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η- and η′-mesic nuclei and UA(1) anomaly at finite density
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We discuss theoretically the possibility of observing the bound states of the η and η′(958) mesons in nuclei.
We apply the NJL model to study the η and η′ meson properties at finite density and calculate the formation cross
sections of the η and η′ bound states with the Green function method for (γ ,p) reaction. We also discuss the
experimental feasibility at photon facilities like SPring-8. The contributions due to the ω meson production are
also included to obtain the realistic (γ ,p) spectra. We conclude that we can expect to observe resonance peaks in
(γ ,p) spectra for the formation of meson bound states and we can deduce new information on η and η′ properties
at finite density. These observations are believed to be essential to know the possible mass shift of η′ and deduce
new information on the effective restoration of the UA(1) anomaly in the nuclear medium.
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I. INTRODUCTION

Understanding the low-lying hadron structures from the
viewpoint of the quark and gluon degrees of freedom is one
of the most challenging problems in the quantum chromody-
namics (QCD) because of its nonperturbative nature in the
low-energy regime.

The lightest excitation on the QCD vacuum is the pion
which is considered as a quark and an antiquark bound
state in the pseudoscalar channel. Its mass is off-scale light
compared with other hadrons. This can be understood by
recognizing that the chiral symmetry is spontaneously broken
in the QCD vacuum and the pion is the Nambu-Goldstone
(NG) boson associated with the dynamical chiral symmetry
breaking (DCSB). It is believed to be responsible for a large
part of the constituent quark masses, which are introduced
in the many constituent quark models. The effects of the
explicit breaking of the chiral symmetry on the pion properties
have been systematically studied using the effective lagrangian
composed of the pion field. This approach is called the chiral
perturbation theory (ChPT) [1]. The success of ChPT approach
supports the importance of the DCSB in low-energy QCD.

When we start looking at the strange quark sector, we
encounter another problem. The ninth heavier pseudoscalar
meson is η′ and its mass is much heavier than other octet
pseudoscalar mesons. Weinberg showed that the mass of η′
should be less than

√
3mπ if UA(1) symmetry were not

explicitly broken [2]. Thus the UA(1) symmetry must be
broken. The key step to solve this UA(1) problem was to realize
that UA(1) symmetry was explicitly broken by the quantum
anomaly. In the following year, ’t Hooft pointed out the relation
between UA(1) anomaly and topological gluon configurations
of QCD, i.e., instantons and showed that the interaction of
light quarks and instantons breaks the UA(1) symmetry [3].
He also showed that such an interaction can be represented by
a local 2Nf quark vertex, which is antisymmetric under flavor
exchanges, in the dilute instanton gas approximation.

The effects of the UA(1) anomaly on the low-energy QCD
have been extensively studied in the 1/Nc expansion approach

[4]. In the Nc → ∞ limit, the UA(1) anomaly is turned off
and then the η and η′ mesons become the ideal mixing states.
The higher order effects of the 1/Nc expansion give rise to
the flavor mixing between the η and η′ mesons and push up
the η′ mass [5–8]. They were further discussed in the context
of the ChPT [9] and the reasonable description of the nonet
pseudoscalar mesons was obtained.

The UA(1) breaking 2Nf quark determinant interaction was
introduced to the low-energy effective quark models of QCD.
The low-lying meson properties have been studied [10–16]
using the three-flavor version of the Nambu-Jona-Lasinio
(NJL) model [17] with the Kobayashi-Maskawa-’t Hooft
(KMT) determinant interaction [3,18]. It is further argued
that the UA(1)-breaking interaction gives rise to the spin-spin
forces, which are important for light baryons [19–21].

It was observed by Witten that the instanton contribution
scales as exp(−Nc) which seems to contradict the 1/Nc

expansion approach, m2
η′ = O(1/Nc) [22]. A few years ago,

Schäfer showed that the large Nc behavior of the instanton
approach is consistent with the 1/Nc expansion approach if
the instanton ensemble is stabilized by a classical repulsive
core [23]. The use of the UA(1) breaking quark determinant
interaction with the low-energy effective quark model of
QCD in the mean field approximation seems to mimic the
dilute instanton liquid picture, and therefore, we consider
this approach is not inconsistent with the 1/Nc expansion
approach.

The dynamics of instantons in the multi-instanton vacuum
has been studied by many authors, either in the models or in
the lattice QCD approach, and the widely accepted picture is
that the QCD vacuum consists of small instantons of the size
about 1/3 fm with the density of 1 instanton (or anti-instanton)
per fm4 [24]. In the instanton liquid model, the instanton plays
a crucial role in understanding not only the UA(1) anomaly but
also the spontaneous breaking of chiral symmetry itself.

