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Gauge-invariant approach to meson photoproduction including the final-state interaction

H. Haberzettl,1,2 K. Nakayama,3,2 and S. Krewald2

1Center for Nuclear Studies, Department of Physics, The George Washington University, Washington, DC 20052, USA
2Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany
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A fully gauge-invariant (pseudoscalar) meson photoproduction amplitude off a nucleon including the final-state
interaction is derived. The approach based on a comprehensive field-theoretical formalism developed earlier by
one of the authors replaces certain dynamical features of the full interaction current by phenomenological auxiliary
contact currents. A procedure is outlined that allows for a systematic improvement of this approximation. The
feasibility of the approach is illustrated by applying it to both the neutral and charged pion photoproductions.
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I. INTRODUCTION

Ever since the pioneering work by Chew, Goldberger, Low,
and Nambu on pion production [1], the study of photo- and
electroproduction of mesons off nucleons has been utilized as
one of the major research avenues to learn about the excited
states of the nucleon. To extract accurate information on
nucleon resonances, one needs—in addition to precise and
extensive experimental data—reliable reaction theories that
allow one to disentangle the resonance contributions from the
background contributions to the observables.

The extant descriptions of meson photoproduction reactions
span a wide range of different approaches (e.g., chiral pertur-
bation theory, tree-level effective Lagrangians, the K-matrix
approach, etc. [2–10]). The present work is based on the
dynamical framework of meson-exchange models of hadronic
interactions [11–14] in which the composite nature of hadronic
vertices is accounted for by so-called form factors. Since, at
present, our theoretical understanding of these vertex form
factors is rather incomplete, one usually parameterizes the
vertex structure by phenomenological functions (usually of
monopole or dipole form) whose parameters are adjusted
to fit the data. The presence of such form factors spoils
gauge invariance of the photoproduction amplitude already
when dressing the bare tree level in this phenomenological
manner. The inclusion of an explicit hadronic final-state
interaction (FSI) further complicates this problem since the
construction of the corresponding interaction current (in
which the photon interacts with the hadronic structure within
the vertex) consistent with the FSI requires knowledge of
the underlying dynamical structure, a requirement that is
impossible to satisfy in an approach where phenomenological
form factors are employed. To maintain gauge invariance in
this situation, one needs to resort to finding prescriptions
that are consistent at a phenomenological level with the
various dynamical models. The existing prescriptions [15–22]
do not, and indeed cannot, provide a unique answer to this
problem since manifestly transverse currents—which have no
bearing on gauge invariance—can always be added to any
given prescription. From a phenomenological point of view,
therefore, it is unavoidable that one seeks a prescription that
works best in reproducing the data (see, e.g., the discussion

in [23]). A number of the existing gauge-invariance-preserving
prescriptions have already been applied in this manner in
pion photoproduction [12–14] as well as in electroproduction
[24,25] reactions.

However, most of the existing calculations based on
phenomenological dynamical models are actually not gauge
invariant. In fact, they revert to a variety of ad hoc recipes for
the sole purpose of enforcing current conservation,

kµMµ = 0, (1)

when the production current Mµ is on-shell, but not the
gauge-invariance condition expressed by the generalized
Ward-Takahashi (WT) identity [17,18,26]

kµMµ = −|Fsτ 〉Sp+kQiS
−1
p + S−1

p′ Qf Sp′−k|Fuτ 〉
+�−1

p−p′+kQπ�p−p′ |Ftτ 〉, (2)

which is an off-shell condition. [This equation is repeated as
Eq. (8), where its details are explained.]

One of the few exceptions to this situation is the recent work
by Pascalutsa and Tjon [14] where a fully gauge-invariant
pion photoproduction amplitude has been constructed based
on the Gross-Riska prescription [15]. This approach has
been extended and applied as well to pion electroproduction
[25]. The prescription of Ref. [15] also has been applied
to the nucleon-nucleon bremsstrahlung reaction [27]. The
Gross-Riska procedure relies on the observation that vertices
and propagators always enter in the combination (vertex ×
propagator) in a given reaction amplitude. Therefore, a
vertex form factor that depends only on the momentum of
the propagating (off-shell) particle can be incorporated into
the corresponding propagator instead of being associated
with the vertex. Of course, if more than one leg of the
vertex belongs to an off-shell particle, this restricts the
phenomenological form factors to being separable functions
of the respective leg momenta. In addition, the form factors
should be such that they do not lead to unphysical behavior
of the resulting propagators. Gauge invariance is then fulfilled
by constructing electromagnetic currents that obey the WT
identities with the respective hadronic propagators modified
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by the inclusion of the form factors as described.1 At the tree
level, this prescription completely removes the form factors
from the longitudinal part of the reaction amplitude; that is,
only manifestly transverse parts of the production current carry
any form-factor dependence.

In the present work, we construct a photoproduction
amplitude based on the field-theoretical approach given by
Haberzettl [18]. The full formalism is gauge invariant as
a matter of course. However, in view of its complexity
and high nonlinearity, its practical implementations require
that some reaction mechanisms need to be truncated and/or
replaced by phenomenological approximations. Our objective
here is to preserve full gauge invariance, in the sense of
Eq. (2), for this approximate treatment, while allowing for
the presence of explicit hadronic FSIs. This problem has
already been treated in Ref. [28] as a two-step procedure
where the gauge-invariant treatment of explicit FSIs was
added to an already gauge-invariant tree-level amplitude that
had been constructed according to the prescriptions given in
Ref. [19]. The present approach instead starts from the full
amplitude and derives a single condition for the mechanisms
to be approximated that follows directly from the generalized
WT identity (2). It thus is more general and not tied to
any particular tree-level treatment. Moreover, we present a
general scheme that allows a systematic way of including
more complex reaction mechanisms into the procedure. At the
lowest order, it is found that the essential aspects of the results
found in Ref. [28] remain true. In contrast to the prescription of
Ref. [15], the present approach does not impose any restriction
on the type of the hadronic form factors that can be used.

1Note that the electromagnetic vertices constructed in this way in
Refs. [14,27] differ from each other by a transverse piece.

Furthermore, the longitudinal part of the resulting reaction
amplitude retains these form factors even at the tree level.

The present paper is organized as follows. In Sec. II
we present our approach to constructing a fully gauge-
invariant photoproduction amplitude. In Sec. III we illustrate
the approach developed in Sec. II by applying it to pion
photoproduction. Section IV contains a summary with our
conclusions. Some details of the present approach as well as
of its model application are given in the appendices.

II. FORMALISM

In the following, for definiteness, we will explicitly consider
the production of pions off the nucleon (i.e., γ + N → π +
N ), but the formalism will of course apply equally well to the
photoproduction (or electroproduction) of any pseudoscalar
meson. Moreover, at intermediate stages of the reaction, we
will ignore other mesons or baryonic states since they are
irrelevant for the problem at hand, namely how to preserve
gauge invariance in the presence of FSI.

