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Vector-meson–baryon coupling constants in QCD sum rules
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The external-field quantum chromodynamics (QCD) sum rules method is used to evaluate the coupling
constants of the vector mesons ρ and ω to the nucleon and the �, �, and � baryons. It is shown that these
coupling constants as calculated from QCD sum rules are consistent with SU(3)-flavor relations. By assuming
ideal mixing, this leads to a determination of the F/(F + D) ratio of the vector-meson octet: we find αv = 1 and
αm = 0.18 for the vector and the magnetic F/(F + D) ratios, respectively. The sensitivity of the results to the
unknown vacuum susceptibility ζ is discussed. The coupling constants with SU(3)-breaking effects taken into
account are also calculated.
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I. INTRODUCTION

An important ingredient of the baryon-baryon interactions
is the exchange of the members of vector-meson nonet
(ρ, φ, ω,K∗). Vector mesons play also a special role in the
electromagnetic interactions of hadrons. The vector-meson
dominance (VMD) model [1] relates the hadronic electromag-
netic current to the neutral vector-meson fields Vµ = ρ0

µ, ωµ,
and φµ. In this context, the vector-meson–baryon coupling
constants are fundamental quantities that one would like
to compute from quantum chromodynamics (QCD). The
Lagrangian density for the interaction of a vector meson with
a spin-1/2 baryon is given by

LV BB = −igV
B ψ̄γµψV µ − f V

B

4m
ψ̄σµνψ(∂µV ν − ∂νV µ), (1)

where σµν = i[γµ, γν]/2. The first term (gV
B ) is called the

vector (electric) coupling and the second one (f V
B ) the

tensor (magnetic) coupling; m is a scaling mass to make f V
B

dimensionless, conventionally taken to be equal to the proton
mass.

The physical states φ and ω are mixtures of the unitary
singlet and octet states. We assume ideal mixing with the
mixing angle θv = 35.3◦, which is close to the experimental
value θv = 37.5◦ [2]. This means that the φ meson is a pure s̄s

state and hence does not couple to the nucleon (in the absence
of a strangeness content). The couplings of the vector mesons
to the baryon octet can be written in terms of the NNρ coupling
constant and αv,m [3], where αv (αm) is the F/(F + D) ratio
of the vector (magnetic) coupling constants. VMD predicts
αv = 1 via the universal coupling of the ρ meson to the isospin
current [4].

Our aim in this article is to calculate the vector and the
tensor coupling constants of the vector mesons ρ and ω to
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the N,�,�, and � baryons using the external-field QCD
sum rules (QCDSR) [5], which is a powerful tool [6,7] to
extract qualitative and quantitative information about hadron
properties [8,9]. For this purpose, we assume a constant back-
ground tensor field Zµν and evaluate the vacuum-to-vacuum
transition matrix element of the two-baryon interpolating fields
to construct the sum rules. We define the external vector-meson
field as

Zµ = − 1
2 Zµν xν. (2)

This background field can be decomposed into symmetric
(ZS

µν) and antisymmetric (ZA
µν) parts. The antisymmetric part

has been used to calculate the baryon magnetic moments
[5,10–12], whereas the symmetric part was used in Ref. [13] to
determine the vector-meson couplings g

ρ

N and f ω
N . In this work,

we use a similar method to calculate the vector-meson–baryon
coupling constants. The sum rules for the antisymmetric part
of the external field can be obtained from the sum rules
for the baryon magnetic moments in Refs. [5,10–12], but
the numerical results for the couplings cannot be obtained
trivially, because they need an independent analysis that takes
the sum rules for the symmetric part of the external field into
account as well. This analysis was made in Ref. [13] with
the aim to calculate the NNρ and NNω couplings. We find
it useful to revisit these calculations for a couple of reasons.
First, we make a more systematic analysis of the sum rules
that includes the single-pole contributions, which were not
taken into account in Ref. [13]. Moreover, we extend the
calculations to hyperons as well by calculating terms involving
the quark mass in the sum rules. We compare our results
with VMD and with a successful one-boson-exchange (OBE)
model of the NN and YN interaction, the Nijmegen soft-core
potential (NSC) [14–19], which was originally derived from
Regge-pole theory. The coupling constants obtained from
the external-field QCDSR method are defined at t = 0, and
therefore the comparison to the OBE model is appropriate.