In this paper, we consider the η and η′ meson bound
states in finite nuclei, i.e., η- and η′-mesic nuclei in order
to investigate the change of the QCD vacuum structure at
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finite density through the η and η′ meson properties in the
nuclear medium. Since the vacuum properties of η and η′ are
believed to have close relation to the QCD vacuum structure as
described above, we can expect to have new information and
much deeper insights on the QCD vacuum by knowing the
η and η′ meson properties at finite density, where the partial
restoration of the DCSB is expected.

The η-mesic nucleus was studied by Haider and Liu [25]
and Chiang, Oset, and Liu [26]. As for the formation reaction,
the attempt to find the bound states by (π+,p) reaction led to
a negative result [27]. Recently, the η meson and light nuclei
systems are studied experimentally [28] and also theoretically
[29]. The experimental study in Ref. [28] claims the existence
of the η-bound state in the light nucleus.

Recently, there are several very important developments in
the research of the spontaneous breaking of chiral symmetry
and its partial restoration at finite density by studying the
hadronic systems, such as pionic atoms [30–32], η- and
η′-mesic nuclei [33–38] and ω-mesic nuclei [33,34,39–41]
in both of theoretical and experimental aspects. There is
also a theoretical study on σ meson nuclear bound states
based on SU(2) linear sigma model [42]. Especially, after
a series of deeply bound pionic atom experiments [43,44],
Suzuki et al. reported the quantitative determination of pion
decay constant fπ in-medium [31] from the deeply bound
pionic states in Sn isotopes [45] and stimulated many active
researches of the partial restoration of chiral symmetry at finite
density [30,32,46–48].

However, as for the behavior of the UA(1) anomaly in the
nuclear medium, the present exploratory level is rather poor.
Although some theoretical results have been reported, there
exists no experimental information on the possible effective
restoration of the UA(1) anomaly at finite density. In the context
of the instanton dynamics, the mass of the η′ at a nonzero
baryon chemical potential was studied in the two color QCD
[49]. As for the case of the finite temperature, the temperature
dependence of the instanton density was calculated in Refs.
[50–54]. In the low-energy effective model of QCD approach,
Kunihiro studied the effects of the UA(1) anomaly on η′

properties at finite temperature using the NJL model with the
KMT term and showed the possible character changes of η′
at T �= 0 [55]. Theoretical predictions by other authors also
supported the possible change of the η′ properties at finite
density as well as at finite temperature [56,57]. Experimental
feasibilities to observe the η′-mesic nuclei were also studied
in this context in our previous work in Ref. [37], where the
in-medium η′ properties were estimated quite roughly based
on the results reported in Refs. [55–57]. In Ref. [38] further
theoretial studies have been performed for η- and η′-nucleus
systems with paying attention to the QCD axial U(1) problem.

In this study, we consider the η and η′ meson properties
in atomic nuclei and the structures of the η- and η′-mesic
nuclei using the SU(3)f NJL model in order to get much
deeper insights on the η′ mass shifts and their relation to UA(1)
anomaly effects and to get more quantitative results than our
previous work [37]. We also propose the formation reaction
of the η- and η′-mesic nuclei and discuss the possibility
to produce the η- and η′-nucleus bound states. The η and

η′ properties in the medium should provide us important
information on the QCD vacuum structure, especially on the
effective restoration of the UA(1) symmetry in the nuclear
medium.

This paper is organized as follows. In Sec. II, we will obtain
the quark masses and the quark condensates in finite density
using NJL model, and calculate the meson masses in-medium.
In Sec. III, we will discuss the formations of mesic nuclei using
the Green function method, and show the numerical results of
the missing mass spectra of the (γ ,p) reaction. Finally, Sec. IV
is devoted to summary of this paper.

II. QUARK AND MESON MASSES IN NJL MODEL

We work with the following NJL model lagrangian density
extended to three-flavor case:

L = L0 + L4 + L6, (1a)

L0 = ψ̄
(
i∂µγ µ − m̂

)
ψ, (1b)

L4 = gS

2

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄λaiγ5ψ)2], (1c)

L6 = gD{det[ψ̄i(1 − γ5)ψj ] + h.c.}. (1d)

Here the quark field ψ is a column vector in color, flavor and
Dirac spaces and λa(a = 0 . . . 8) is the Gell-Mann matrices
for the flavor U(3). The free Dirac Lagrangian L0 incorpo-
rates the current quark mass matrix m̂ = diag(mu,md,ms)
which breaks the chiral UL(3) × UR(3) invariance explicitly.
L4 is a QCD motivated four-fermion interaction, which is
chiral UL(3) × UR(3) invariant. The Kobayashi-Maskawa-
’t Hooft determinant interaction L6 represents the UA(1)
anomaly. It is a 3 × 3 determinant with respect to flavor with
i, j = u, d, s.

