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Classical strongly coupled quark-gluon plasma. I. Model and molecular dynamics simulations
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We propose a model for the description of strongly interacting quarks and gluon quasiparticles at T = (1 − 3)Tc

as a classical and nonrelativistic colored Coulomb gas. The sign and strength of the interparticle interactions
are fixed by the scalar product of their classical color vectors subject to Wong’s equations. The model displays
a number of phases as the Coulomb coupling is increased ranging from a gas, to a liquid, to a crystal with
antiferromagnetic-like color ordering. We analyze the model using molecular dynamics simulations and discuss
the density-density correlator in real time. We extract pertinent decorrelation times, diffusion, and viscosity
constants for all phases. The classical results when extrapolated to the strongly coupled quark-gluon plasma
suggest that the phase is liquid-like, with a diffusion constant D ≈ 0.1/T and a shear viscosity to entropy density
ratio η/s ≈ 1/3.
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I. INTRODUCTION

The quark-gluon plasma (QGP) is a high-temperature
phase of QCD. Here, the word plasma is used in the same
sense as in electrodynamical plasma, that is, a phase with
free color charges that are screened [1] rather than confined
by the medium. Lattice simulations have shown that the QGP
exists above the critical temperature Tc ≈ 170 MeV in the
deconfined and chirally symmetric phase.

Asymptotic freedom of non-Abelian gauge theories ensures
that for high enough temperature T � �QCD QGP is weakly
coupled (wQGP), with particle interactions characterized by
a small coupling αs(p ≈ T ) � 1. Weakly coupled QGP is
a near-ideal gas of its fundamental constituents, quarks and
gluons. Perturbative methods, such as hard thermal loops
[2] and other resummation techniques, show how quarks
and gluons are dressed and become quasiparticles with
T -dependent dispersion curves and widths.

The QGP is experimentally studied using heavy-ion colli-
sions, such as dedicated experiments carried out at the CERN
Super Proton Synchrotron during the previous decade and
now at the BNL Relativistic Heavy Ion Collider (RHIC).
RHIC can reach temperatures of about 2Tc. The success of the
hydrodynamical description for the observed collective flows
at RHIC [3] has shown that all dissipative lengths are very
short. To produce such flows, the produced matter at RHIC
cannot be a weakly coupled gas but, at least for some period
of time, is a strongly coupled liquid [4].

Recently, two of the authors [5] have suggested that the in-
teraction of quasiparticles in the relevant temperature range at
RHIC is strong enough to generate multiple marginal colored
Coulomb bound states. Some of those states (charmonium)
are observed in current lattice [6] simulations until about 2Tc.
The existence of these states, especially the colored ones, is
still debated and warrant further numerical and independent
checks on the lattice.

The effective potential energy U (R) of two static colored
charges separated by a distance R can also be deduced
from lattice simulations. Close to the critical temperature,
the separation energy �U (the potential at infinity minus its

value at some typical distance 0.3 fm) is �U ≈ 1–4 GeV in
the temperature range T = (1–1.2)Tc = 0.17–0.21 GeV. The
ensuing Boltzmann penalty e−u with u = �U/T ≈ 5–20 is
significant, indicating the dominance of potential over kinetic
energy. This regime is now called a strongly coupled QGP
(sQGP). Its structure and consequently its transport properties
are radically different from a wQGP.

In the context of electromagnetic plasmas, a term “strongly
coupled” plasma has a similar meaning. Ionic or dusty plasmas
have charged ions with large masses, and thus they are
essentially classical. The standard dimensionless parameter
characterizing the strength of the interparticle interaction in a
classical electromagnetic plasma is the ratio of the potential to
the kinetic energy,

� = (Ze)2

aWST
, (1)

where Ze is an ionic charge, aWS = (3/4πn)1/3 (where n

is particle number density) is the Wigner-Seitz radius, and
T is the temperature.1 The dimensionless parameter � is
convenient because it depends only on input parameters, such
as the temperature and particle density. However, one should
keep in mind that the real interaction parameter is the output
parameter u,

u = U

T
, (2)

where U = 〈V 〉 is the average interaction of a particle with all
its neighbors. This ratio enters the Boltzmann exponent and
strongly affects all correlation functions.