We follow an analysis similar to the one in our earlier work
on scalar-meson–baryon coupling constants [20,21]. We first
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consider the sum rules in the SU(3)-flavor symmetric limit
to see if the predicted values for the meson-baryon coupling
constants from the sum rules are consistent with SU(3)
relations. We show that this is indeed the case, which leads to
a determination of the F/(F + D) ratio of the vector-meson
octet. Furthermore, keeping track of these coupling constants
with the SU(3) relations, we obtain the values of the other
vector-meson–baryon coupling constants, where we assume
ideal mixing. When we extend the calculations from the S = 0
to the S = −1 and S = −2 sectors, flavor-SU(3) breaking
occurs due to the s-quark mass and the physical masses of
the baryons and mesons. We also consider the SU(3)-breaking
effects for the sum rules to estimate the amount of breaking,
individually for each coupling.

We have organized our work as follows: in Sec. II we
present the formulation of QCDSR with an external tensor
field and construct the relevant sum rules. In sec. III we give
the numerical analysis of the sum rules and discuss the results.
Finally, in Sec. IV, we arrive at our conclusions for this chapter.

II. CONSTRUCTION OF THE SUM RULES

We start with the correlation function of the baryon
interpolating fields in the presence of a constant background
tensor field Zµν , defined by

i

∫
d4x eiq·x〈0|T [ηB(x)η̄B(0)]|0〉Z

= �(p) + gV
p Zµν�

µν

Z (p), (3)

where gV
q is the vector-meson–quark coupling constant and ηB

are the baryon interpolating fields that are chosen as [8]

ηN = εabc

[(
uT

a Cγµub

)
γ5γ

µdc

]
, (4)

η� = εabc

[(
sT
a Cγµsb

)
γ5γ

µuc

]
, (5)

η� = εabc

[(
uT

a Cγµub

)
γ5γ

µsc

]
, (6)

η� = (2/3)1/2εabc

[(
uT

a Cγµsb

)
γ5γ

µdc

− (
dT

a Cγµsb

)
γ5γ

µuc

]
, (7)

for N,�,�, and �, respectively; a, b, c are color indices,
and T and C denote transposition and charge conjugation,
respectively.

The external field contributes to the correlation function in
Eq. (3) in two ways: first, it directly couples to the quark field
in the baryon current. Second, it induces the following vacuum
condensates:

〈q̄σµνq〉Z = gV
q χZA

µν〈q̄q〉, (8)

gc〈q̄Gµνq〉Z = gV
q κZA

µν〈q̄q〉, (9)

gεµναβ〈q̄γ5Gαβq〉Z = igV
q ξZA

µν〈q̄q〉, (10)〈
q̄ 1

2 (γµ∇ν + γν∇µ)q
〉
Z

= gV
q ζZS

µν〈q̄q〉, (11)

〈
q̄ 1

2 (∇µ∇ν + ∇ν∇µ)q
〉
Z

= −gV
q

8
〈q̄σ · Gq〉gµν

+ gV
q

i

2
ZS

µν〈q̄q〉
+ i gV

q φZS
µν〈q̄q〉, (12)

where (χ, κ, ξ ) and (ζ, φ) are the susceptibilities related to
ZA

µν and ZS
µν , respectively. These susceptibilities are defined

in terms of the vector-meson–quark coupling constants gV
q ,

where we assume

gω
u = gω

d = gV
q (13)

for the isospin I = 0 ω current and

gρ
u = −g

ρ

d = gV
q (14)

for the isospin I = 1 ρ current. For the couplings of the
external field to the s quark we assume

gω
s = gρ

s = 0. (15)

Equations (13) and (14) can be justified from the degeneracy
and the equal decay constants of the ρ and the ω mesons [6–8]
by using the current field identities and VMD.