Quark condensates 〈q̄q〉 and constituent quark masses Mq

are self-consistently determined by the gap equations in the
mean field approximation,

Mu = mu − 2gS〈ūu〉 − 2gD〈d̄d〉〈s̄s〉,
Md = md − 2gS〈d̄d〉 − 2gD〈s̄s〉〈ūu〉, (2)

Ms = ms − 2gS〈s̄s〉 − 2gD〈ūu〉〈d̄d〉,

with

〈q̄q〉 = −Tr(c,D)
[
iS

q

F (x = 0)
]

= −
∫

d4p

(2π )4
Tr(c,D)

[
i

pµγ µ − Mq + iε

]

= −2Nc

∫ 
 d3p

(2π )3

Mq

Eq

(1 − np(T ,µq) − n̄p(T ,µq)).

(3)

Here, the ultraviolet cutoff 
 is introduced to regularize the
divergent integral and Tr(c,D) means trace in color and Dirac
spaces. Eq =

√
p2

q + Mq is the on-shell energy of the quark
and np and n̄p are Fermi occupation numbers of quarks and
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antiquarks, respectively, defined as

np(T ,µq) = 1

1 + e(Eq−µq )/T
,

(4)

n̄p(T ,µq) = 1

1 + e(Eq+µq )/T
,

where T represents the temperature of the system and µq is the
quark chemical potential. np and n̄p depend on the momentum
pq through the energy Eq . For T = 0, we can simply write
Eqs. (4) as

np(0, µq) = θ (µq − Eq),
(5)

n̄p(0, µq) = 0,

and by integrating them in momentum space we obtain the
quark number density ρq as

ρq = 1

π2

(
µ2

q − M2
q

)3/2
θ (µq − Mq). (6)

To simulate the symmetric nuclear matter, we consider SU(2)
symmetric quark matter defined as ρu = ρd, ρs = 0. In this
case, the nucleon density ρ is defined as

ρ = 1

3
(ρu + ρd )

= 2

π2

(
µ2

u − M2
u

)3/2
θ (µu − Mu), (7)

where µu = µd and Mu = Md . The NJL model at finite
temperature and density has been reviewed in Ref. [58].

The pseudoscalar channel quark-antiquark scattering am-
plitudes,

〈p3, p̄4; out|p1, p̄2; in〉 = (2π )4δ4(p3 + p4 − p1 − p2)Tqq̄ ,

(8)

are then calculated in the ladder approximation. We assume
that mu = md so that the isospin symmetry is exact. In the η

and η′ channels, the explicit expression of Tqq̄ is

Tqq̄ = −
(

ū(p3)λ8v(p4)

ū(p3)λ0v(p4)

)T (
A(q2) B(q2)

B(q2) C(q2)

)

×
(

v̄(p2)λ8u(p1)

v̄(p2)λ0u(p1)

)
, (9)

with

A(q2) = 2

detD(q2)
{2 G̃ I 0(q2) − G8}, (10a)

B(q2) = 2

detD(q2)
{−2 G̃ Im(q2) − Gm}, (10b)

C(q2) = 2

detD(q2)
{2 G̃I 8(q2) − G0}, (10c)

where q = p1 + p2 and G̃ = G0G8 − GmGm, and

G0 = 1

2
gS − 1

3
(2〈ūu〉 + 〈s̄s〉)gD, (11a)

G8 = 1

2
gS − 1

6
(〈s̄s〉 − 4〈ūu〉)gD, (11b)

Gm = − 1

3
√

2
(〈s̄s〉 − 〈ūu〉)gD. (11c)

The quark-antiquark bubble integrals are defined by

I 0(q2) = i

∫
d4p

(2π )4

× Tr(c,f,D)[SF (p)λ0iγ5SF (p + q)λ0iγ5], (12a)

I 8(q2) = i

∫
d4p

(2π )4

× Tr(c,f,D)[SF (p)λ8iγ5SF (p + q)λ8iγ5], (12b)

Im(q2) = i

∫
d4p

(2π )4

× Tr(c,f,D)[SF (p)λ0iγ5SF (p + q)λ8iγ5]. (12c)

In the calculations of the quark loop integrals, we have
applied standard techniques of thermal field theory, i.e., the
imaginary-time formalism and we have introduced the same
three-momentum cutoff used in the gap equations (2) and (3).

The 2 × 2 matrix D is given by

D(q2) =
(

D11(q2) D12(q2)

D21(q2) D22(q2)

)
, (13)

with

D11(q2) = 2G0I
0(q2) + 2GmIm(q2) − 1, (14a)

D12(q2) = 2G0I
m(q2) + 2GmI 8(q2), (14b)

D21(q2) = 2G8I
m(q2) + 2GmI 0(q2), (14c)

D22(q2) = 2G8I
8(q2) + 2GmIm(q2) − 1. (14d)

From the pole positions of the scattering amplitude Eq. (9), the
η-meson mass mη and the η′-meson mass mη′ are determined.