Since u is proportional to �, one usually defines the
weakly coupled regime for � � 1 and the strongly coupled
regime in the opposite limit � � 1. Extensive studies of the
one-component plasma (OCP) in electrodynamics, using both
molecular dynamics (MD) and analytical methods over the

1The Boltzmann constant is kB = 1 so that a temperature has
dimension of energy.
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past decades, have revealed the following regimes: (i) a gas
regime for � < 1, (ii) a liquid regime for � ≈ 10, (iii) a glass
regime for � ≈ 100, and (iv) a solid regime for � > 300. For
a review see, for example Ref. [7].

Another physical system closer to what we will discuss in
this work is a classical two-component plasma (TCP) with
both positive and negative charges. Examples are molten
or frozen salts with ions of comparable masses, as in the
sQGP. Hydrogen plasmas are better studied, but the underlying
charges carry very different masses, so the ensuing results
bear no insight into the sQGP where the masses are likely
comparable.

Quantum effects will be schematically incorporated in the
form of a localization energy, providing a repulsive core for
the two-particle interaction irrespective of the charge. In the
future we plan to study more quantum corrections to classical
MD, in particular the role of the exclusion principle and the
relation between classically correlated charges and quantum
bound states.

There are many examples of quantum plasmas. Valence
electrons in metals is a well-known example of a quantum
plasma. The repulsive nature of the electron-electron inter-
action excludes the formation of bound states and is very
different from QGP. Weak lattice-mediated electron-electron
attraction leads to formation of Cooper pairs responsible for
superconductivity. Another example of a quantum plasma is
a liquid of excitons in semiconductors. Excitons are particle
and hole excitations of the Fermi sea with Coulomb attraction
between them. In all these cases one needs novel tools
to study quantum effects dynamically: The existing ones,
such as restricted-path Monte Carlo, use Euclidean time
correlators, which (as in the case of lattice QCD) are good
for thermodynamical observables but next to impossible to
use for transport properties. The approach based on classical
molecular dynamics, however crude it may be, is useful tool
to study real-time correlators. Some quantum corrections may
be added via modification of interaction potentials, as will be
briefly discussed in Sec. III.

A model we propose in this paper combines features of
strongly coupled Abelian TCP with non-Abelian features of
QCD in the form of classical color vectors for the underlying
charges. The main interparticle interaction is proportional to
the scalar product of the color vectors, which can be attractive,
repulsive, or null if the color vectors of the particles are
orthogonal to each other. The dynamics of color vectors as well
as particle coordinates are described by classical equations
of motion (EoM) and can be studied by MD simulations. In
Sec. IV we will argue for which values of the parameters this
model can be useful for understanding the sQGP.

II. CLASSICAL QUARK-GLUON PLASMA

A. The model

Our classical quark-gluon plasma (cQGP) model is based
on the following main assumptions:

(i) The particles are heavy enough to move nonrelativisti-
cally, with masses M � T .

(ii) The interparticle interaction is dominated by colored
electric (Coulomb) interactions, with all magnetic ef-
fects (such as, e.g., spin forces) ignored.

(iii) The color representations are large, so that color oper-
ators ta can be represented by their average, classical
color vectors.

The parameters of the model include the particle mass M

and particle density n. The interaction potential is proportional
to a scalar product of the unit color vectors times the standard
Coulomb interaction strength. Our notation is similar to the
convention used in the context of electromagnetic plasmas.
The relation between the two is defined by

(Zαe)2 = Cα

g2

4π
, (3)

where Cα is the eigenvalue of the Casimir operator for q̄, q, g.2

In QCD all parameters used here are functions of temper-
ature T and the baryon chemical potential µ. In heavy-ion
collisions, T and µ are defined by the collision energy and
centrality of the collision. Furthermore, for each volume
element the cooling of the matter during its expansion is well
approximated by the adiabatic (fixed entropy/baryon densities)
path on the phase diagram, relating T and µ.