At the quark level, we obtain for the correlation functions:

〈0|T [ηN (x)η̄N (0)]|0〉Z = 2iεabcεa′b′c′

× Tr
{
Saa′

u (x)γνC
[
Sbb′

u (x)
]T

Cγµ

}
× γ5γ

µScc′
d (x)γ νγ5, (16)

〈0|T [η�(x)η̄�(0)]|0〉Z = 2iεabcεa′b′c′

× Tr
{
Saa′

s (x)γνC[Sbb′
s (x)]T Cγµ

}
× γ5γ

µScc′
u (x)γ νγ5, (17)

〈0|T [η�(x)η̄�(0)]|0〉Z = 2iεabcεa′b′c′

× Tr
{
Saa′

u (x)γνC[Sbb′
u (x)]T Cγµ

}
× γ5γ

µScc′
s (x)γ νγ5, (18)

〈0|T [η�(x)η̄�(0)]|0〉Z = 2i

3
εabcεa′b′c′(

Tr
{
Saa′

u (x)γνC

× [
Sbb′

s (x)
]T

Cγµ

}
γ5γ

µScc′
d (x)γ νγ5

+ Tr
{
Scc′

d (x)γνC
[
Sbb′

s (x)
]T

Cγµ

}
× γ5γ

µSaa′
u (x)γ νγ5 − γ5γµScc′

d (x)

× γνC
[
Sbb′

s (x)
]T

Cγ µSaa′
u (x)γ νγ5

− γ5γµSaa′
u (x)γνC

[
Sbb′

s (x)
]T

×Cγ µScc′
d (x)γ νγ5

)
, (19)

where Sq represents the quark propagator in the presence of
the external field and we use the quark propagator given in
Ref. [13].

Lorentz covariance and parity conservation implies that
the correlation function can be written in terms of different
Lorentz-Dirac structures, viz.

gV
q �

µν

Z (p) = �S
1 (pµγν + pνγµ) + �S

2 p̂pµpν + �S
3pµpν

+�S
4 p̂(pµγν + pνγµ) + �A

1 (p̂σµν + σµνp̂)

+�A
2 p̂(pµγν − pνγµ) + �A

3 σµν, (20)

where �S
1 ,�S

2 ,�S
3 , and �S

4 are related to the symmetric part
of the external field and �A

1 ,�A
2 , and �A

3 are related to the
antisymmetric part of the external field. For the antisymmetric
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part of the external field, we construct the sum rules at the
structure p̂σµν + σµνp̂, which have also been used for the
determination of the baryon magnetic moments [5,10–12]. For
the symmetric part of the external field, we construct the sum
rules at the structures pµγν + pνγµ (hereafter structure I) and
p̂pµpν (hereafter structure II), for reasons that will become
clear below.

To construct the hadronic side, we saturate the correlator in
Eq. (3) with baryon states,

�
µν

Z (q) = 〈0|ηB |B〉
p2 − m2

B

〈B|V B〉 〈B|η̄B |0〉
p2 − m2

B

, (21)

and define the vector-meson–baryon interaction by the follow-
ing vertices:

�ωBB ≡ 〈B|ωB〉 = ῡ

(
gω

B γµ + f ω
B

i

2m
σµν qν

)
υ · ωµ,

(22)

�ρBB ≡ 〈B|ρB〉 = ῡ

(
g

ρ

B γµ + f
ρ

B

i

2m
σµν qν

)
τυ · ρµ,

(23)

where qν is the meson four-momentum and υ is the Dirac
spinor for the baryon, which is normalized as ῡυ = 2mB . In
Eq. (21) we defined the overlap amplitude of the baryons as
λB = 〈0|ηB |B〉.

The sum rules are obtained by matching the operator
product expansion (OPE) side with the hadronic side and
applying the Borel transformation. The sum rules for N,�,�,
and � are given as follows at structure I:[

M6EN
1 L−4/9

(
2gV

u + gV
d

) + 8M4

3
EN

0 L2/9ζaq

(
4gV

u + gV
d

)

+ 4

3
a2

qL
4/9

(
2gV

u + gV
d

)]em2
N /M2

λ̃2
N

= gV
N + CNM2, (24)

gV
u

[
2M6 E�

1 L−4/9 + 32M4

3
EN

0 L2/9 ζ aqg
V
u + 8

3
a2

q L4/9

− 4ms(f + 1) aq M2

]
em2

�/M2

λ̃2
�

= gV
� + C�M2, (25)

gV
u

[
M6 E�

1 L−4/9 + 8M4

3
EN

0 L2/9 ζ aq gV
d

+ 4

3
(f + 1)2a2

q L4/9

]
em2

�/M2

λ̃2
�

= gV
� + C�M2, (26)