As mentioned, our approach is based on the field-theory
formalism of Ref. [18]. For the present purpose, however, we
do not need to recapitulate its full details. Instead, we employ
the summarizing diagrams of Figs. 1, 2, and 3. As is well
known [1], the photoproduction current Mµ can be broken
down according to

Mµ = Mµ
s + Mµ

u + M
µ
t + M

µ
int, (3)

where the first three terms describe the coupling of the photon
to external legs of the underlying πNN vertex (with subscripts
s, u, and t referring to the appropriate Mandelstam variables
of their respective intermediate hadrons). These terms are
relatively straightforward and easy to implement in a practical

(a) (b)

FIG. 1. (Color online) Diagrammatic summary of the field-theory formalism of Ref. [18]. Time proceeds from right to left. (a) Meson
production current Mµ. The first line corresponds to Eq. (3) summing up, in that order, the s-, u-, and t-channel diagrams and the interaction
current M

µ
int. (The different colors of the hadronic three-point vertices identify the πNN vertex in different kinematical situations.) The

dynamical content of M
µ
int is explicitly shown by the diagrams enclosed in the dashed box of the last two lines. This also includes, in the

bottom line, the final-state interaction mediated by the nonpolar πN amplitude X that satisfies the integral equation shown in (b). The diagram
element labeled U subsumes all exchange currents Uµ contributing to the process (see Fig. 2). The diagram with the open circle depicts the bare
current m

µ

bare (i.e., the Kroll-Ruderman term). (b) Pion-nucleon scattering with dressed hadrons. The full πN amplitude is denoted by T , with
X subsuming all of its nonpolar (i.e., non-s-channel) contributions. The latter satisfies the integral equation X = U + UG0X depicted in the
third line here, where the driving term U sums up all nonpolar irreducible contributions to πN scattering that is, all irreducible contributions
that do not contain an s-channel pole (see Ref. [18] for full details). In both parts (a) and (b), diagram elements with open, unlabeled circles
describe bare quantities, and solid circles (or circles filled with colors) denote the corresponding dressed vertices and propagators.
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FIG. 2. (Color online) Exchange-current contributions subsumed
in Uµ grouped by the topological properties of the underlying πN

irreducible hadron contributions: The diagrams subsumed in Eµ are
based on the photon attaching itself internally in all possible ways to a
simple hadron exchange graph, whereas Dµ subsumes the analogous
contributions arising from a triangular hadron graph; more complex
structures are not shown explicitly. Note that the second and third
diagrams of Eµ and the first and third diagrams of Dµ explicitly
contain the full off-shell interaction current M

µ
int. Implicitly it is

contained in many more places. (The middle diagram in the second
row of Dµ contains the diagram Xµ where the photon is attached to
the internal structure of the nonpolar πN amplitude X. The details
of this mechanism are irrelevant for the present considerations; they
can be found in Ref. [18].

application. However, the last term, the interaction current
M

µ
int, where the photon couples inside the vertex, explicitly

contains the hadronic FSI; its structure is, therefore, more
complex than that of any of the first three terms. We read off
the diagrams enclosed by the dashed box of Fig. 1(a) that

M
µ
int = m

µ

bare + UµG0|Fτ 〉
+XG0

(
Mµ

u + M
µ
t + m

µ

bare + UµG0|Fτ 〉), (4)

where m
µ

bare is the bare Kroll-Ruderman contact current, Uµ

subsumes all possible exchange currents (see Fig. 2), G0

describes the intermediate πN two-particle propagation, and
the FSI is mediated by the nonpolar part X of the πN T

matrix. Following Ref. [18], the notation |Fτ 〉 is used for the
dressed N → πN vertex (including its full coupling-operator
structure); for Nπ → N with the pion leg reversed, we use
〈Fτ |. The isospin operator τ (with its component index
suppressed) is pulled out of the vertex explicitly for later
convenience [see Eq. (12)]. The vertex obeys the equation

|Fτ 〉 = (1 + XG0) |Fbareτ 〉, (5)

where |Fbareτ 〉 denotes the bare πNN vertex.

FIG. 3. Diagrammatic representation of the nucleon’s electro-
magnetic current obtained by attaching a photon to the second line of
diagrams in Fig. 1(b). The terms correspond to those of Eq. (6).

Note that the NNγ electromagnetic vertices appearing in
Fig. 1(a) are also fully dressed vertices given by

�
µ

N = �
µ

N bare + m̄
µ

bareG0|Fτ 〉
+ 〈Fτ |G0

(
m

µ

bare + M
µ
t + Mµ

u + UµG0|Fτ 〉), (6)

and these are illustrated diagrammatically in Fig. 3. �µ

N bare and
m̄

µ

bare denote the bare vertices for γN → N and γπN → N

(i.e., m̄
µ

bare is the Kroll-Ruderman current m
µ

bare with the pion
leg reversed). Also, the nucleon propagator, S, illustrated in the
second row from the top in Fig. 1(b), is fully dressed according
to

S−1 = S−1
bare − 〈Fbareτ |G0|Fτ 〉, (7)

such that the WT identity as expressed by Eq. (10a) below is
satisfied. Sbare stands for the bare nucleon propagator.

As alluded to in Sec. I , the production current Mµ is gauge
invariant if its four-divergence satisfies the generalized WT
identity [17,18,26]

kµMµ = −|Fsτ 〉Sp+kQiS
−1
p + S−1

p′ Qf Sp′−k|Fuτ 〉
+�−1

p−p′+kQπ�p−p′ |Ftτ 〉, (8)

where p and k are the four-momenta of the incoming nucleon
and photon, respectively, and p′ and q are the four-momenta
of the outgoing nucleon and pion, respectively, related by
momentum conservation p′ + q = p + k. S and � are the
propagators of the nucleons and pions, respectively, with
their subscripts denoting the available four-momentum for the
corresponding hadron; Qi,Qf , and Qπ are the initial and final
nucleon and the pion charge operators, respectively. The index
x at |Fxτ 〉 labels the appropriate kinematic situation for πNN

vertex in the s-, u-, or t-channel diagrams of Fig. 1. This
is an off-shell condition. In view of the inverse propagators
appearing in each term here, if all external hadronic legs are
on-shell, this reduces to

kµMµ = 0 (hadrons on-shell), (9)

which describes current conservation.
Physically relevant, of course, is only current conservation.

However, the reason one must satisfy the off-shell condition
(8) for gauge invariance to hold true is the requirement
to have consistency across all elements of the underlying
reaction dynamics. In view of the inherent nonlinearity of the
process (because the number of pions is not conserved), the
elements contributing to the full-amplitude Mµ couple back
into themselves nonlinearly [18]: For example, as can be seen
from Fig. 2, the sum of exchange currents Uµ internally also
contains the interaction current M

µ
int in several places, with at

least one hadron leg off-shell even if all external hadrons are
taken on-shell. It is then found that it is not possible to achieve
current conservation consistently unless the current satisfies
the off-shell condition (8), which translates into the condition
(11) for the interaction current given in the following.