As a first approximation, baryonic charge plays little role at
RHIC and thus one can set µ = 0. Hence only one parameter,
the temperature T , defines the properties of matter. Therefore,
when we attempt to map the MD results for the cQGP into
sQGP, all the parameters of the aforementioned model should
be converted to temperature, as we will detail. In a way,
our classical model will be useful for the sQGP through
a one-dimensional slicing of the n-dimensional parameter
space. Much like in the case of electromagnetic plasmas, the
dimensionless parameter in Eq. (1) is a key in characterizing
the transition from a weakly coupled regime with � � 1 to a
strongly coupled regime with � � 1.

At very low temperatures T or very large �, any classical
system will freeze. Therefore, the low-temperature behavior
is dominated by the lowest ordered state. In general, the
two-component (Abelian) plasma freezes to an ionic crystal
much like ordinary salt (NaCl). The non-Abelian plasma
under consideration also has the minimum energy (to which
it freezes at T = 0) for a cubic crystal with antiferromagnetic
(alternating) order of the classical color vectors. A direction
in classical color space is selected randomly, through spon-
taneous symmetry breaking of the global color group, with
alternating directions of the color vectors along the crystal
axes.

B. The equations of motion

The Hamiltonian of our model is

H =
∑
α i

p2
α i

2mα

+ VC + Vcore (4)

2Note that the standard notation used in electromagnetism and QCD
differ by 4π in the Lagrangian and all subsequent formulas.
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with the nonrelativistic kinetic energy. The potential energy
is a sum of a color Coulomb interaction VC and the repulsive
core Vcore. The color Coulomb part is

VC =
∑

α i �=β j

Qa
α i Q

a
β j

|�xα i,−�xβ j | , (5)

where the sum is over the species α = q, q, g and their
respective numbers Nαi. There is also a summation over the
color indexes a. We will specify Vcore in the following.

Thus our phase-space coordinates are the positions (xα),
momenta (pα), and color (Qα). The latter rotates under global
gauge transformation with a matrix

Qa → Dab(�) Qb, (6)

which makes Eq. (5) gauge invariant. Only the Coulomb-like
interaction is retained in Eq. (5) since magnetically induced
interactions are subleading in the nonrelativistic limit. This is
the case for all spin and local many-body forces. For instance
the standard non-Abelian three-gluon interaction∑

α i �=β j �=γ k

Qa
αi

Qb
βj

Qc
γk

(f abc �F ) (7)

is subleading �F ≈ �∇/m since at least one of the gluons must
be magnetic. Nonlocal many-body interactions induced by the
two-body Coulomb and core interactions are important and
are “resummed” by solving the EoM to all orders using MD.

The EoM for the phase-space coordinates follow from the
usual Poisson brackets. For the standard coordinates they are{

xm
α i, p

n
β j

} = δmn, δαβδij , (8)

and for the color coordinates they are{
Qa

α i,Q
b
β j

} = f abc Qc
α i . (9)

Equation (9) is the classical analog of the SU(Nc) color
commutators, where f abc are the structure constants of the
color group. The classical color vectors are all adjoint vectors
with a = 1, . . . , (N2

c − 1). The difference between quarks and
gluons follow from their respective Casimir operators.

The color vectors Qa are not the canonical coordinates.
A canonical phase-space description requires the use of the
Darboux parameterization [8]

Q = (
A,�A), (10)

with A = 1, .., Nc(Nc − 1)/2 satisfying standard canonical
commutation relations

{
A,�B} = δAB, (11)

where 
′s are angular coordinates and the �′s are angular
momenta. The �′s are identified with the fixed Casimirs of
SU(Nc), which are conserved by the equations of motion. For
example, for Nc = 2, the conserved operator is a Casimir C2

(the length of a color vector). Without loss of generality, the
Darboux coordinates may be chosen as

(Q1 ± iQ2,Q3) = (
√

J 2 − �2e±i
,�), (12)

with J 2/3 = C2. For Nc = 3 the color vectors are eight
dimensional, with two conserved Casimirs (QaQa) and
(dabcQaQbQc) and six variables. In this case, the Darboux

set is more involved but can be parametrized with three angles
and three conjugate momenta. We will not use the Darboux
coordinates.

