimization criteria [19], that is, the sum rules satisfy
sufficient continuum suppression and OPE convergence at the
same time.

B. The results of the OPE calculation

Our strategy for the OPE calculation is as follows: (I) We
calculate the OPE up to dimension 15, which is higher enough
than the maximum dimension in logarithmic terms. It is worth
mentioning that the pentaquark currents may give extremely
slow OPE convergence in higher dimensions than six, since the
creation of a quark condensate by cutting loops costs a large
factor, such as (4π )2. On the other hand, higher terms than
dimension 12 are qualitatively less important, because one can
no longer diminish loops by cutting hard quark lines due to
the momentum conservation [8]. (II) We disregard radiative
loop corrections. These will be important in low dimensions
like the logarithmic terms [19], but in our analysis such
logarithmic terms are largely suppressed. (III) The dependence
of strange quark mass ms is evaluated to O(ms). (IV) The
higher-dimensional gluon condensates such as the triple gluon
condensates are also neglected, because they are expected to
be smaller than the quark condensates entering in the tree-
diagrams [9]. (V) We make good use of the vacuum saturation
[8] and factorization hypotheses [20] in order to estimate
less-known values of the high-dimensional condensates as
products of the lower-dimensional condensates. To account
for an uncertainty arising from this approximation, we will
later exhibit final results with the moderate errors.

Based on the above strategy, we obtain the explicit form of
Cn in Eq. (7), summing up all terms of the same dimension n

and taking the linear combination with t :

C0 = 1 − t

21632527π8
, C1 = − (1 + t)ms

2173252π8
,

C3 = − (1 + t)Rsa

216325π8
, C4 = − (1 − t)msRsa

214325π8
+ (1 − t)b

22032π8
,

C5 = (1 + t)m2
1Rsa

21632π8
+ (1 + t)msb

2203π8
,

C6 = (1 − t)msm
2
1Rsa

21532π8
− (3 − t)a2

21432π8
,

C7 = (1 + t)Rsab

21833π8
+ (3 − t)msa

2

21232π8
,

C8 = −5(1 − t)msRsab

21832π8
+ (75 − 23t)m2

0a
2

21632π8
,

C9 = − (1 + t)m2
1Rsab

219π8
+ (3 − t)Rsa

3

21132π8
− (9 − 4t)msm

2
0a

2

2143π8
,

C10 = 5(1 − t)msm
2
1Rsab

21932π8
+ (3 − t)msRsa

3

21232π8

− (337 − 121t)m4
0a

2

21932π8
− (141 − 23t)a2b

21833π8
,

C11 = − (3 − t)m2
1Rsa

3

21232π8
− (9 − 4t)Rsm

2
0a

3

21332π8
(18)

+ (19 − 18t)msm
4
0a

2

21632π8
+ (99 + 67t)msa

2b

21733π8
,

C12 = − (3 − t)msm
2
1Rsa

3

21233π8
− (17 − 4t)msm

2
0Rsa

3

21432π8

+ (23 − 33t)m2
0a

2b

21833π8
+ (1 + t)a4

21033π8
,

C13 = (49 + 17t)Rsa
3b

21733π8
+ (9 − 4t)m2

0m
2
1Rsa

3

21532π8

+ (19 − 18t)m4
0Rsa

3

21633π8
+ (1 − 11t)msm

2
0a

2b

2183π8

− (1 − t)msa
4

2933π8
,

C14 = − (17 − 4t)msm
2
0m

2
1Rsa

3

21533π8
− (67 − 18t)msm

4
0Rsa

3

21733π8

− (99 − 65t)msRsa
3b

21834π8
+ 13(1 + t)m2

0a
4

21532π8
,

C15 = 13(1 − t) αs

π
Rsa

5

21034π8
,

where a = −(2π )2〈q̄q〉, b = (2π )2〈(αs/π )G2〉, Rs = 〈s̄s〉/
〈q̄q〉, m2

0 = 〈q̄gsσ · Gq〉/〈q̄q〉, and m2
1 = 〈s̄gsσ · Gs〉/〈s̄s〉

with q = u, d and strong coupling αs = g2
s /(4π ).