The scattering amplitude Eq. (9) can be diagonalized by the
rotation in the flavor space

Tqq̄ = −
(

ū(p3)λ8v(p4)

ū(p3)λ0v(p4)

)T

T−1
θ Tθ

(
A(q2) B(q2)
B(q2) C(q2)

)
T−1

θ

×Tθ

(
v̄(p2)λ8u(p1)

v̄(p2)λ0u(p1)

)
, (15)

= −
(

ū(p3)ληv(p4)

ū(p3)λη′
v(p4)

)T (
Dη(q2) 0

0 Dη′
(q2)

)

×
(

v̄(p2)ληu(p1)

v̄(p2)λη′
u(p1)

)
, (16)

with λη ≡ cos θλ8 − sin θλ0, λη′ ≡ sin θλ8 + cos θλ0 and

Tθ =
(

cos θ − sin θ

sin θ cos θ

)
. (17)

The rotation angle θ is determined by

tan 2θ = 2B(q2)

C(q2) − A(q2)
. (18)

Note that θ therefore depends on q2. At q2 = m2
η, θ represents

the mixing angle of the λ8 and λ0 components in the
η-meson state. In the usual effective pseudoscalar meson
Lagrangian approaches, the η and η′ mesons are analyzed
using the q2-independent η − η′ mixing angle. Because of the
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TABLE I. Input parameters determined in Ref. [59] and calcu-
lated results in vacuum in three-flavor NJL model.

Input parameters Calculated results [MeV]


 = 602.3 [MeV] Mu,d = 367.6 fπ = 92.4
gS


2 = 3.67 Ms = 549.5 mπ = 135.0
gD
5 = −12.36 〈ūu〉1/3 = −241.9 mη = 514.8

mu,d = 5.5 [MeV] 〈s̄s〉1/3 = −257.7 mη′ = 957.7
ms = 140.7 [MeV]

q2-dependence, θ cannot be interpreted as the η − η′ mixing
angle. The origin of the q2-dependence is that the η and η′
mesons have the internal structures.

We obtain the dynamical quark and meson masses in
vacuum as compiled in Table I with the input parameters de-
termined in Ref. [59]. In Ref. [59], the four model parameters,
namely, cutoff 
, four-quark coupling constant gS , six-quark
coupling constant gD and the current s-quark mass ms have
been fixed so as to reproduce the observed values of the pion,
kaon, η′ masses and the pion decay constant, while the current
u, d-quark mass has been fixed at 5.5 MeV, which has been
taken from the results of the chiral perturbation theory and
QCD sum rule approaches. This parameter set gives an η

mass of mη = 514.8 MeV, which is about 6% smaller than the
observed value mη = 547.75 MeV. One is able to fit the mass of
η instead of the η′. The reason why we have used the present
parameter set is just we are more interested in the η′-mesic
nucleus than the η-mesic nucleus in this article because we
consider that the former is more suitable for observing the
finite density effect of the UA(1) anomaly.

In this paper, we investigate the finite density effects on
the meson mass spectra for the following three cases with the
different strengths gD of the determinant KMT interaction as

(a) gD(ρ) = gD

(b) gD(ρ) = 0 (19)

(c) gD(ρ) = gD exp[−(ρ/ρ0)2],

where gD is the vacuum strength of the determinant interaction
as shown in Table I. The gD(ρ) has no density dependence for
cases (a) and (b). In case (a), the meson vacuum properties
are well reproduced as shown in Table I, while there are no
anomaly effects in case (b). For gD = 0 case, we use slightly
different parameter set as shown in Table I in Ref. [60] to
reproduce the meson masses and the pion decay constant in
vacuum without anomaly effect. In case (c), we simply assume
the density dependence of gD as this form in order to examine
the medium effect due to density dependence of gD itself on
the meson mass spectra in finite density.

Here it may be interesting for our study to notice that there
are theoretical suggestions about possible density dependence
of gD [61,62]. In Ref. [62], the effective coupling constant
of the instanton-induced interaction is suggested to have
chemical potential dependence for Nf = 2 systems. For Nf =
3 systems, we can expect to have the similar µ dependence,
though it is not easy to show explicitly. We are interested in
studying the effect of such density dependence discussed in
Ref. [62] on meson mass spectra as future works.

(a) (b) (c)

FIG. 1. Density dependence of the quark condensates in the
SU(2) symmetric matter, ρu = ρd and ρs = 0, where 〈ūu〉 = 〈d̄d〉.
Three panels correspond to the cases (a), (b), and (c) defined in
Eq. (19), respectively. The nucleon density ρ is defined in Eq. (7) and
ρ0 is the normal nuclear density ρ0 = 0.17 fm−3.

In Fig. 1, we show the calculated quark condensates as
functions of density for three types of gD(ρ) defined in
Eq. (19). In case (b), we have switched off the effect of the
instanton-induced flavor mixing interaction and therefore the
s-quark condensate has not changed in the SU(2) symmetric
matter. The absolute values of the u,d-quark condensate
decreases significantly faster in case (c) than in case (a) when
the density goes up. It means that the contribution of the
instanton-induced interaction on the u,d-quak condensate is
sizable.