The equations of motion for our classical Coulomb gas
follow from Eqs. (4), (8), and (9):

ẋn
α i = {

H, xn
α i

} = pn
α i

mα

,

ṗn
α i = {

H,pn
α i

} = g Ean
α i Qa

α i, (13)

Q̇a
α i = {

H,Qa
α i

} = g f abc Qb
α i A

c
α i 0,

where

�Ea
α i = −�∇α i A

a
α i 0

= −�∇α i

∑
β j �=α j

g Qa
β j

|�xα i − �xβ j | . (14)

The three equations in (13) are also known as Wong’s
equation [9]. Owing to the antisymmetric nature of the
structure constant f abc, it has the form of rotation of the color
vector that conserves its length (classical precession).

III. NUMERICAL STUDIES USING MOLECULAR
DYNAMICS

A. An interaction potential and units

The MD simulation is a numerical solution of the EoM
[Eq. (13)] starting from some initial conditions for fixed
number of particles contained in a cubic box of a given
volume. The method was originally developed to study
properties of classical liquids and plasmas. It is the most
straightforward way to access transport properties such as the
diffusion coefficient D, and the shear viscosity η, and the heat
conductivity λ.

In a typical MD simulation of a two-component electro-
magnetic plasma the interparticle potential is chosen as

V (r) = Vcore + VC =
(

(Ze)2

λ

) [
1

n

(
λ

r

)n

+ QiQj

r

]
, (15)

with r = |�xi − �xj | and where Qi,Qj = ±1 are electric
charges. The repulsive potential Vcore (with n � 2) ensures that
the system is stable against a collapse. For systems such as
NaCl Hansen and McDonald [10] used a repulsive core with
n = 9. For these molten salts the core follows from the intrinsic
repulsion of the atomic electrons.

Since we are interested in understanding the role played
by the non-Abelian color charges, we have carried the MD
analysis for both the Abelian and non-Abelian cases. In
this paper we report the results of MD simulations for the
SU(2) color group. In this case quarks and gluons have equal
Casimirs, Cq = Cg We used the same form of Vcore in the
non-Abelian simulation as in the Abelian case.

The microscopic motivation in QCD for Vcore stems from
the short-range part of the interparticle interactions. Needless
to say, this is a complex problem, and not much is known about
it from first principles, whether in the intermediate coupling
region (αs ≈ 1/2) or in the very strong coupling region (αs ≈ 1
or � � 1).
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One reason for an effective repulsion at short distances is
due to the kinetic energy of the quantum localization. Such
repulsion can be modeled by a repulsive potential of the form

Vloc ≈ h̄2

mr2
. (16)

Such potentials are often used in classical simulations of light
atoms (e.g., solid He). Note that this term has a power n = 2
rather than the n = 9 used in Vcore. This is not very important
since any n > 1 stabilizes the Coulomb attraction at short
distances. The net effect of the quantum localization is the
introduction of a dimensionful parameter (i.e., h̄ in natural
classical units).

In our analysis we used the following natural units.

(i) Length unit: At any n, the minimum of the potential is at
r = λ. So λ sets the basic length scale, and all distances
are measured in units of λ.

(ii) Time unit: The unit of time τ0 will be set by the natural
frequency of a screened Coulomb system, its plasma
frequency

τ0 = ω−1
p =

( m

4πne2

)1/2
. (17)

(iii) Mass unit: This is naturally given by the particle mass m.
Thus all important time correlators have a characteristic
length of order 1 in τ0. In contrast, all MD runs are
typically a few hundreds or thousands of τ0 to ensure
statistical equilibrium.