The values of the QCD parameters are taken as 〈(αs/π )
G2〉 = 0.0127 ± 0.02 GeV4, ms = 0.12 GeV, αs(1 GeV) =
0.3, m2

0 = m2
1 = 0.8 ± 0.1 GeV2, Rs = 0.8 and 〈q̄q〉 =

−(0.230 ± 0.020 GeV)3 [8,15]. At first we use the central
values, and then we discuss the dependence of these uncertain-
ties on our results. The recent work [13], which only focuses
on our correlator with t = 0, does not consider all terms of
the quark-gluon mixed condensate 〈q̄gsσ · Gq〉 consisting of
q̄q on a quark line and a soft gluon G emitted from another
quark line. We find that these terms are so important as to give
20%∼30% contribution in dimension 8.

IV. BOREL ANALYSIS

A. The criterion for the Borel window

The Borel window in our analysis is determined as follows
based on Ref. [15]: The lower boundary of the window is set
up so as to make the OPE convergence sufficient in higher-
dimensional operators. The criterion is quantified so that the
highest-dimensional terms in the truncated OPE are less than
10% of its whole OPE. At the same time, the higher boundary
of the window is fixed by the pole-dominance condition that

Ci(M
2; sth) ≡ |Ai(M2; sth)|

|Ai(M2; sth)| + |Bi(M2; sth)| >∼ 0.5, (19)

where Ai and Bi represents the pole and continuum contri-
butions defined in Eqs. (8), (9) respectively. The reason why
we take the absolute values is that the continuum contribution
can be no longer positive definite in some regions of M2, due
to taking the linear combination of the correlation functions.
This is a stronger condition than the criterion in Ref. [15],
where they do not take the absolute values of the correlation
function. Note that the 50% pole contribution in our criterion is
extremely large in comparison with any prior pentaquark sum
rules, where the pole contributions are not more than 20% in

045206-4



PENTAQUARK STATE IN POLE-DOMINATED QCD SUM RULES PHYSICAL REVIEW C 74, 045206 (2006)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

D
0
(s

;
M

2
) 

(1
0

-9
 G

eV
10

)

s1/2 (GeV)

t= -1.0
 0.0
1.0

10.0

-0.05

-0.025

 0

 0.025

 0.05

 0.075

 0.1

 0.125

 1  1.5  2  2.5  3  3.5  4  4.5  5

D
1
(s

;M
2
) 

(1
0

-9
 G

eV
11

)

s1/2 (GeV)

t= -1.0
 0.0
 1.0

 10.0

FIG. 1. (Color online) The t-dependence of the behavior of
Di(s; M2) as a function of

√
s. The left panel is shown for the even

part (i = 0) at M2 = 2.5 GeV2 and the right for the odd part (i = 1)
at M2 = 1.2 GeV2.

their moderate windows. Our conditions also satisfy the Ioffe’s
criteria to good accuracy.

B. The pole dominance

First we check the continuum suppression of the chiral
even (odd) correlation function in the case of t = 1 (t = −1).
In order to see the suppression of the high-energy contribution
qualitatively, in Fig. 1 we show the behavior of the integrands
in the right hand side of Eq. (7) normalized by

√
1 + t2 , i.e.,

Di(s; M2) ≡ e−s/M2

π
√

1 + t2
Im�

ope
i (s), (20)

which appears to the QSR as the integrands of continuum
contributions. These functions are plotted as a function of√

s with t = −1.0, 0.0, 1.0, 10.0, which correspond to the
PP + SS, PP , PP − SS and SS-dominant cases in Eq. (17),
respectively. Here we fix the Borel mass M2 to be 2.5 GeV2

(even) and 1.2 GeV2 (odd), which are in the Borel windows as
discussed later. Note that in Fig. 1 we plot the combinations of
the spectral functions, not the spectral functions themselves.
As we remarked in Eq. (3), each correlation function does
satisfy the spectral conditions. Then the linear combinations
of correlation functions do not need to satisfy the conditions
any more.