The electromagnetic currents for the nucleons and the pions,
�

µ

N and �µ
π , respectively, satisfy the WT identities

kµ�
µ

N (p′, p) = S−1
p′ QN − QNS−1

p , (10a)

kµ�µ
π (q ′, q) = �−1

q ′ Qπ − Qπ�−1
q , (10b)
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where the four-momentum relations p′ = p + k and q ′ = q +
k hold. It is therefore possible to replace the generalized WT
identity (8) by the equivalent gauge-invariance condition

kµM
µ
int = −|Fsτ 〉Qi + Qf |Fuτ 〉ef + Qπ |Ftτ 〉

(11)≡ −|Fs〉ei + |Fu〉ef + |Ft 〉eπ ,

where the operators

ei = τQi, ef = Qf τ, and eπ = Qπτ (12)

describe the respective hadronic charges in an appropriate
isospin basis (where component indices and summations are
suppressed here); that is, apart from some numerical factors,
the ex are essentially given by the charges of the respective
particles. Charge conservation for the production process then
simply reads

ei = ef + eπ . (13)

In the following, it is more convenient to use the condition
(11), instead of (8), together with (10).

We emphasize here that if the single-particle electro-
magnetic currents satisfy the WT identities (10) and if the
four-divergence of the interaction current is given by (11),
then the corresponding production amplitude Mµ will be gauge
invariant as a matter of course even if propagators and vertices
have been subjected to approximations.

A. Preserving gauge invariance

The preceding considerations are completely general. In
practical applications, however, one will not be able to
calculate all mechanisms that contribute to the full reaction
dynamics and one must make some approximations. This is
particularly true for the complex mechanisms that enter Uµ, as
depicted in Fig. 2. Approximations should preserve the gauge
invariance of the amplitude. To see how this can be done, let
us define

Mµ
a = m

µ

bare + UµG0|Fτ 〉, (14)

which is shown in Fig. 4, and thus write

M
µ
int = Mµ

a + XG0
(
Mµ

u + M
µ
t + Mµ

a

)
, (15)

and recast the gauge-invariance condition (11) as a condition
for M

µ
a . This immediately produces

kµMµ
a = (1 − UG0)[−|Fs〉ei + |Fu〉ef + |Ft 〉eπ ]

−UG0
[
kµ

(
Mµ

u + M
µ
t

)]
, (16)

where

(1 + XG0)−1 = 1 − UG0 (17)

and

U = (1 + XG0)−1 X (18)

were used, with U being the sum of all nonpolar hadronic
driving terms [cf. the third line of diagrams in Fig. 1(b)]. In
the last term of (16) obviously only the nontransverse parts
of the u- and t-channel currents M

µ
u and M

µ
t will contribute.

Denoting those respectively by m
µ
u and m

µ
t , that is,

kµ

(
Mµ

u − mµ
u

) = 0 and kµ

(
M

µ
t − m

µ
t

) = 0, (19)

FIG. 4. Diagrammatic representation of Eq. (14).

we finally have

kµMµ
a = (1 − UG0)[−|Fs〉ei + |Fu〉ef + |Ft 〉eπ ]

− kµUG0
(
mµ

u + m
µ
t

)
(20)

as the necessary condition that M
µ
a must satisfy so that M

µ
int

yields the gauge-invariance condition (11). Equation (20) is
exact—no approximation has been made up to here.

1. Approximating Mµ
a

The structure of the preceding condition suggests the
following approximation strategy. The condition evidently is
satisfied if we now approximate M

µ
a by

Mµ
a = (1 − UG0)Mµ

c − UG0
(
mµ

u + m
µ
t

) + T µ, (21)

where M
µ
c can be any contact current satisfying

kµMµ
c = −|Fs〉ei + |Fu〉ef + |Ft 〉eπ (22)

and T µ is an undetermined transverse contact current that is
unconstrained by the four-divergence (20). With the choice
(21), the corresponding approximate M

µ
int is then easily found

from (15) as

M
µ
int = Mµ

c + T µ + XG0
[(

Mµ
u − mµ

u

) + (
M

µ
t − m

µ
t

) + T µ
]
.

(23)

In this scheme, therefore, the choice one makes for M
µ
c

(and T µ) corresponds to an implicit approximation of the
full dynamics contained in the right-hand side of Eq. (14).
Moreover, beyond this actual choice, the only explicit effect
of the FSI X is from explicitly transverse loop contributions,
which is precisely the same result that was found in Ref. [28].
Thus it follows that

kµM
µ
int = kµMµ

c (24)

and this approximate interaction current then obviously satis-
fies the gauge-invariance condition (11).

Equations (21) and (23), together with the prescriptions for
M

µ
c and T µ as given in Secs. II A2 and II A3, are the main

results of the present work.
Note that the choice of T µ, although it has no bearing on

the gauge invariance itself, will have a direct effect on how, if
at all, the FSI enters the approximate treatment. For example,
putting for the moment

T µ = −UG0
[(

Mµ
u − mµ

u

) + (
M

µ
t − m

µ
t

)]
(25)

simply provides

M
µ
int = Mµ

c . (26)

Therefore, this particular choice completely eliminates the
explicit occurrence of the FSI and, for phenomenological
choices of M

µ
c , such as Eq. (35), this corresponds to the

tree-level approximation where the full interaction current
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is replaced by a phenomenological contact current. We
emphasize, however, that we do not advocate actually using
Eq. (25). This particular (extreme) choice merely illustrates
that the undetermined T µ may contain pieces that may be
capable of partially undoing the explicit inclusion of the FSI in
(23). In Sec. II A3 we introduce a phenomenological procedure
for obtaining T µ from the data.

With the approximation (21) for M
µ
a , the dressed NNγ

vertex (6) becomes

�
µ

N = �
µ

N(bare) + m̄
µ

bareG0|Fτ 〉+ 〈Fbareτ |G0
(
Mµ

c + mµ
u +m

µ
t

)
+〈Fτ |G0

[(
Mµ

u − mµ
u

) + (
M

µ
t − m

µ
t

) + T µ
]
, (27)

where Eq. (5) has been used. To the extent that the approx-
imated M

µ
a (21) fulfills the same condition (20) satisfied by

the exact current M
µ
a , this NNγ vertex also satisfies the same

WT identity (10a) obeyed by the exact dressed vertex given
by Eq. (6).