This fixes the three basic units used in our analysis. For
instance, the kinetic energy is measured in obvious units of
mλ2/τ 2

0 . The strength of the Coulomb potential, if measured
in such units, is(

e2

λ

)/ (
mλ2

τ 2
0

)
= 1

4π

1

nλ3
, (18)

so that it is defined directly by the particle density. The
temperature, in the same units, can be defined via averaged
(dimensionless) velocities as (3/2)T = 〈v2/2〉. Finally, the
main parameter u in Eq. (2) can be obtained from simulation,
as the ratio of the measured total mean potential to the total
kinetic energy.

B. Technical details

There are readily available numerical packages for solving
a set of coupled differential equations of the type listed in
Eq. (13). The accuracy is tested through energy conservation
and color vectors remaining on the unit sphere. We have used
the package from the CERN library in double precision and
tested its accuracy for both energy and color conservation.

A many-body problem of particles in a box requires
boundary conditions. We used periodic boundary conditions.
When a particle crosses one side of a box, it reappears on the
opposite side with the same velocity. We can visualize space
as filled with many mirror cubes, next to each other. When one
particle leaves the central cube, its mirror image enters from
the opposite cube. The interparticle potential in this many-cube

world is periodic under cubic translation by �L, that is,

Vij =
+∞∑

nx,ny ,nz=−∞
V (�xi − �xj + n �L). (19)

When a particle crosses the boundary, there is no change in
the force or the potential since Eq. (19) is truly periodic. In
practice, the sum in Eq. (19) is carried over a few adjacent
cubes or mirror images, causing an overall loss of periodicity.
As a result, the forces at the faces of the cube jump slightly,
thereby causing random kicks on the crossing particles. This
effect gradually heats the system. The longer the range of the
potential is, the more severe is the heating. However, modern
computers easily allow for keeping up to 3–4 mirror images
on each side of a central cube, thereby reducing the net electric
field by orders of magnitude3 and solving this problem.

Another practical way to deal with this problem is to
introduce a very small amount of friction into the EoM, which
can compensate the heating effect caused by the random forces
at the cubic interface. Our typical runs consists of 44 = 64
or 64 = 1296 particles all of the same species. The results
discussed in the following are for 64 particles.

C. Structure factor

The static and dynamic properties of a liquid are determined
by various correlation functions. One of the most useful of
these functions is a density-density correlation function or
structure factor, defined as

G(r, t) = 1

n
〈ρ(�x, t)ρ(�0, 0)〉, (20)

where r = |�x|, n = N/V (with N the number of particles and
V the volume of the box), and ρ(�x, t) is a microscopic particle
density function at the position �x at time t , given by

ρ(�x, t) =
N∑

i=1

δ(�x − �xi(t)), (21)

where �xi(t) is the position of the ith particle at time t . The
averaging in Eq. (22) is carried over an equilibrium ensemble.4

By assuming translational invariance and isotropy, the
classical density-density correlation function can be written
as

G(r, t) = 1

N

〈
N∑

i=1

N∑
j=1

δ[�x + �xi(0) − �xj (t)]

〉
. (22)

The time-dependent structure function G(r, t) characterizes
the likelihood to find the j th particle at the position �xj at time

3Traditionally the Bethe polynomials for Ewald sums are used to
overcome this heating phenomenon caused by the truncation. We have
found this procedure to be less accurate for the amount of complexity
it introduces.

4Since in our MD simulation the total energy and number of
particles of a system are kept constant this corresponds to using a
microcanonical ensemble.

044908-4



CLASSICAL STRONGLY COUPLED . . . . I. . . . PHYSICAL REVIEW C 74, 044908 (2006)

t if particle j was at the position �xi at t = 0. This structure
function is referred to as the van Hove correlation function.