In Fig. 2, we show the calculated density dependence of the
meson mass spectra for three cases defined in Eq. (19). In the
case of constant gD (a), we find that the mass of η′ decreases
rapidly as a function of the density, while the masses of π and η

gradually increase. The instanton-induced interaction is repul-
sive for the flavor singlet q̄q channel and the effective coupling
strength is gD(〈ūu〉 + 〈d̄d〉 + 〈s̄s〉)/3. Since the absolute val-
ues of the quark condensates decrease as the density increase,
the effective repulsive interaction in the flavor singlet q̄q chan-
nel becomes small as the density increases. That is the reason
why the η′ mass decrease. In Fig. 2(b), we find that π and η are
degenerate completely and their masses increase gradually as
density, and the mass of η′ has no density dependence without
the UA(1) anomaly effects. Without the UA(1) anomaly effects,

(a) (b) (c)

FIG. 2. Density dependence of the meson mass spectra. Three
panels corresponds to the cases (a), (b), and (c) defined in Eq. (19),
respectively. The nucleon density ρ is defined in Eq. (7) and ρ0 is the
normal nuclear density ρ0 = 0.17 fm−3.
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the η′ is the ideal mixing state, i.e., the pure s̄s, and therefore no
density dependence in the SU(2) symmetric matter with µs =
0. It should be mentioned that the masses of η and η′ at ρ = 0
are not reproduced in this case. As shown in Fig. 2(c), if the gD

has density dependence as case (c) in Eq. (19), we can expect
mass reduction of both η and η′ mesons up to around ρ = ρ0.

It is interesting to compare our results in Fig. 2 with those
obtained in Ref. [38], where the quark-meson coupling model
(QMC) was used to obtain the mass-shift for given mixing
angles. The results in Table 1 of Ref. [38] show that the both
masses of η and η′ decrease in medium at normal nuclear
density (defined as ρ0 = 0.15 fm−3 in Ref. [38]) for all cases
considered there. These results are not consistent to our results
of case (a) where the η mass slightly increases at the normal nu-
clear density. Our results of case (c) are qualitatively consistent
to those in Ref. [38] and predict the mass reduction of η and
η′ mesons in medium at normal nuclear density, however, the
sizes of the mass shift are significantly different in these results.
The origin of the discrepancies in theoretical calculations are
not clear, however, we believe that this fact indicates the
significant importantce of experimental information.

Here, in order to see the effects of the species of the
matter to the calculated results, we compare the results in the
SU(2) symmetric matter with those in the SU(3) symmetric
matter, ρu = ρd = ρs , in Fig. 3. In Fig. 3, the strength of the
determinant interaction is fixed to be constant as case (a) in
Eq. (19). We get same results as those obtained in Ref. [60] in
SU(3) case, and find that the differences between the calculated
results in SU(2) and that of SU(3) are less than 10% at normal
nuclear density ρ0.

III. FORMATION SPECTRA OF MESIC NUCLEI

In previous section, we discuss the possible changes of
the meson masses due to the medium effects. If such mass
changes occur in the nuclear medium, we can translate these
effects into the potential forms. We estimate the real parts of
the η- and η′-nucleus optical potentials based on the calculated

FIG. 3. Density dependence of the quark condensates (left panel)
and the meson masses (right panel) are shown for the SU(2)
symmetric matter (thick lines) and the SU(3) symmetric matter (thin
lines). The nucleon density ρ is defined in Eq. (7) and ρ0 is the normal
nuclear density ρ0 = 0.17 fm−3.

their masses at finite density by the NJL model. The optical
potential U (r) can be written as

U (r) = V (r) + iW (r), (20)

where V and W indicate the real and the imaginary parts of
the optical potential, respectively. The mass term in the Klein-
Gordon equation for the η and η′ mesons can be rewritten at
finite density as

m2
0 → m2(ρ) = (m0 + �m(ρ))2 ∼ m2

0 + 2m0�m(ρ), (21)

where m0 is the calculated meson mass in vacuum and m(ρ)
the meson mass at density ρ. The mass shift �m(ρ) is defined
as �m(ρ) = m(ρ) − m0 and is �m(0) = 0. Thus, we can
interpret the �m(ρ) as the strength of the real part of the
optical potential, and in this paper we write V (r) as

V (r) = �m(ρ0)
ρ(r)

ρ0
, (22)

using the meson mass shifts at normal nuclear density ρ0. Here
ρ(r) is the nuclear density distribution, which is assumed to
be of an empirical Woods-Saxon form as