The left panel for the even part shows that the integrand
with t = 1 is successfully suppressed at

√
s >∼ 2 GeV, while in

the other cases there are large contributions at
√

s ∼ 3 GeV.
On the other hand, in the odd part, the best continuum
suppression takes place at

√
s >∼ 3 GeV for t = −1. However,

the contributions in the intermediate energies (
√

s = 2 ∼
3 GeV) are still so large that the isolation of the pole
contribution is inadequate. Similar tendency is also seen for
t = 0, 1 except t = 10, where we can no longer ensure the
pole dominance at moderate energy. Instead, we will take an
optimal t giving good OPE convergence. This allows us to use
lower Borel masses, where the Borel weight leads to larger
continuum suppression.

The pole dominance can be checked also in Fig. 2, where
we plot Ci(M2; sth) as functions of the Borel mass with
a fixed sth. The function Ci defined in Eq. (19) measures
the pole dominance and is used for the criterion of the
Borel window that the upper boundary is determined so that
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FIG. 2. (Color online) The behavior of Ci(M2; sth) as a function
of M2. The left panel is shown for the even part with t =
−1.0, 0.0, 0.9, 10.0 at

√
sth = 2.2 GeV and the right for the odd

part with t = −1.0, 0.0, 1.1, 10.0 at
√

sth = 2.1 GeV.

Ci � 0.5. In the left panel we plot C0 (even part) in the
case of t = −1.0, 0.0, 0.9, 10.0 with sth fixed to 2.2 GeV,
and in the right panel we plot C1 (odd part) in the case of
t = −1.0, 0.0, 1.1, 10.0 with sth fixed to 2.1 GeV. We find that,
in the even part C0 with t = 0.9 and in the odd part C0 with
t = 0.0, 1.1, the pole contribution dominates the correlation
function over the wide range of the Borel mass. The appearance
of cusp structures in C0 over the range of M2 = 2.5 ∼
3.0 GeV2 at t = 0.9, arises as the result of large cancellation
of the continuum contribution in the denominator of Ci .

C. The OPE convergence

Next we discuss the OPE convergence, which determines
the lower boundary of the Borel windows. Shown in Fig. 3
are the ratios of highest-dimensional terms (dimension 14 in
the OPE for the even part and dimension 15 for the odd one)
to the whole OPE as a function of t for various M2. Here
we take the Borel mass M2 to be 2.5, 2.8, 3.1 GeV2 (even)
and 0.7, 1.0, 1.3 GeV2 (odd), which are around the Borel
windows set below. Our condition on the OPE convergence
is that the ratios are less than 10%. For the even part having
good continuum suppression at t = 1, we consider the vicinity
of t = 1.

In Fig. 3 we find quite good OPE convergence in the whole
region except t � 0.95. This remarkable convergence should
be compared with the OPE of the current given in Ref. [11], in
which the convergence is not sufficient [21]. The exceptionally
bad convergence at t � 0.95 is due to cancellation in the whole
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t
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FIG. 3. (Color online) The behavior of highest-dimensional terms
of the OPE divided by the whole OPE as a function of t for various
M2. The left panel is shown for the even part with M2 = 2.5, 2.8,

3.1 GeV2 and the right for the odd part with M2 = 0.7, 1.0, 1.3 GeV2.
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FIG. 4. (Color online) OPE contributions added up each term in
sequence. The left panel is shown as a function of M2 with t = 0.9
fixed for the even part and the right with t = 1.1 fixed for the odd
part.

OPE, which is rejected by our criterion for the Borel window.
If it were not the case, we would need to take account of
higher-dimensional terms truncated here. In the odd part, we
investigate the OPE convergence in relatively low M2-region
retaining the continuum suppression due to the Borel weight.
The right panel of Fig. 3 shows that the OPE convergence
is good around t = 1, while bad around t = −1 where the
continuum suppression is realized at higher

√
s. Hence we

take the mixing angle around t = 1 in the odd part as well as
in the even part.

To complement the issue of the OPE convergence, we
illustrate OPE contributions as a function of M2 with fixed t

in Fig. 4, where each dimension term is added up in sequence.
We use t = 0.9 for the even part (left panel) and t = 1.1 for
the odd part (right panel). It turns out that higher-dimensional
terms become smaller for both parts.