2. Choosing Mµ
c

The phenomenological choice that we make here for M
µ
c

is a variant of the procedure proposed in Refs. [18,19],
which is more general than what was suggested in [28]. We
parameterize the πNN vertices by

Fx = gπγ5

[
λ + (1 − λ)

q/π

m + m′

]
fx, (28)

where x = s, u, or t indicates the kinematic context, gπ is
the physical coupling constant, m and m′ are the nucleon
masses before and after the pion is emitted or absorbed and the
parameter λ allows for the mixing of pseudoscalar (PS: λ = 1)
and pseudovector (PV: λ = 0) contributions. For simplicity,
the functional dependence fx of the vertex (which depends
on the squared four-momenta of all three legs) is chosen as
common to both PS and PV, and it is normalized to unity if all
vertex legs are on-shell. We define then an auxiliary current

Cµ = −eπ

(2q − k)µ

t − q2
(ft − F̂ ) − ef

(2p′ − k)µ

u − p′2 (fu − F̂ )

− ei

(2p + k)µ

s − p2
(fs − F̂ ), (29)

where
F̂ = 1 − ĥ(1 − δsfs)(1 − δufu)(1 − δtft ). (30)

The factors δx are unity if the corresponding channel con-
tributes to the reaction in question, and zero otherwise. In
principle, the parameter ĥ may be an arbitrary (complex) func-
tion, ĥ = ĥ(s, u, t), possibly subject to crossing-symmetry
constraints.2 (However, in the application discussed in the
next section, we simply take ĥ as a fit constant. Note that
ĥ = 0 corresponds to Ohta’s choice [16].) With this choice for

2Regarding crossing symmetry, note that the form (30) for F̂

addresses the concerns raised in Ref. [21] regarding the original
choice for F̂ made in [19].

F̂ , the auxiliary current Cµ is manifestly nonsingular,

Cµ = −eπ (2q − k)µ
ft − 1

t − q2
[1 − ĥ(1 − δsfs)(1 − δufu)]

− ef (2p′ − k)µ
fu − 1

u − p′2 [1 − ĥ(1 − δsfs)(1 − δtft )]

− ei(2p + k)µ
fs − 1

s − p2
[1 − ĥ(1 − δufu)(1 − δtft )];

(31)

that is, it is a contact current, and in view of charge
conservation, eπ + ef − ei = 0, its four-divergence evaluates
to

kµCµ = eπft + ef fu − eifs. (32)

With the vertex parametrization (28), the gauge-invariance
condition (22) may now be written explicitly as

kµMµ
c = gπγ5kµ

{[
λ + (1 − λ)

q/

m′ + m

]
Cµ

− (1 − λ)
γ µ

m′ + m
eπft

}
, (33)

or, equivalently, as

kµMµ
c = gπγ5kµ

{[
λ + (1 − λ)

q/ − k/

m′ + m

]
Cµ

− (1 − λ)
γ µ

m′ + m
(eifs − ef fu)

}
, (34)

where the respective terms in the braces differ by a manifestly
transverse term. We can exploit this ambiguity and set

Mµ
c = gπγ5

{[
λ + (1 − λ)

q/ − βk/

m′ + m

]
Cµ

− (1 − λ)
γ µ

m′ + m
[eπft − βkρC

ρ]

}
, (35)

where all terms depending on the free parameter β sum to a
transverse piece T

µ
β ∝ β(γ µkρC

ρ − k/Cµ). The parameter β

then allows us to mix the pseudovector “k/ content” found in
the expressions within the braces on the right-hand sides of
Eqs. (33) and (34), which correspond to β = 0 and β = 1,
respectively. Note that β = 0 amounts to a “more traditional”
treatment of the Kroll-Ruderman term, where the bare γ5γ

µeπ

coupling is simply dressed by the t-channel form factor
eπ → eπft . For β = 1, by contrast, this dressing occurs via
the linear combination eπ → eifs − ef fu of s- and u-channel
form factors (which in general would be nonzero even for π0

production).
Obviously, this choice of M

µ
c is not unique, for we can

always add another transverse current to it. In this sense, the
pieces proportional to the parameter β in Eq. (35) represent
just a particular choice of the transverse current added to the
contact current. We emphasize, however, that the transverse
contact current in M

µ
c must not be confused with the transverse

contact current T µ appearing in Eq. (23). Note, in particular,
that M

µ
c (and any of its contributing pieces) does not appear

inside the FSI loop integral, but T µ does.
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3. The transverse contact current Tµ

The most general structure of a transverse contact current
in pion photoproduction3 can be written as [4]

T µ = γ5

4∑
j=1

AjT
µ

j , (36)

where

T
µ

1 = i

m
σµνkν = 1

m
(γ µk/ − kµ) , (37a)

T
µ

2 = 1

m3

[
P µ

(
2q · k − k2

) − (2q − k)µ P · k
]
, (37b)

T
µ

3 = 1

m2
(γ µq · k − qµk/) , (37c)

T
µ

4 = 1

m2
(γ µP · k − P µk/) − T

µ

1 , (37d)

with P µ ≡ (p + p′)µ/2. The operators T
µ

j constitute a com-
plete set of manifestly transverse operators for real photons.
The coefficients Aj should be free of any singularities to
ensure that T µ is a genuine contact current. The simplest
approximation one can make for these coefficients is to assume
them to be of the form

Aj = aj

k0
, (38)

with k0 denoting here the photon energy and aj being
dimensionless constants to be fixed by the data. Notice that the
factor 1/k0 in this equation will be canceled by the factor k0

that appears once the matrix element of the transverse current
T µ is calculated.

To explore the energy range of where the approximation
(38) may be expected to produce reasonable results, let us
calculate the corresponding matrix element of T µ,

T̂ ≡ ū �p′ (εµT µ)u �p, (39)

where εµ denotes the photon’s polarization vector and u �p is
the nucleon spinor, with three-momentum �p, normalized as
ū �pu �p = 1. (Note that u �p here does not contain the Pauli spinor;
i.e., T̂ is an operator in spin-1/2 space.) We have, in the center-
of-momentum frame of the system,

T̂ = F1 �σ · �ε + iF2�ε · n̂2 + F3 �σ · k̂�ε · q̂ + F4 �σ · q̂�ε · q̂, (40)

with n̂2 ≡ (k̂ × q̂)/|k̂ × q̂|, where the hats denote unit three-
vectors (i.e., v̂ ≡ �v/|�v| for an arbitrary vector �v), and

F1 = α0 +
(

α1 + α2
|�q|
m

cos θ

) |�q|
m

cos θ, (41a)

F2 =
(

β1 + β2
|�q|
m

cos θ

) |�q|
m

sin θ, (41b)

F3 =
(

δ1 + δ2
|�q|
m

cos θ

) |�q|
m

, (41c)

F4 = η2
|�q|2
m2

, (41d)

3For simplicity, we consider here only real photons, but these
considerations can easily be extended to electroproduction processes
as well.

with cos θ ≡ k̂ · q̂. The quantities αi, βi, δi , and ηi are given
explicitly in Appendix A in terms of the coefficients aj

of Eq. (38). These results show explicitly that the constant
approximation for the coefficients aj of (38) leads to a
transverse contact current T µ that accounts for parts of the
partial-wave contributions up to D waves in the final πN state.4

Therefore, the constant approximation (38) should be suitable
for energies not too far from threshold. For higher energies, if
higher partial-wave contributions should be needed, one might
expand Aj in terms of Legendre polynomials of higher order
and fit the corresponding coefficients.

The isospin structure of the transverse contact current can
be included explicitly by writing the coefficient Aj in Eq. (36)
as

Aj =
3∑

i=1

(
A0

j τi + A−
j

1

2
[τi, τ3] + A+

j δi,3

)
, (42)

in which case A0
j , A

−
j , and A+

j individually are to be approxi-
mated by Eq. (38).