ρ(r) = ρ0

1 + exp
(

r−R
a

) , (23)

where R = 1.18A
1
3 − 0.48 fm and a = 0.5 fm with the nuclear

mass number A.
From the calculated results shown in Fig. 2, we can deduce

the real part of the η- and η′-nucleus optical potential as
defined in Eq. (22). We show the real parts of the optical
potentials in Fig. 4 for all these cases defined in Eq. (19). We
find that the sign and strength of the real part of the optical
potential strongly depends on the anomaly effects at finite ρ.
The potential of η′ is attractive for cases (a) and (c), and its
strength depends on the density dependence of gD(ρ). As we
can see in Fig. 4(b), no real potential is expected for η′ meson
for gD = 0 case. As for η-nucleus optical potential, even the
sign of the real potential is changed by the density dependence
of gD(ρ) as shown in Figs. 4(a) and 4(c). For no anomaly
case (b), η meson degenerates with pion and the real potential
is slightly repulsive. Thus, we confirm that we can expect to

(a) (b) (c)

FIG. 4. Real parts of the η- and η′−11B optical potentials
determined by the meson mass shifts of NJL model in SU(2)
symmetric matter as defined in Eq. (22). Three panels correspond
to the cases (a), (b), and (c) defined in Eq. (19), respectively.
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obtain the information on UA(1) anomaly by knowing the η

and η′ meson properties at finite ρ.
The strength of the imaginary potential of meson and

nucleus is estimated separately since it is extremely difficult
to evaluate it using NJL model. For the η meson, we estimate
the strength of the imaginary potential based on the results
obtained in Refs. [35] assuming the N∗(1535) dominance in
the ηN channel, and take as

W (r) = −40
ρ(r)

ρ0
[MeV]. (24)

As for the η′ nucleus optical potential, we can estimate W (r)
from analysis of γp → η′p data [63]. Since they included
only N∗(1535) as a baryon resonance in the analysis of the
η′ formation reaction and determined η′NN∗(1535) coupling
strength, we can easily calculate the η′ self-energy in the
medium in analogy with the �-hole model for the π -nucleus
system as

Uη′ ∼ g2

2mη′

ρ

mη′ + MN − MN∗ + i�N∗/2

= (+77 − 8i)
ρ

ρ0
[MeV]. (25)

We consider the reasonable running range is from −5 MeV
to −20 MeV for the strength of the imaginary part of the η′
nucleus optical potential based on this evaluation in Eq. (25)
as in Ref. [37]. The η′-nucleus bound states were calculated
theoretically before in Ref. [64] where the widths of the η′-
mesic nuclear states were not evaluated.

We should mention here that the evaluation in Eq. (25)
provides the repulsive real part, which is opposite to the evalu-
ation from the η′ mass shift, since we consider only N∗(1535)
resonance with the mass MN∗ < mη′ + MN as an intermediate
states. By the (γ ,p) experiments proposed in this paper, we
can expect to distinguish these potentials and to determine the
sign and strength of the η′-nucleus optical potential.

In order to observe meson-nucleus bound states experi-
mentally, we consider missing mass spectroscopy [65], which
was proved to be a powerful tool for the meson bound states
formation in the studies of deeply bound pionic states [66].
In this spectroscopy, one observes an emitted particle in a
final state, and obtains the double differential cross section
d2σ/d�/dE as a function of the emitted particle energy. As
discussed in Refs. [37,67–69], we think that the (γ , p) reaction
with GeV photon beam is one of the appropriate reactions
for our purpose and it can be performed in existing facilities
like SPring-8. We consider the (γ ,p) reactions for the η- and
η′-mesic nuclei formation.

We choose the incident photon energy as Eγ = 2.7 GeV,
which is the beam energy accessible at SPring-8, and choose
12C as a target nucleus as in Ref. [37]. We use the Green
function method [70] to calculate the formation cross sections
as(

d2σ

d�dE

)
A(γ,p)η,η′⊗(A−1)

=
(

dσ

d�

)Lab

p(γ,p)η,η′
×

∑
f

S(E),

(26)

where S(E) is the nuclear response function and
(

dσ
d�

)Lab

p(γ,p)η,η′

are the elementary cross sections in the laboratory frame for
the η and η′ meson production. The elementary cross section
for η′ production is estimated to be 150 nb/sr using the data of
SAPHIR collaboration [71] and their analysis [72]. As for the η

production process, we take the same value for the elementary
cross section as

(
dσ
d�

)Lab

p(γ,p)η
= 150 nb/sr based on the data at

SPring-8 [73] which show the similar production rate for both
mesons in a test experiment in the preparation stage. We sum
up all (proton-hole)⊗(meson-particle) configurations in the
final state to get the total cross section in Eq. (26).