D. The Borel stability on the physical quantities

After establishing the pole dominance and the OPE conver-
gence, we move on setting the Borel window and discussing
the Borel stability on the physical quantities, i.e., mass and
residue.

Fine-tuning t around t = 1 to obtain the widest Borel win-
dows, we find our best Borel windows as 2.5 � M2 � (2.9 ∼
3.0) GeV2 at

√
sth = 2.1 ∼ 2.3 GeV for the even part (t = 0.9),

and 0.7 � M2 � (1.2 ∼ 1.3) GeV2 at
√

sth = 2.0 ∼ 2.2 GeV
for the odd part (t = 1.1) as seen from Fig. 2. Here we have
chosen the threshold parameters

√
sth so as to maximize the

correlation with the pole at
√

s <∼ 2 GeV as roughly seen in
Fig. 1. These thresholds indeed give better Borel stability for
the physical parameters. The values of the mass and the residue
are evaluated within the Borel windows determined above. We
plot the Borel mass dependence of the mass and the residue in
Figs. 5 and 6, respectively, where the left (right) panel is the
plot for the chiral even (odd) sum rule. Figure 5 shows that
the Borel stability is established quite well within the Borel
windows. The best stability is achieved with

√
sth = 2.2 GeV

(even) and 2.1 GeV (odd), giving m�+ = 1.64 GeV (even) and
1.72 GeV (odd), respectively. These masses slightly depend
on the change of the thresholds in the range of 2.0∼2.4 GeV
(even) and 1.9∼2.3 GeV (odd). With these uncertainties, the
masses are evaluated as m�+ = 1.64 ± 0.03 GeV (even) and
1.72 ± 0.05 GeV (odd). The residue is evaluated in the same
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FIG. 5. (Color online) The M2-dependence of the �+ mass for
the even part (left) and for the odd part (right).

way as the mass from the Borel curve shown in Fig. 6. We
find quite good stability again. The values of the residue
are obtained from the chiral even and odd sum rules as
λ2

0 = (3.0 ± 0.1) × 10−9 GeV12 and λ2
1/m�+ = (3.4 ± 0.2) ×

10−9 GeV12, respectively. It is remarkable that these numbers
are quite similar with the close t . This implies that our analysis
investigates consistently the same state in the two independent
sum rules. Note that from the relative sign of the residue, we
assign positive parity to the observed �+ state.

We investigate the dependence of the QCD parameters on
our final results. We find that the final results are insensitive
to the change of ms,Rs,m

2
1, 〈q̄q〉 and αs , and are marginally

sensitive to that of m2
0 and 〈(αs/π ) G2〉. By accounting for

uncertainties of these QCD parameters and errors arising from
our approximation, we estimate the theoretical errors of our
results to be totally around 15%. Combining both results of the
even and odd sum rules with this error, we finally conclude that
our estimation of the �+ mass is m�+ = 1.68 ± 0.22 GeV.

We finally confirm the OPE convergence in the mass. In
Fig. 7, we plot the response of the �+ mass to addition of
the higher-order OPE contributions as a function of M2 with
t = 0.9,

√
sth = 2.2 GeV for the odd part (left panel) and t =

1.1,
√

sth = 2.1 GeV for the odd part (right panel). We find
that inclusion of higher OPE terms makes Borel curves more
stable in both cases.

V. DISCUSSION

Although we have not explicitly taken into account the
KN scattering state appearing at about 100 MeV below
the observed pentaquark mass, in this section we make a
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FIG. 6. (Color online) The M2-dependence of the residues (λ2
0:

left panel and λ2
1/m�: right panel) in the same way with Fig. 5. Note

that the residue of the odd part is divided by m�+ .