(
gV

u + gV
d

) [
M6 E�

1 L−4/9 + 32

9
M4 EN

0 L2/9 ζ aq

+ 4

9
(4f + 3)a2

q L4/9 + 2

3
ms (1 − 3f ) aq M2

]

× em2
�/M2

λ̃2
�

= gV
� + C�M2, (27)

and at structure II:[
M6 EN

0 L−4/9
(
2gV

u + gV
d

) + 8M4

3
ζ L2/9 aq

(
gV

u + gV
d

)

+ 4

3
a2

q L4/9
(
2gV

u + gV
d

)]em2
N /M2

λ̃2
N

= gV
N + CNM2, (28)

gV
u

[
2M6 E�

0 L−4/9 + 8M4

3
ζ L2/9 aq gV

u + 8

3
a2

q L4/9

+ 4ms(f + 1) aq M2

]
em2

�/M2

λ̃2
�

= gV
� + C�M2, (29)

gV
u

[
M6 E�

0 L−4/9 + 8M4

3
ζ L2/9 aq gV

d

+ 4

3
(f + 1)2a2

q L4/9

]
em2

�/M2

λ̃2
�

= gV
� + C�M2, (30)

(
gV

u + gV
d

) [
M6 E�

0 L−4/9 + 10

9
M4 L2/9ζ aq

+ 4

9
(4f + 3)a2

q L4/9 + 2

3
ms (1 − 3f ) aq M2

]

× em2
�/M2

λ̃2
�

= gV
� + C�M2, (31)

where aq = −(2π )2〈q̄q〉,M is the Borel mass, and we incor-
porated the effects of the anomalous dimensions of various op-
erators through the factor L = ln(M2/�2

QCD)/ ln(µ2/�2
QCD),

where µ is the renormalization scale and �QCD is the QCD
scale parameter. We have defined f = 〈q̄q〉/〈s̄s〉 − 1 , which
is a parameter that quantifies SU(3) breaking in the vacuum
condensates. We use these sum rules for the determination of
the vector couplings, g.

The sum rules involving the antisymmetric part of the
external field can easily be derived from the magnetic-moment
sum rules in Refs. [5,10–12]. We use Eqs. (13)–(15) with the
sum rules at the structure p̂σµν + σµνp̂, which were also used
for the determination of the magnetic moments. We obtain:{

4M6 EN
1 L−4/9gV

u + 4

9
a2

q L4/9
[ − (

2gV
u + 3gV

d

)

+ gV
u (2κ − ξ )

] + b

6
M2L−4/9

(
4gV

u + gV
d

) − 8

3
χa2

qL
−4/27

× gV
u

(
M2 − m2

0L
−4/9

8

) }
em2

N /M2

λ̃2
N

= (
gV

N + f V
N

) + C ′
NM2, (32)
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gV
u

{
4M6 E�

1 L−4/9 + 4

9
a2

q L4/9[−(2 + (2κ − ξ )]

+ 2b

3
M2 L−4/9 − 8

3
χa2

qL
−4/27

(
M2 − m2

0L
−4/9

8

)}

× em2
�/M2

λ̃2
�

= (
gV

� + f V
�

) + C ′
�M2, (33)

gV
u

[
− 4

3
a2

q L4/9 + b

6
M2 L−4/9 + 24 msaq(1 + f ) M2

]

× em2
�/M2

λ̃2
�

= (
gV

� + f V
�

) + C ′
�M2, (34)

(
gV

u + gV
d

) {
2

3
M6 E�

1 L−4/9 − 4

27
a2

q L4/9[7 + 8f

− 1

2
(2κ − ξ )(1 + 2f )] − 4

9
χa2

qL
−4/27

(
M2 − m2

0L
−4/9

8

)

× (1 + 2f ) + 2b

9
M2 L−4/9 − 2

9
ms M2 aq [19L−4/9

− 8(2κ − ξ )]

}
em2

�/M2

λ̃2
�

= (
gV

� + f V
�

) + C ′
�M2. (35)

In the above sum rules, the continuum contributions are
included by the factors

EB
n ≡ 1 −

(
1 + xB + ... + xn

B

n!

)
e−xB , (36)

with xB = sB
0 /M2, where sB

0 is the continuum threshold. We
have included the single-pole contributions with the factors
C

(′)
B .