The density-density correlation function (22) can be written
as a sum of two parts: a self-correlationGs and a distinct-
correlationGd ,

G(�x, t) = Gs(�x, t) + Gd (�x, t), (23)

where

Gs(�x, t) = 1

N

〈
N∑

i=1

δ(�x + �xi(0) − �xi(t))

〉
(24)

and

Gd (�x, t) = 1

N

〈
N∑

i �=j

δ(�x + �xi(0) − �xj (t))

〉
. (25)

We have such functions for different values of the dimen-
sionless constant �. In Fig. 1 we show the functions Gd at
three values of the coupling: moderate, strong, and very strong,
� = 0.83, 31.3, and 131, respectively The first case shows a
relatively weak correlation between the particles, at distance 1
(in our units) corresponding to the potential minimum, which
relaxes rather quickly with time. The correlation is more
robust in the second (“liquid”) case and is very stable and
is accompanied by extra peaks in a “solid” case.

D. Transport coefficients

An important aspect of the strongly coupled plasmas is
the dramatic change in transport properties in comparison
to weakly coupled plasmas. MD simulations can be used to
study the transport properties at strong coupling, in particular,
the shear and bulk viscosities, diffusion constant, thermal
conductivity, and color conductivity. A simple way to obtain
these transport coefficients is via the Green-Kubo relations.
These relations give the transport coefficients in terms of
the integrals of the equilibrium time-dependent correlation
functions.

For self-diffusion the corresponding correlation function is
the velocity autocorrelation function,

D(τ ) = 1

3N

〈
N∑

i=1

�vi(τ ) · �vi(0)

〉
, (26)

where �vi(τ ) is the velocity of a particle i at time τ . The
velocity autocorrelation functions are shown in Fig. 2 for
� = 0.83, 31.3, and 131, respectively. This refers to the
nonideal gas, liquid, and crystal of the (one-species) cQGP.

The diffusion constant is the integral of the velocity
autocorrelation function,

D =
∫ ∞

0
D(τ )dτ. (27)

Figure 3 shows a log-log plot of the diffusion constant as a
function of �. The dependence of D on log� is linear and can
be approximately described by a simple power,

D ≈ 0.4

�4/5
. (28)
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FIG. 1. (Color online) Gd correlation function for (top to bottom)
� = 0.83, 31.3, and 131, respectively. Red circles correspond to t∗ =
0, and blue squares correspond to t∗ = 5. Here and in the following
all quantities are in units defined in Sec. III A.

The viscosity coefficients are given in terms of time
autocorrelation function of the stress-energy tensor,

η(τ ) = 1

3T V

〈∑
x<y

σxy(τ )σxy(0)

〉
, (29)

where
∑

x<y denotes a sum over the three pairs of distinct
tensor components (xy, yz, and zx). The off-diagonal parts of
the stress-energy tensor are given by

σxy =
N∑

i=1

mivixviy + 1

2

∑
i �=j

rij,xFij,y, (30)
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FIG. 2. (Color online) Velocity autocorrelation function D(t) for
(top to bottom) � = 0.83, 31.3, and 131, respectively.

and similarly for xz and yz, with �rij = �xj − �xi and where
�Fij is the force on particle i due to particle j . The stress-

tensor autocorrelation functions are shown in Fig. 4 for � =
0.83, 31.3, and 131, respectively.

The Green-Kubo relation for the coefficient of the shear
viscosity is

η =
∫ ∞

0
η(τ )dτ. (31)

The coefficient of shear viscosity as a function of � is shown
in Fig. 5. For small � the viscosity is large since the mean-free
path is large in a gaslike phase. The viscosity has a minimum in

1 10 100

Γ

0.001

0.01

0.1

D

FIG. 3. (Color online) The diffusion constant D as a function of
the dimensionless coupling �. Blue points are the MD simulations;
the red curve is the expression (28).

the liquid phase and rises slowly as � increases. The coefficient
η can be approximately written as

η ≈ 0.001� + 0.242

�0.3
+ 0.072

�2
. (32)

The minimum measured viscosity is η ≈ 0.1 at � ≈ 10.
The stress-tensor autocorrelation function can be used to

determine the viscous decorrelation time τη, defined as

τη = η

η(0)
, (33)

where η(0) is the value of the stress-energy autocorrelation
function at time t = 0. The values of η(0) and τη as a function
of � are shown in Figs. 6 and 7, respectively.