To calculate the response function S(E), we use the Green
function G(E; �r, �r ′) defined as [70]

G(E; �r, �r ′) = 〈p−1|φ(�r)
1

E − H + iε
φ†(�r ′)|p−1〉, (27)

where φ† is the meson creation operator and |p−1〉 is a proton
hole state. The Hamiltonian H contains the meson-nucleus
optical potential U . We can rewrite Eq. (27) in a simple
expression as [70]

G(E; �r, �r ′) =
∑
l,m

Y ∗
l,m(r̂)Yl,m(r̂ ′)Gl(E; r, r ′) (28)

Gl(E; r, r ′) = −2mkul(k, r<)v(+)
l (k, r>), (29)

where ul and v
(+)
l are the radial part of the regular and outgoing

solutions of equation of motion, respectively. Using the Green
function, the response function can be expressed as

S(E) = − 1

π
Im

∑
J,M,ms

∫
d3rdσd3r ′dσ ′

× f †(�r, σ )G(E; r, r ′)f (�r ′, σ ). (30)

Here, we define f (�r, σ ) as

f (�r, σ ) = χ∗
f (�r)ξ ∗

1
2 ,ms

(σ )[Y ∗
l (r̂) ⊗ ψjp

(�r, σ )]JMχi(�r), (31)

where χi and χf denote the projectile and the ejectile distorted
waves, respectively, ψ is the proton-hole wave function and
ξ is the spin wave function introduced to count possible
spin directions of the proton in the target nucleus. The
distorted waves χi and χf are evaluated by using the eikonal
approximation as in Ref. [37].

In Fig. 5, we show the calculated spectra of 12C(γ ,p)
reaction for the η′ meson formation as functions of the excited
energy which are defined as

Eex = mη′ − Bη′ + [Sp(jp) − Sp(p3/2)], (32)

where Bη′ is the η′ binding energy and Sp the proton separation
energy. The η′ production threshold energy E0 is indicated in
the figure by the vertical dashed line. The real part of the optical
potential is evaluated for case (a) in Eq. (19) which has around
−150 MeV depth at nuclear center as can be seen in Fig. 4(a).
The spectra are calculated for (upper panel) W0 = −5 MeV
and (lower panel) W0 = −20 MeV cases where the imaginary
potential is written as W (r) = W0ρ(r)/ρ0. We also show the
dominant subcomponents of the spectra in Fig. 5. As we can see
from these figures, we can expect to observe the peak structures
in the spectra due to the formation of the η′-mesic nucleus even
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FIG. 5. The calculated spectra of the 12C(γ , p)11B ⊗ η′ reaction
at Eγ = 2.7 GeV are shown as functions of the excited energy Eex

defined in the text. E0 is the η′ production threshold energy. The
real part of the η′-nucleus optical potential is evaluated for case
(a) in Eq. (19). The imaginary part of the potential is assumed to
be W (r) = −5ρ(r)/ρ0 [MeV] (upper panel) and W (r) = −20ρ(r)/
ρ0 [MeV] (lower panel). The total spectra are shown by the thick solid
line, and the dominant contributions of subcomponents are shown by
dotted and dashed lines as indicated in the figures.

in the case with the relatively large imaginary potential, and
we can expect to deduce the magnitude of the η′ mass shift at
finite nuclear density from the observed spectra. The evaluated
imaginary part of the η′-nucleus potential is small enough and
the resonance peaks are expected to be clearly separated each
other. Hereafter, we show the calculated spectra of the η′-mesic
nuclei formation only for W0 = −20 MeV cases.

In Figs. 6 and 7, we show the (γ ,p) spectra for wider
energy region including both η and η′ production to see the
anomaly effects in the whole (γ ,p) spectra simultaneously.
To provide realistic spectra, we include the contributions
due to ω meson production processes, which exist between
η and η′ contributions. As the ω-nucleus interaction, we
apply the results obtained by two theory groups reported in
Refs. [40] and [41]. We should mention here that the ω-nucleus
interaction at threshold in Ref. [40] is attractive, while that
in Ref. [41] is repulsive. Hence, we use both interactions to
evaluate the contribution of ω meson.

In Fig. 6, we show the spectra including the contribution
due to the formation of the ω mesic nuclei with the attractive
potential reported in Ref. [40]. We can see the significant mass
reduction of the η′ meson in nuclear medium in Fig. 6(a),
while in Fig. 6(b) we only see the simple quasifree η′ formation
spectrum without UA(1) anomaly effect. In the case with
the density dependent gD in Fig. 6(c), we can see the mass

FIG. 6. The calculated spectra of the 12C(γ ,p) reactions for the
η, ω, η′ mesic nucleus formation at Eγ = 2.7 GeV are shown as
functions of the emitted proton energies in final states. The three
cases (a), (b), and (c) for gD defined in Eq. (19) are considered.
The vertical dashed lines indicate the production thresholds of
the η, ω and η′ mesons. The contributions from the η, ω and
η′-mesic nuclei are shown by dotted, dash-dotted and dashed lines,
respectively. The imaginary part of the η′-nucleus optical potential is
W (r) = −20ρ(r)/ρ0 MeV. The ω-nucleus optical potential obtained
in Ref. [40] is used and is attractive.