III. ANALYSIS OF THE SUM RULES

To proceed to the numerical analysis, we arrange the RHS
of the sum rules in the form

f (M2) ≡ F + C
(′)
B M2, (37)

and fit the LHS to f (M2). We determine the g couplings
from the sum rules in Eqs. (24)–(27), whereas we subtract
these sum rules from the ones in Eqs. (32)–(35) to obtain the
sum rules for the f couplings. For the vacuum parameters,
we adopt standard values that have been used in QCDSR;
for a review and discussion of QCD parameters see, e.g.,
Refs. [22,23]. The quark condensate aq can be estimated using
the Gell-Mann–Oakes–Renner relation,

m2
πf 2

π = −(mu + md )〈q̄q〉, (38)

which gives 〈q̄q〉 = −(0.243)3 GeV3 for pion mass mπ =
138 MeV, pion decay constant fπ = 93 MeV, and quark
masses mu = 4.2 MeV and md = 7.5 MeV. Taking into
account the uncertainties in the quark masses, we adopt

aq = 0.51 ± 0.03 GeV3. (39)

For the gluon condensate, we use the value

b = 0.47 GeV4, (40)

as determined from the charmonium sum rules [6,7]. The value
of the parameter m2

0 has been taken in early baryon sum rules
[24,25] and heavy-light quark system analyses [26] as

m2
0 = 0.8 GeV2. (41)

The commonly accepted value of the overlap amplitude of
the nucleon as λ̃2

N = 2.1 GeV6 is taken from Ref. [5] and the
continuum threshold for the nucleon case is taken in the region
2.0 GeV2 � sN

0 � 2.5 GeV2. The values of the susceptibilities
have been estimated in early magnetic-moment calculations
[5,10]. In this work, we adopt the average values of these
susceptibilities as χ = −4.5 GeV−2, κ = 0.4, and ξ = −0.8
[27]. Finally, we use µ = 0.5 GeV for the renormalization
scale and �QCD = 0.1 GeV for the QCD scale parameter.

We first consider the sum rules in the SU(3)-flavor symmet-
ric limit, where we take mq = ms = 0 and f = 0. In this limit
we also set the physical parameters of all the baryons equal to
the ones of the nucleon: mB = mN = 0.94 GeV, λ̃2

B = λ̃2
N =

2.1 GeV6, sB
0 ≡ sN

0 . In this SU(3) limit we choose the Borel
window 0.8 GeV2 � M2 � 1.4 GeV2, which is commonly
identified as the fiducial region for the nucleon mass sum
rules. For the vector-meson–quark coupling constant we adopt
the value

gV
q = gρ

q = 3.7, (42)

as estimated from Nambu-Jona-Lasinio model of Ref. [28],
which was used to successfully reproduce the ρππ coupling
constant.

To determine the values of the vector couplings from the
sum rules in Eqs. (24)–(31), one needs to know the value of
the susceptibility ζ , which is unknown. We note, however, that
if ζ is negligibly small, then the sum rules at structures I and
II are consistent with each other and have the nice feature
that g

ρ

N/gω
N = 1/3, which agrees well with the OBE potential

model [29] and the VMD model [1] results. Therefore, we
first analyze the sum rules for ζ = 0 and then discuss the
deviations for arbitrary ζ values. We present the Borel mass
dependence of vector and tensor coupling constants of ρ and
ω to the nucleon in Fig. 1 and to the hyperons in Fig. 2,
for the average values of the vacuum parameters. The single-
pole contributions (cf. the slopes in Figs. 1 and 2) are quite
important, especially in the case of the sum rules for the tensor
couplings. Taking into account the uncertainties in sB

0 and aq ,
the predicted values for the coupling constants of the ρ and ω

mesons to the baryons read:

gω
N = 7.2 ± 1.8, gω

� ≡ g
ρ
� ≡ gω

� = 4.8 ± 1.2,

g
ρ

N ≡ gω
� ≡ g

ρ
� = 2.4 ± 0.6, g

ρ
� ≡ f

ρ
� = 0,

f
ρ

N = 7.7 ± 1.9, f ω
N = −2.2 ± 0.6, f

ρ
� ≡ f ω

� = 2.3 ± 0.4,

f
ρ
� ≡ f ω

� = −5.0 ± 1.0, f ω
� = −5.7 ± 1.0. (43)
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FIG. 1. The Borel mass dependence of the vector and tensor
coupling constants of ρ and ω to the nucleon for average values
of the vacuum parameters and the susceptibilities.