The functional dependence on � of η(0) is approximately
given by

η(0) ≈ 0.0005� + 0.77

�1.57
+ 0.44

�0.33
. (34)

and that of the decorrelation time by

τη ≈ 0.239 + 0.091
√

�. (35)

E. Potential energy

Another useful observable that can be determined using
MD simulations is the total potential energy U divided by
NT . This ratio as a function of � is shown in Fig. 8. The
parametric dependence of this ratio on � is approximately
given by

U

NT
≈ −4.9 − 2 � + 3.2�1/4 + 2.2

�1/4
. (36)

At large � the crystal phases sets in, and the potential energy
asymptotes as U/NT ≈ −2�, which is a measure of the
Madelung constant. A full theoretical analysis of Eq. (36)
will be given in a subsequent paper [11].
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FIG. 4. (Color online) Stress-tensor autocorrelation function η(τ )
for (top to bottom) � = 0.83, 31.3, and 131, respectively.

IV. COMPARISON WITH STRONGLY COUPLED QGP

A qualitative mapping of the one-species cQGP described
here into sQGP can be made by adjusting the three basic scales
described in Sec. III, namely those of the length, the time, and
the mass. As we have already indicated, all parameters of the
model are functions of the temperature T of the sQGP. In this
section we use heuristic arguments to obtain values of these
parameters for temperatures T = (1.5–3)Tc. (It is used as a
reference point because more lattice data are available for it
than for T close to Tc.)

As previously discussed, the unit of length λ is the minimum
of the potential. Since the repulsive part mocks up the quantum
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0.3

0.4

0.5

0.6

η

FIG. 5. (Color online) Shear viscosity η as a function of the
dimensionless coupling �. Blue points are the MD simulations; the
red curve is the fit in Eq. (32).

repulsion at short distances, the effective interparticle potential
is5

Veff = h̄2

2mr2
− C αs

r
, (37)

with a minimum at r0 = h̄2/(mCαs) = λ. C is the Casimir
operator for quarks and gluons.

The quasiparticle mass, defined as its energy at zero
momentum, is at T = (1.5–3)Tc about constant m ≈ 5Tc both
for quark and gluon quasiparticles [12]. We note that there
are no direct lattice measurements of quasiparticle dispersion
curves below 1.5 Tc. One can infer quark quasiparticle masses
from fits to thermodynamical observables and baryonic sus-
ceptibilities. These fits show that masses grow toward Tc. (For
a recent discussion see Ref. [13].)

It is convenient to introduce a dimensionless mass parame-
ter m̃ = m/T , which thus changes from large values close to Tc

5Insofar as our discussion was classical and nonrelativistic, both h̄

and 1/c were set to zero. In this section, and this section only, we use
the standard high-energy units with h̄ = 1, c = 1.

0 30 60 90 120

Γ

0

0.5

1

1.5

2

FIG. 6. (Color online) Stress-energy autocorrelation function at
t = 0, η(0), as a function of �. The blue points are the MD
simulations; the red curve is the fit of Eq. (34).
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FIG. 7. (Color online) The viscous decorrelation time τη as a
function of �. The blue points are the MD simulations; the red curve
is the fit in Eq. (35).

to about 3 at 1.5Tc. Clearly, its value determines the accuracy
of the nonrelativistic approximation. For example, at m̃ = 5
the mean square momentum

√
〈p2〉/T = 4.8 if calculated rel-

ativistically, whereas the nonrelativistic approximation gives a
value smaller by a factor of 0.8. The corresponding ratio of the
total density in the nonrelativistic approximation is 0.7 of its
relativistic value. So, it is not an unreasonable approximation,
but it is not very accurate. At T = 1.5Tc, m̃ ≈ 3 only, with even
worse accuracy. Therefore, we should calculate momentum
integrals relativistically, and only the results should be mapped
into cQGP.