B. Explicitly incorporating the dynamics of exchange currents

The fitting procedure of T µ discussed in the previous
section provides an indirect phenomenological means of
accounting for the transverse parts of the exchange-current
contributions of Uµ subsumed in Fig. 2, which are neglected
when approximating M

µ
a , as shown in Fig. 4. Specifically, none

of the transverse mechanisms subsumed under the currents
Eµ and Dµ, etc., as defined in Fig. 2, explicitly enters the
approximation procedure described so far.

This can be done, however, in a systematic order-by-order
manner. To this end, note that with

Uµ = Eµ + Dµ + · · · (43)

as defined in Fig. 2, we may write Eq. (14) as

Mµ
a = EµG0|Fτ 〉 + M ′µ

a , (44)

where

M ′µ
a = m

µ

bare + DµG0|Fτ 〉 + · · · . (45)

We may now subject M ′µ
a to the same approximation procedure

employed previously for M
µ
a , now, however, we explicitly take

into account the current Eµ.
One easily finds that both Eqs. (22) and (23) remain valid,

but T µ is now given by

T µ = (Eµ − eµ)G0|Fτ 〉 + T ′µ, (46)

where eµ is the nontransverse part of Eµ (the same way m
µ
x is

the nontransverse part of M
µ
x , for x = u, t); that is,

kµ(Eµ − eµ)G0|Fτ 〉 = 0. (47)

The remaining transverse current T ′µ, with

kµT ′µ = 0, (48)

4See also Ref. [29], where the coefficients Fj in Eq. (40) are given
in terms of the partial-wave matrix elements to any desired order of
the expansion.
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remains undetermined by this procedure. It plays the same
role, obviously, at the present level that T µ played at the
previous level of approximation. We may, therefore, either treat
it completely phenomenologically in the manner of Eq. (36),
or we may, in principle, treat its dynamics explicitly by now
incorporating the triangle-graph currents Dµ of Fig. 2. This
then leads to

T ′µ = (Dµ − dµ)G0|Fτ 〉 + T ′′µ, (49)

where dµ is the nontransverse part of Dµ and T ′′µ is the
remaining unspecified transverse contribution.

In principle, one may in this manner include more and
more complex dynamical mechanisms explicitly into the
formalism in a step-by-step procedure. In practice, however,
even incorporating the first step, Eq. (46), explicitly in the
interaction current (23) is a highly nontrivial task since this
involves a double-loop integral, which is very costly to evaluate
numerically.

Note, however, that as far as gauge invariance is concerned,
one need not work with the full currents Eµ or Dµ, etc.
Provided everything else is done consistently in the manner
outlined here, any approximation of, for example, Eµ that
satisfies the gauge-invariance constraint

kµEµ(p′, q ′, p, q) = Q′
πE(p′, q ′ − k, p, q)

+Q′
NE(p′ − k, q ′, p, q)

−E(p′, q ′, p, q + k)Qπ

−E(p′, q ′, p + k, q)QN (50)

will preserve gauge invariance as a matter of course [18]. Here,
E describes the simple exchange graph obtained by stripping
the photon off any of the three contributions to Eµ, q, q ′ and
p, p′ are the incoming/outgoing pion and nucleon momenta,
respectively, related by

p + q + k = p′ + q ′, (51)

and Qπ,Q′
π and QN,Q′

N are the corresponding charge
operators. A similar equation can be written down for Dµ

and, for that matter, for any topologically distinct contribution
to Uµ.

C. Unitarity

The full field-theoretical photoproduction formalism as
summarized in Fig. 1 is unitary as a matter of course
(within the limits of the usual one-photon approximation). It
is a straightforward exercise to show that the discontinuity
contributions for the corresponding unitarity relation arise
from the intermediate πN propagator G0 in the hadronic
relation

X = U + UG0X (52)

for the nonpolar πN amplitude and from the dressed single-
nucleon s-channel pole term |Fτ 〉S〈Fτ | that appears in the
full πN T matrix,

T = |Fτ 〉S〈Fτ | + X. (53)

(The preceding two equations are depicted in the last two lines
of diagrams in Fig. 1(b); see also Ref. [18].) In the one-photon

limit, therefore, only the cut structure of the hadronic part of
the photoreaction is relevant and other cuts do not contribute
to the unitarity relation. This applies, in particular, to the cuts
that are contained in the contact current M

µ
a shown in Fig. 4.

Hence, any approximation of M
µ
a will preserve the unitarity

of the photoproduction amplitude. The approximation choice
(21), therefore, does not violate unitarity.

III. APPLICATION: PION PHOTOPRODUCTION

In this section, we apply the approach developed in the
preceding section to the photoproduction reaction γ + N →
π + N . At this stage, this application is intended to be more of
a feasibility study rather than a serious attempt at describing all
features of the data. We will therefore make some simplifying
assumptions along the way.

In the present application, we restrict ourselves to photon
energies up to about 400 MeV. Therefore, in addition to the
basic nucleons and pions discussed in the preceding section,
our model also incorporates intermediate �s in the s and
u channels. Details of the dressing of the electromagnetic
N� transition vertex in the present approach are given in
Appendix B. We also include the ρ, ω, and a1 meson
exchanges in the t channel. Note here that transition currents
between different hadronic states are transverse individually
and therefore play no role for the issue of gauge invariance.
The details of the respective interactions are specified by
the Lagrangian densities given in Appendix C. Form factors
are attached to the hadronic vertices to account for the off-
shellness of the respective intermediate hadrons. The details
of these form factors are also found in Appendix C.

For the πN FSI, we employ the πN T matrix developed by
the Jülich group [30], which results from a dynamical model
based on a coupled-channels approach. Among other things,
this interaction fits the πN phase shifts and inelasticities
below about 1.5 GeV. For higher energies it provides an
FSI background, which has to be supplemented by baryon
resonances. It should be noted that the Jülich πN interaction
is based on time-ordered perturbation theory (TOPT) [31].
Therefore, to be fully consistent with this interaction, one
should also evaluate the amplitudes M

µ
x (x = s, u, t) within

TOPT. In the present application, however, we have ignored
this consistency requirement and evaluate these amplitudes
following the Feynman prescription (which coincides with
TOPT at the tree level). As a consequence, there is an ambigu-
ity in defining the zeroth component of the four-momentum of
the intermediate state in the transverse amplitudes (Mµ

u − m
µ
u )

and (Mµ
t − m

µ
t ) appearing under the loop integral of the FSI

contribution in Eq. (23). We follow the choice made (based
on the gauge invariance consideration) in Ref. [11] for the
zeroth component of the intermediate particle momentum in
evaluating these amplitudes.5

In the present application, for simplicity, we ignore the
dressing effects in the s-channel nucleon pole propagator.