Our next concern is to investigate the SU(3) relations for
the vector-meson–baryon interactions to see if the coupling
constants above as obtained from QCDSR are consistent with
these relations. For this purpose, we calculate the coupling
constants in Eq. (43) with the central values of the parameters:
aq = 0.51 GeV3 and sB

0 = 2.3 GeV2. We assume the ideal
mixing angle θs � 35.3◦. The F/(F + D) ratios, αv and αm,
can directly be calculated via the relations

gω
� − gω

N

gω
� − gω

N

= −2αv

1 − 2αv

, (44)

f ω
� − f ω

N

f ω
� − f ω

N

= −2αm

1 − 2αm

. (45)

With straightforward algebra, the values of the F/(F + D)
ratios αv,m, and the octet, gv,m, and the singlet couplings, gv,m

1 ,
are then determined as

αv = 1, αm = 0.18, gv ≡ g
ρ

N = 2.3, gm ≡ f
ρ

N = 7.6,

gv
1 = 5.6, gm

1 = −1.8. (46)

Inserting αv,m, gv,m, and g
v,m
1 into the SU(3) relations we ob-

serve that the coupling constants as determined from QCDSR
are consistent with SU(3). This also gives g

φ

N = f
φ

N = 0, which

FIG. 2. Same as Fig. 1 but for the vector and tensor coupling
constants of ρ and ω to the hyperons in the SU(3) limit.

TABLE I. The vector-meson–baryon coupling constants in the
SU(3) limit for the average values of the vacuum parameters.

M NNM ��M ��M ��M ��M �NM �NM

ω g 6.9 4.6 2.3 4.6
f −2.2 −5.7 −4.9 2.7

φ g 0 −3.3 −6.5 −3.3
f 0 −4.8 −3.8 6.9

ρ g 2.3 2.3 4.6 0
f 7.6 −4.9 2.7 6.7

K∗g −2.3 −4.0
f 4.9 −5.9

is justified by the zero strangeness content of the nucleon
and by the ideal-mixing scheme. In Table I we give all the
vector-meson–baryon coupling constants, obtained from these
relations.

In Fig. 3, we present the dependence of αv = F/(F + D)
on the susceptibility ζ for the sum rules at structures I and II, at
M2 = 1 GeV2 and for the average values of the other vacuum
parameters. The sum rules are rather sensitive to a change
in the value of ζ , because it appears in the coefficient of a
dimension-3 operator. The sum rule at structure I shows a more
reliable behavior. In Fig. 4, the dependence of g

ρ

N/gω
N on the

susceptibility ζ for the sum rules at structures I and II is given.
For |ζ | > 1, the terms in the sum rules involving ζ dominate.
To avoid the pole in αv (for structure I) on the negative
ζ plane, we concentrate on the region 0 � ζ � 1 GeV−1, where
we obtain 5.2 � gω

N � 12.7 and 1.7 � g
ρ

N � 5.2. This implies
that away from ζ = 0, g

ρ

N/gω
N tends to increase for the sum

rules at structure I and gets as high as 0.5, whereas the value of
αv gets as low as 0.8. These results disagree with those from
the OBE potential model [29] and the VMD model [1], which
give g

ρ

N/gω
N = 1/3 and αv = 1.

Next, we turn to the effect of SU(3)-flavor breaking, where
we allow ms = 0.15 GeV and f = −0.2, keeping mu = md ≡
0. We also restore the physical values for the masses and the

FIG. 3. The dependence of αv = F/(F + D) on the susceptibility
ζ for the sum rules at structures I and II, at M2 = 1 GeV2 and for the
average values of the other vacuum parameters.

045201-5



G. ERKOL, R. G. E. TIMMERMANS, AND TH. A. RIJKEN PHYSICAL REVIEW C 74, 045201 (2006)

FIG. 4. Same as Fig. 3 but for the dependence of g
ρ

N/gω
N .

other parameters of the baryons [30,31]:

λ̃2
� = 3.3 GeV6, λ̃2

� = 4.6 GeV6, λ̃2
� = 3.3 GeV6,

s�
0 = 3.1 ± 0.3 GeV2, s�

0 = 3.6 ± 0.4 GeV2, (47)

s�
0 = 3.2 ± 0.3 GeV2.