FIG. 7. The calculated spectra of the 12C(γ ,p) reactions for the
η, ω, η′ mesic nucleus formation at Eγ = 2.7 GeV are shown as
functions of the emitted proton energies in final states. The three
cases (a), (b), and (c) for gD defined in Eq. (19) are considered.
The vertical dashed lines indicate the production thresholds of
the η, ω and η′ mesons. The contributions from the η, ω and
η′-mesic nuclei are shown by dotted, dash-dotted and dashed lines,
respectively. The imaginary part of the η′-nucleus optical potential is
W (r) = −20ρ(r)/ρ0 MeV. The ω-nucleus optical potential obtained
in Ref. [41] is used and is repulsive.
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reduction of both the η and η′ mesons. Especially, even below
the ω production threshold, we can see the finite contributions
of the η′ mesic nuclei formation to the spectrum as the
consequences of the large η′ mass reduction in the case with the
density dependent gD defined as (c) in Eq. (19). For the η mesic
nuclei production, it is hardly to see the differences between the
cases with (a) the constant gD and (c) the density dependence
gD , due to the large momentum transfer for the η mesic nuclei
formation with the incident photon energy Eγ = 2.7 GeV
considered in this paper. At this energy, the contributions from
higher partial waves of quasi-free η meson production are so
large that those from the bound η states hardly affect the total
spectrum. Furthermore, we should make a comment on the η

mesic nuclei that, in order to see the anomaly effect clearly,
we have not considered any contributions from resonances like
N∗(1535) in this paper in the estimation of the real part of the
η-nucleus optical potential, whose contribution is known to be
important on the η-nucleon system. The detailed discussions of
the η-mesic nuclei with the N∗(1535) resonance are reported
in Refs. [35,69]. The calculated contribution of the ω channel
in Fig. 6 is essentially the same as that reported in Ref. [67].

Similarly, in Fig. 7 we show the spectra with the ω mesic
nuclei with the repulsive potential predicted in Ref. [41]. In
this case, the contribution of the quasifree ω formation locates
the same energy region with the bound η′ in the cases (a) and,
especially (c) in Fig. 7. In Fig. 7(b), we can only see simple
three peaks corresponding the quasi-free η, ω and η′ mesons
in the spectrum.

As for the background, which is very important to discuss
experimental feasibility, is evaluated by using the experimental
data taken by LEPS collaboration at SPring-8 recently [73].
That was a test experiment in the preparation stage for the
observation of the ω mesic nuclei by the (γ ,p) reaction, which
used the same kinematics proposed in this paper and observed
the background proton emission rate from Carbon target
including energy region for the η′ meson production [73]. We
can roughly estimate the order of magnitude of the background
proton cross section as to be 10–100 [nb/sr MeV] in the η′
formation region. Thus, we estimate the signal over noise ratio
is around S/N ∼ 1/10. We think the absolute magnitude of
the calculated formation cross section is reasonably large and
the spectra are expected to be observed in future experiments
at SPring-8 [73].

IV. CONCLUSIONS

We have investigated the possible observation of the
effective restoration of the UA(1) anomaly at finite density
by formations of the η- and η′-mesic nuclei. Especially, since
the heavy η′ meson mass is considered to be generated from

the UA(1) anomaly effect, we can expect to observe clearly the
anomaly effect in medium in the η′ channel.

In order to evaluate more quantitative magnitude of
the meson mass changes due to the medium effects and
to obtain deeper insights on UA(1) anomaly effects than
Ref. [37], we adopted the Nambu-Jona-Lasinio (NJL) model
with the Kobayashi-Maskawa-’t Hooft (KMT) interaction,
and calculated the meson masses in finite density with three
different coupling strengths of the KMT interaction. We
obtained significant η′ mass changes even at normal nuclear
density due to the effective restoration of the UA(1) anomaly.
In the finite density calculations, we have substituted the SU(2)
symmetric constituent quark matter for the symmetric nuclear
matter. Although the NJL model doesn’t confine quarks, it is a
good effective model which can describe the low energy QCD
phenomena, i.e., the properties of light pseudoscalar mesons
rather well after fixing the model parameters appropriately.
Even the NJL model has some shortcomings, we think it is
meaningful to apply the model in this exploratory level to
clarify the physics of η′(958) mesic nuclei and UA(1) anomaly
at finite density.

To investigate the experimental feasibility, we calculated
formation cross sections of the η- and η′-mesic nuclei with
(γ ,p) reaction. We found that the calculated cross section
has reasonably large magnitude, and the (γ ,p) reaction with
GeV photon beam, which can be provided in existing facilities
like SPring-8, is an appropriate reaction for our purpose. We
conclude that we can expect to observe the η′ mass reduction
clearly in this reaction, and to obtain new information on the
UA(1) anomaly at finite density.

The present evaluation is the first theoretical results for the
formation reaction of the η- and η′-mesic nuclei based on the
NJL model results to know the behavior of UA(1) anomaly in
the medium. We believe that the present theoretical results is
much important to stimulate both theoretical and experimental
activities to study the UA(1) anomaly at finite density and to
obtain the deeper insights of QCD symmetry breaking pattern
and the meson mass spectrum.
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