5Note that, in the present approach, the photoproduction amplitude
is gauge invariant independent of this particular choice of defining
the zeroth component of the intermediate particle momentum.
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Moreover, we ignore the explicit dressing of the nucleon
electromagnetic vertex as given by Eq. (27). Instead, we
take the vertex given by Eq. (C4a) with physical coupling
constants. The analogous approximation is also adopted for
the N�γ vertex given by Eq. (C4g). Here, the coupling
constants G1 and G2 are treated as free parameters adjusted to
reproduce the data. Such an approximation is not critical for
the present purpose of illustrating how the method developed
in the previous section works. Obviously, dressing of the
electromagnetic vertices is more critical in electroproduction
processes.

In the following, we list the free parameters of the model
in the present application.

(i) G1 and G2: The two dressed electromagnetic cou-
pling constants at the N�γ vertex, as specified in
Appendix C, are not independent of each other, for
we impose the E2 to M1 ratio to be REM = −2.5% as
determined by the Mainz group [32,33].

(ii) ĥ, β, and λ: The parameters ĥ and β appear in the
contact current in Eqs. (31) and (35), and the PS/PV
mixing parameter λ appears in Eq. (28). We take β = 0
and λ = 0 (pure PV) from the outset, so that ĥ is the
only parameter to be fixed in the contact current M

µ
c .

(iii) T µ: The transverse contact current in Eq. (23) is found
to be negligible in the present application; that is, the
parameters aj in Eq. (38) are taken as aj = 0 (j =
1, 2, 3, 4). In other words, we found no need for such a
current in reproducing the cross-section data.

(iv) �: This regularization parameter is needed for the loop
integral in the FSI contribution. We regularize this
integral by introducing a cutoff function

FR = �2

�2 + �q2
, (54)

where �q denotes the relative momentum of the inter-
mediate πN state in the loop integral. Of course, this
regulator may also be interpreted as the form factor that
accounts for the off-shellness of the pion and nucleon
in the loop integral.

With the aforementioned considerations, we are left with
only three independent free parameters in the present model.
They are adjusted to reproduce the pion photoproduction
cross-section data. The resulting parameter values are given in
Table I. Note that ĥ is nearly zero, corresponding practically
to Ohta’s choice [16].

TABLE I. Model parameters fitted to the reaction
γN → πN . The N�γ coupling constants G1 and G2

are constrained by the measured E2 to M1 ratio of
REM = −2.5% [32,33]. The parameter β in the contact
current is fixed to be zero from the outset. Moreover, we
consider only pure pseudovector coupling and therefore
always have λ = 0.

G1 G2 � (MeV) ĥ

3.84 −1.94 604 0.01

140 190 240 290 340 390

Tγ (MeV)

0

100

200

300

σ 
(µ

b)

Born
FSI
total

γ+p −−> πo
+ p

FIG. 5. (Color online) Results corresponding to the parameter
set in Table I for the total cross section as a function of photon
incident energy Tγ in the reaction γ + p → π 0 + p. The dashed
curve corresponds to the Born contribution and the dash-dotted curve
to the FSI loop contribution. The solid curve is the total contribution.
The data are from Ref. [34].

Figure 5 shows the total cross-section result for the reaction
γ + p → π0 + p from the threshold up to Tγ ≈ 400 MeV.
As we can see, the agreement with the data is very good
except for energies above Tγ ∼ 360 MeV, where the prediction
tends to underestimate the data. In particular, around Tγ ≈
390 MeV, the discrepancy is about 10%. We also see that the
FSI loop contribution is relatively small compared to the Born
contribution. However, it plays a crucial role in reproducing
the observed energy dependence through its interference with
the dominant Born term.

Figure 6 shows the results for differential cross sections
for neutral and charged pion productions at various energies
together with the data. We see that, overall, the data are

0
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/d

Ω
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0
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γ+p-->πo
+p γ+p-->π+

+n γ+n-->π-
-+p

Tγ=390 MeV

Tγ=340 MeV

Tγ=220 MeV

Tγ=180 MeV

FIG. 6. (Color online) Results corresponding to the parameter set
in Table I for the differential cross sections in the c.m. frame of the
system in the reaction γ + N → π + N at various photon incident
energies Tγ . In the top row, the dashed curves correspond to the results
represented by solid curves multiplied by an arbitrary factor of 1.1
The data are from Refs. [33,35].
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reproduced quite well. The dashed curves in the top row
correspond to the results represented by the solid curves
multiplied by an arbitrary factor of 1.1. They are shown here to
facilitate visualizing that the shape of the angular distribution
is well reproduced, in spite of the absolute normalization being
underestimated at this energy by ∼10%, as can be seen better
in Fig. 5.

IV. SUMMARY

By exploiting the generalized Ward-Takahashi identity for
the production amplitude and total charge conservation, we
have constructed a fully gauge-invariant (pseudoscalar) meson
photoproduction amplitude that includes the hadronic final-
state interaction explicitly. The method is based on a field-
theoretical approach developed earlier by Haberzettl [18]. It is
quite general and can be readily extended to any other meson
photo- and electroproduction reactions. This method should
be particularly relevant for the latter reaction.

As an example application of the present approach, we have
calculated both the neutral and charged pion photoproduction
processes off nucleons up to about 400 MeV photon incident
energy to illustrate the feasibility of the present method.

Obviously, for a more quantitative calculation, including
not only cross sections but also other observables, some of the
approximations made in the present feasibility study should
either be improved or altogether avoided. In particular, the
dressing of the electromagnetic vertices as given by Eq. (6)
needs to be carried out. Also, for pion photoproduction,
one should constrain the parameters of the present model,
if possible at all, by comparing the amplitude of the present
approach in the chiral limit with that of chiral perturbation
theory. Work in this direction is in progress.
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APPENDIX A: TRANSVERSE CONTACT CURRENT

In this appendix, we give the explicit formulas for the
coefficients αi, βi, δi , and ηi appearing in Eq. (41). They are

α0 = N

[
a1G + a3

ωq

m
+ a4

(
I

m
− 2G

)]
, (A1a)

α1 = N [−a1JG − a3(1 + ωqH ) + a4(1 − IH − 2JG)],

(A1b)

α2 = N [a3 − a4]mH, (A1c)

where ωq ≡ √�q 2 + m2
π and

N ≡
√

εq + m

2m

√
εk + m

2m

1

m
, (A2a)

G ≡ 1 + |�k|
εk + m

, (A2b)

H ≡ |�k|
(εq + m)(εk + m)

, (A2c)

I ≡ εk + |�k| + εq, (A2d)

J ≡ m

εq + m
, (A2e)

with εp ≡
√

�p 2 + m2. Furthermore,

β1 = N [−a1JG + a3ωqH + a4(IH + 2JG)], (A3a)

β2 = −α2, (A3b)

and

δ1 = N

[
−a1JG − a2

|�k|
m

K + a3(G + ωqH ) (A4a)

+a4(G − IH − 2JG)

]
,

δ2 = −N [a3 + a4] mH, (A4b)

with K ≡ 2(εk + m)/(εq + m), and finally

η2 = N

[
a2K −

(
a3 − a4

|�k|
m

)
(J − mH )

]
. (A5)

APPENDIX B: TRANSVERSALITY OF
THE DRESSED N�γ VERTEX

For completeness, in this appendix we show how to
dress the N�γ transition vertex in the present approach and
demonstrate that the resulting vertex is purely transverse, as it
should be.