The corresponding Borel windows are chosen as follows:

for �, 1.0 GeV2 � M2 � 1.4 GeV2,

for �, 1.5 GeV2 � M2 � 1.9 GeV2, (48)

for �, 1.2 GeV2 � M2 � 1.6 GeV2.

We follow a procedure similar to the one in the SU(3)-flavor
conserving case and fit the LHS’s of the sum rules to the
function in Eq. (37) in the Borel windows specified in
Eq. (48). Taking into account the uncertainties in sB

0 and aq ,
the predicted values for the coupling constants of the ρ and ω

mesons to �,�, and � with the SU(3)-flavor breaking effects
read:

gω
� = 2.9 ± 1.1, gω

� ≡ g
ρ
� = 1.1 ± 0.7,

gω
� ≡ g

ρ
� = 3.1 ± 1.2, f ω

� = −4.0 ± 0.8, (49)

f ω
� ≡ g

ρ
� = 2.4 ± 0.6, f ω

� ≡ g
ρ
� = 7.0 ± 1.6.

We observe that the SU(3)-breaking effects modify the
couplings by 30%–50%, which indicates a large breaking.
Although the ��ω and ��ρ coupling constants increase with
SU(3)-breaking effects, the other coupling constants tend to
decrease.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have calculated the vector-meson–baryon
coupling constants, which are important quantities in OBE
models of the YN and YY interactions, employing the

external-field QCDSR method. The main uncertainties in
the results stem from the undetermined QCD parameters.
Although the values of the susceptibilities χ, ξ , and κ are
relatively better known from magnetic-moment calculations,
ζ is undetermined. We have first made the analysis by taking
ζ negligibly small, which produces couplings in agreement
with the ones from the literature. Then, we have analyzed
the sum rules for arbitrary ζ and observed that the results
are sensitive to a change in this susceptibility. In this
respect, an independent determination of the susceptibility ζ is
desirable.

The coupling constants can be determined in terms of
vector-meson–quark coupling constant in this method. To
compare our results with the others in the literature and
to remain as model-independent as possible, we find it useful
to give the following ratios of the coupling constants in the
SU(3) limit for the average values of the vacuum parameters,

f
ρ

N

g
ρ

N

= 3.8,
f ω

N

gω
N

= −0.3, (50)

which compares well with the results from VMD,

f
ρ

N

g
ρ

N

≡ Fv
2

Fv
1

= 3.3,
f ω

N

gω
N

≡ F s
2

F s
1

= −0.1, (51)

where F s
1 (Fv

1 ) and F s
2 (Fv

2 ) are the isoscalar (isovector) electric
and magnetic form factors of the nucleon, respectively, at
zero momentum transfer. This result is not totally surprising,
because a similar scheme to the one of electromagnetic cou-
pling has been assumed for vector-meson–baryon interaction.
These ratios are close to the ones from the NSC NN potential
model [29], which are f

ρ

N/g
ρ

N = 4.2 and f ω
N /gω

N = 0.3. Our
value for the vector NNρ coupling constant, with the choice
of the quark-ρ coupling constant in Eq. (42), agrees with
the one from the recent Nijmegen extended-soft-core (ESC)
potential model [19], which is g

ρ

N = 2.8. The ESC model
gives g

ρ

N/gω
N = 1/4, a value for the NNω coupling constant

larger than what we have obtained from QCDSR. From SU(3)
symmetry, ideal mixing, and αv = 1 it follows that

gω
N +

√
2g

φ

N = 3g
ρ

N, (52)

the main reason for this is the sizable NNφ coupling in NSC
potential models, which is simply g

φ

N = 0 in the QCDSR. Such
a large value for the NNω coupling constant as in the ESC or
3P0 models [19] requires a quark-ω coupling constant that is
about 50% larger than what we have adopted in Eq. (42). Our
value of the F/(F + D) ratio for the vector coupling, which is
αv = 1, agrees with the value given in NSC89 [17]. Our value
for αm, which is αm = 0.18, is about half of the values obtained
in NSCa-f [18] and NSC89 [17], which are 0.37 � αm � 0.45
and αm = 0.28, respectively.
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