045206-6



PENTAQUARK STATE IN POLE-DOMINATED QCD SUM RULES PHYSICAL REVIEW C 74, 045206 (2006)

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2  2.5  3  3.5

m
as

s 
(G

eV
)

M2 (GeV2)

 dim0+4+6 
 +dim8 

 +dim10 
 +dim12 
 +dim14 

 0.5  1  1.5  2

M2 (GeV2)

 dim1+3+5+7 
 +dim9 

 +dim11 
 +dim13 
 +dim15 

 0.5  1  1.5  2

M2 (GeV2)

 dim1+3+5+7 
 +dim9 

 +dim11 
 +dim13 
 +dim15 

FIG. 7. (Color online) The response of the �+ mass to OPE
contributions as a function of M2, where each OPE term is added up as
in Fig. 4. The left panel is shown for the even part with t = 0.9,

√
sth =
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√
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2.1 GeV fixed.

brief comment on the contamination from this scattering
state. Efforts to isolate the considering �+ state from the
scattering state in the analysis were recently made in Ref. [22]
for the QSR, and in Ref. [23] for the lattice QCD. Here
we explain another aspect of such isolation in more intuitive
and qualitative way. The pole information of the �+ should
be carried by higher-dimensional OPE terms beyond the
suppressed lower-dimensional terms which have more infor-
mation about the perturbative region. The property of the �+ in
the QSR can be sensitive to the values of the chiral condensate
〈q̄q〉, because the higher-dimensional contribution is mainly
controlled by the products of the chiral condensate 〈q̄q〉. Our
observed states for both even and odd parts, however, are rather
insensitive for the change of the order parameter, while the KN
threshold is expected to be sensitive, since the nucleon mass
is described as the Ioffe’s formula MN ∝ (−〈q̄q〉)1/3 in the
QSR [15]. Therefore, we speculate the possible isolation of
the observed states from the KN scattering state. This would
be also challenging for further investigating the mass shift of
the �+ for chiral restoration in matter [24] in comparison with
the KN scattering state.

Concerning the existence of the pentaquark state, although
the pronounced peak of the pentaquark has not been seen
in experiments as typified by recent measurements at JLab
[6], it does not directly mean that our QSR calculations are
incorrect. We faithfully follow the original idea of QSR,
especially emphasizing the importance of the pole dominance
and the Borel stability, then we find a pentaquark state in
our analysis. When comparing such a theoretical finding
to the experimental observations, one needs further steps,
for instance, consideration of the reaction mechanism. The
QSR just analyses spectral functions composed of resonance
poles and scattering states with interpolating fields prepared
appropriately. It may be the case that the ratio of the strengths
between the pentaquark pole and the scattering states is
different from those observed in the experiments. Our sum rule

extracts successfully the pentaquark’s pole contribution from
the background scattering states, such as the KN state, as well
as the high-energy continuum contributions. This may indicate
that the low-energy scattering states are also suppressed in our
linear combination of the correlation functions.

VI. SUMMARY

In this work, we have presented a new idea to address exotic
hadrons with a number of quarks, such as the pentaquark,
in the QSR, where the favorable continuum suppression is
realized by considering a linear combination of two correlators
with different chirality. Implementing the Borel technique,
we indeed obtained the wide Borel windows that enable to
extract hadronic properties much reliably from this analysis.
We should bear in mind that as far as one relies on the
simple step-function form of continuum contribution and the
duality ansatz, one could not easily construct any reliable
BSR’s without considering such continuum suppression. With
paying attention also to the OPE convergence, we finally
estimate m�+ = 1.68 ± 0.22 GeV including uncertainties of
the condensates in the OPE calculation up to dimension 15.
Here the Borel curves look fairly flat and almost independent
of the continuum thresholds, and such a feature is also seen
for the pole residue.

We would like to point out that choice of the interpolating
fields solely cannot achieve enough suppression of the large
continuum contributions, since the logarithmic terms of OPE
give large continuum contributions to the spectral function
via the duality ansatz due to the high-dimensional current
of pentaquark. To obtain sufficient continuum suppression,
it is important to take a favorable linear combination of
the correlation functions with the aid of chirality of the
interpolating fields. This idea would be also applicable for
all the correlation function analyses as in lattice QCD, where
a contamination from the high-energy contributions hinders
extraction of information on low-energy hadron states, and
for other exotic hadrons like a tetraquark [25]. Also, it is
noteworthy that a concept of chiral symmetry introduced here
plays an important role to pick up the information in the
low-energy region.
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