Bare transition currents can easily be made transverse by
expanding the current in an appropriate transverse operator
base. It is not obvious, however, that the transversality will
remain true after one dresses the current. It will be shown here
that this is indeed the case. As a specific example, we will treat
the electromagnetic current for the N → � transition.

The dressing mechanism for this current is depicted in
Fig. 7, which is constructed in analogy to the dressed
nucleon current in (6) (see also Ref. [18] for full details).
We will consider here only dressing mechanisms in terms of
nucleons and pions. Other particles are independent of the
ones considered here and formally would not add anything
new except complicating the presentation. The two equivalent
forms arise from attaching the photon in all possible ways
to two equivalent bubbles, as shown in Fig. 8. It should be
obvious, however, that as a physical process the transition
N → � as shown in this figure is not possible because of
isospin conservation. Within the present context, therefore, the
bubbles in Fig. 8 form but the topological backdrop against
which the current shown in Fig. 7 is constructed; they are not
considered as having a physical meaning of their own.
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FIG. 7. (Color online) Dressed transition current for γN → �.
Solid circles depict dressed vertices and currents, whereas open
circles show the corresponding bare quantities. The two equivalent
forms differ by whether the initial πNN vertex or the final πN�

vertex is fully dressed. Contributions with intermediate particles other
than pions and nucleons are not shown.

Following Ref. [36], the most general transverse current for

γ (k) + N (p) → �(p′) (B1)

may be written as

�βµ = G1γ5(kβγ µ − gβµ k/) + G2γ5(kβP µ − gβµk ·P )

+G3γ5(kβkµ − gβµk2), (B2)

where P = (p + p′)/2 = (2p + k)/2; the Lorentz indices µ

and β pertain to the photon and the �, respectively. The Gi

are the corresponding form factors; for real photons, only G1

and G2 contribute. This is the ansatz that one chooses for the
bare current.

To show that the transversality of the bare current is
preserved if one now dresses the current, we use the first form
of the current shown in Fig. 7. Using the notation of Ref. [18],
we can translate this into the schematic equation

�βµ = �
βµ

0 + 〈f βµ|SN ◦ �π |F 〉 + 〈f β |SN ◦ �π

∣∣Mµ
int

〉
+〈f β |SN ◦ [

�π�µ
π �π

]|F 〉
+ 〈f β |[SN�

µ

NSN

] ◦ �π |F 〉, (B3)

where the order of terms is exactly as in Fig. 7. The (transverse)
bare current is denoted by �

βµ

0 ; f β is the bare π�N vertex
and f βµ the corresponding bare contact current. The latter are
given by

f β = f�θβνqν, (B4)

FIG. 8. (Color online) Topological structure of the bubbles
underlying the construction of the transition current in Fig. 7. The
first equality follows from the fact that the dressing for both bubbles is
done in terms of the nonpolar πN T -matrix X, and both bubbles with
dressed vertices, therefore, can be written in terms of the graphs of the
second line. Taken as a physical process, the transition N → � is not
possible either on-shell or off-shell because of isospin conservation.

where qν is the incoming pion momentum, θβν the coupling
tensor, and f� the bare coupling constant, and by

f βµ = −f�θβµeπ , (B5)

where eπ is the charge of the intermediate pion. F is the dressed
πNN vertex and M

µ
int the corresponding dressed interaction

current. The convolution of the intermediate pion and nucleon
propagators (with and without attached photons) is denoted
by A ◦ B. The momentum dependence is suppressed here,
but it can easily be found by noting that the initial nucleon
momentum is p and that the photon feeds a momentum k into
the line (or vertex) to which it is attached.

Using the Ward-Takahashi identities for the pion, the
nucleon, and the interaction current, we have

kµSN�
µ

NSN = e′
N (•SN − SN•) , (B6a)

kµ�π�µ
π �π = eπ (•�π − �π•) , (B6b)

kµM
µ
int = −F [•eN ] + [e′

N•]F + [eπ•]F, (B6c)

respectively, where the solid dot (•) indicates at which point the
photon momentum is injected into the equations. For example,

e′
N (•SN − SN•) = e′

N

[
SN (p′′) − SN (p′′ + k)

]
, (B7)

where p′′ is the initial momentum of the nucleon with charge
e′
N within the loop. The notation [ex•] specifies that the photon

momentum is injected into the (incoming or outgoing) particle
line with charge ex . We now find

kµ�βµ = kµ�
βµ

0︸ ︷︷ ︸
=0

−f�eπ 〈θβµkµ|SN ◦ �π |F 〉

− eN 〈f β |SN ◦ �π |F 〉 • −eπ 〈f β |SN ◦ [�π•]|F 〉
+ e′

N 〈f β |[SN•] ◦ �π |F 〉 + eπ 〈f β |SN ◦ [•�π ]|F 〉
− eπ 〈f β |SN ◦ [�π•]|F 〉 + e′

N 〈f β |[•SN ] ◦ �π |F 〉
− e′

N 〈f β |[SN•] ◦ �π |F 〉
= −f�eπ 〈θβµkµ|SN ◦ �π |F 〉 − eN 〈f β |SN ◦ �π |F 〉•

+ eπ 〈f β |SN ◦ [•�π ]|F 〉 + e′
N 〈f β |[•SN ] ◦ �π |F 〉.

(B8)

In the second term, the dot • simply indicates that the overall
four-momentum of 〈f β |SN ◦ �π |F 〉 is p + k. In the first,
third, and fourth terms, the intermediate pion propagator
depends on the same loop variable q in all terms, but the
leftmost vertices have momentum dependencies that can be
combined according to

−f�eπ 〈θβµkµ|SN ◦ �π |F 〉 + eπ 〈f β |SN ◦ [•�π ]|F 〉
+ e′

N 〈f β |[•SN ] ◦ �π |F 〉
= f�[−eπ 〈θβµkµ| + eπ 〈θβν(q + k)ν |
+e′

N 〈θβνqν |]SN ◦ �π |F 〉
= f�[(e′

N + eπ )〈θβνqν |]SN ◦ �π |F 〉
= (e′

N + eπ )〈f β |SN ◦ �π |F 〉
= eN 〈f β |SN ◦ �π |F 〉, (B9)
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where charge conservation,

eN = eπ + e′
N, (B10)

was used. Comparison with the first bubble of Fig. 8 shows
that

�
β

�N = 〈f β |SN ◦ �π |F 〉 (B11)

is just equal to this topological bubble. Hence we have

kµ�βµ = eN

[
�

β

�N (p) − �
β

�N (p + k)
]
. (B12)

As explained earlier, the �
β

�N do not describe a physical
process and vanish individually. Hence, we have

kµ�βµ = 0 (B13)

and the dressed current thus is also transverse.
We observe that the present approach for dressing the N�γ

vertex differs from the dressing mechanism employed in other
approaches (see, e.g., Refs. [13,14]) by the presence of the
second diagram on the right-hand side of the equality in
Fig. 7. Note that this term involves the three-particle to one-
particle transition, γπN → �, and therefore is outside the
model space considered in those approaches. We emphasize,
however, that the presence of the �πNγ contact vertex is
absolutely necessary for preserving the gauge invariance of
the dressed vertex in view of the momentum dependence
of the N�π vertex as given by Eq. (C2e) in Appendix C.
This suggests, of course, that indiscriminate truncation of the
model space along particle numbers is not a good dynamical
ordering scheme as far as the gauge-invariance condition is
concerned.

APPENDIX C: INTERACTIONS

Our model for the s-, u-, and t-channel amplitudes M
µ
s ,M

µ
u ,

and M
µ
t , respectively, in Eq. (3) is constructed from the

interaction Lagrangian density written as a sum of two terms,
Lint = Lhadr + Lelec, where Lhadr denotes the part of the
interaction Lagrangian containing only the hadron fields, and
Lelec contains the electromagnetic interaction with hadrons.
For Lhadr, we have

Lhadr = LNNπ + LNNρ + LNNa1 + LNNω + LN�π, (C1)

with

LNNπ = −gπ�̄

(
γ5

[
iλ + 1 − λ

m + m′ ∂/
]

�π · �τ
)

�, (C2a)

LNNρ = −gρ

2
�̄

(
γµ − κρ

2mN

σµν∂
ν

)
�τ · �ρµ �, (C2b)

LNNω = −gω

2
�̄

(
γµ − κω

2mN

σµν∂
ν

)
ωµ �, (C2c)

LNNa1 = ga1�̄ γµγ5 �τ · �aµ

1 �, (C2d)

LN�π = fN�π

mπ

�̄
µ
�

�T † · (∂µ �π ) � + H. c., (C2e)

where H. c. stands for Hermitian conjugate. Here, � and
�

µ
� denote the nucleon and � fields, respectively, �π is the

pion field, and �ρµ, ωµ, and �aµ

1 are the fields for the ρ, the
ω, and the a1 meson, respectively. The latter is included
as the chiral partner of the ρ meson. The vector notation
refers to the isospin space. �T † stands for the isospin 1/2 to 3/2
transition operator. The nucleon and pion masses are denoted
by mN and mπ , respectively. The gπ , gρ(κρ), ga1 , gω(κω),
and fN�π are the corresponding coupling constants. We use
gπ = 14.4 and fN�π = 0.36 [30]. For the NNρ coupling
constants, we use (gρ/2)2/4π = 0.91 and κρ = 6.1 [37],
whereas (gω/2)2/4π = 11 and κω = 0 [38]. The coupling
constant ga1 = ma1fπ/mπ , with ma1 ≈ 1260 MeV denoting
the mass of the a1 meson, has been fixed from the chiral-
symmetry considerations following the work of Wess and
Zumino [39].

The electromagnetic interaction Lagrangian density is
given by

Lelec = LNNγ + LNNπγ + Lππγ + Lωπγ

+Lρπγ + La1πγ + LN�γ , (C3)

with

LNNγ = −e�̄

(
êγµ − κ̂

2mN

σµν∂
ν

)
Aµ �, (C4a)

LNNπγ = e
fπ

mπ

�̄γ5γµ[�τ × �π ]3 �Aµ, (C4b)

Lππγ = e[(∂µ �π ) × �π ]3A
µ, (C4c)

Lωπγ = e
gωπγ

mπ

εαµλν(∂αAµ)(∂λπ3)ων, (C4d)

Lρπγ = e
gρπγ

mπ

εαµλν(∂αAµ)(∂λ �π ) · �ρν, (C4e)

La1πγ = −e
1

ma1

Fµν

× (
2
[
(∂µ �π ) × �aν

1 − (∂ν �π ) × �aµ

1

] + �π × �aµν

1

)
,

(C4f)

LN�γ = ie
G1

2mN

�̄
µ
�T †

z γ5γ
ν�Fµν

+ e
G2

4m2
N

(
∂ν�̄

µ
�

)
T †

z γ5�Fµν + H. c., (C4g)

where Fµν ≡ ∂µAν − ∂νAµ with Aµ denoting the elec-
tromagnetic field and �aµν

1 ≡ ∂µ�aν
1 − ∂ν �aµ

1 . e is the pro-
ton charge; ê = (1 + τz)/2 and κ̂ = [1.79(1 + τz)/2 − 1.93
(1 − τz)/2] are the charge and magnetic moment operators
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of the nucleon, respectively. The coupling constants gωπγ =
0.374 and gρπγ = 0.125 are fixed from the decay of the ω and
ρ meson into π0 + γ , respectively. The signs of these coupling
constants are consistent with those determined from the study
of pion photoproduction in the 1-GeV region [40]. εµαλν is
the totally antisymmetric Levi-Civita tensor with ε0123 = +1.
The Lagrangian La1πγ is obtained from La1πρ in Ref. [39] by
combining it with the vector-dominance model.

The propagators required for constructing M
µ
s ,M

µ
u , and

M
µ
t are

�π (q) = 1

q2 − m2
π

, (C5a)

Dµν
v (q) = −gµν − qµqν/m2

v

q2 − m2
v

, for v = ρ, ω, a1, (C5b)

SN (p) = 1

p/ − mN

, (C5c)

S
µν
� (p) = p/ + m�

p2 − m2
�

[
−gµν + 1

3
γ µγ ν + 2

3

pµpν

m2
�

− pµγ ν − pνγ µ

3m�

]
, (C5d)

where �π (q) denotes the pion propagator and Dµν
v (q) denotes

the vector (ρ, ω) and axial-vector (a1) meson propagators.

SN (p) and S
µν
� (p) are the nucleon and Rarita-Schwinger �

propagators, respectively; m� = 1232 MeV denotes the mass
of the �. Note that for the s-channel � resonance contribution,
we have used the dressed N�π vertex and the dressed �

propagator according to Ref. [30] and consistent with the πN

FSI used.
The amplitudes M

µ
s ,M

µ
u , and M

µ
t constructed from the

preceding Lagrangians are diagrammatically represented in
Fig. 1(a).

Our model for M
µ
s ,M

µ
u , and M

µ
t is supplemented with

hadronic form factors, except for the s-channel � contribution
where the dressed vertex is used. So, the NNπ vertex in the
s and u channels and the N�π vertex in the u channel are
multiplied by a form factor

FB( �p2) = �4
B

�4
B + ( �p2 + m2

B)2
, (C6)

where �p denotes the three-momentum of the off-shell baryon.
In this equation B stands for either the nucleon or � in the
intermediate state. We take �B = 1.2 GeV for both baryons.

The hadronic vertices in the t-channel M
µ
t amplitude are

also supplemented by form factors of the form

Fα(q2) =
(

�2
α − m2

α

�2
α − q2

)nα

, (C7)

where α = π, ρ, ω, a1. We take �π = 900 MeV and nπ = 1
[38] and �α = 1850 MeV and nα = 2 as α = ρ, ω, a1 [37].
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