The Casimir operators for gluons Cg = 3 and quarks Cq =
4/3 should be averaged over their respective weights. The
number of effective degrees of freedom in thermodynamical
quantities is such that roughly all three species—g, q̄, q—are
equally represented. Furthermore, the values of the coupling
constant αs inferred from measured static potentials at rele-
vant distances is αs ≈ 0.5. Within the uncertainties we use

0 25 50 75 100 125

Γ

-300

-200

-100

0

FIG. 8. (Color online) Ratio of the total potential energy U to
NT as a function �. The blue points are the MD simulations; the red
curve is the fit in Eq. (36).

〈αs C〉 = 1. Thus,

λ = r0 ≈ 1

3T
. (38)

The density of quasiparticles n can be estimated as follows.
Although quasiparticles are relatively heavy, the presence of
light bound states increases the total density of quasiparticles
to about 0.8 of the entropy density per particle in the massless
gas [14]. Ignoring this 0.8, which refers to the bound states,
we then have

n ≈ (0.244T 3) (8 + 6 Nf ) ≈ 6.3T 3, (39)

where the first term in parentheses is the usual density of
blackbody radiation photons, and the second is the number of
effective degrees of freedom from the eight colored gluons and
two quarks and antiquarks with three colors and Nf flavors.
This corresponds to the following Wigner-Seitz radius:

aWS =
(

3

4 πn

)1/3

≈ 1

3T
≈ λ. (40)

The time units in MD are given by the plasma frequency, which
is

τ0 = ω−1
p =

(
4πn〈αs C〉

m

)−1

≈ 1

5.1T
, (41)

where, for definiteness, we used m = 3T .
In summary, our MD results for cQGP can be qualitatively

translated to the dimensionfull sQGP parameters using, re-
spectively, the length λ, time τ0, and mass m units

λ ≈ 1

3 T
,

τ0 ≈ 1

5.1 T
, (42)

m ≈ 3 T ,

with � ≈ 3.
Indeed, the viscosity unit η0 is then given by the combina-

tion of units with the appropriate dimensions:

η0 = m/(τ0 λ) = (3T )(5.1T )(3T ) ≈ 46T 3, (43)

leading to the sQGP viscosity through

η → η η0 ≈ (0.17)(46 T 3) ≈ 7.8 T 3. (44)

In the sQGP, it is customary to give the viscosity per entropy
density, which for an ideal massless QGP is

s0 = 4π2

90

[
16 +

(
7

8

)
× 2 × 2 × 3 × Nf

]
T 3 ≈ 20T 3 (45)

for three flavors. Correcting a bit for a more realistic lattice
entropy, we will use s ≈ 23 T 3 around T = 1.5T c. Thus, the
dimensionless viscosity η ≈ 0.17 as measured in this one-
species cQGP at � ≈ 3 can be translated to the dimensionfull
viscosity in the sQGP by rescaling through η0. The viscosity
per entropy ratio in the sQGP is

η

s
→ η η0

s
≈ 0.34. (46)

The results from N = 4 supersymmetric Yang-Mills theory
have suggested a universal lower bound for η/s � 1/4π . Our
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analysis suggests that in the sQGP this ratio is about four times
the lower bound. At the same time it is much smaller than the
weak coupling result η/s ∼ 1/α2

s > 1.
The diffusion constant translates to

D ≈ 0.161 → (0.161)(λ2/τ0) ≈ 0.1/T . (47)

Similarly, the stress-tensor decorrelation time translates to

τη ≈ 0.395 → (0.395)(τ0) ≈ 0.08/T . (48)

One should keep in mind that these results are estimated for
T ≈ 1.5Tc. As temperature gets closer to Tc, the masses of
quasiparticles grow further and the coupling gets larger, so one
finds even stronger coupled plasma. Unfortunately, we do not
yet have sufficiently precise lattice data to make the mapping
of the cQGP to the sQGP in this region more definite.

V. CONCLUSIONS AND OUTLOOK

Quarks and gluons in the temperature range of (1–1.5) Tc

behave as quasiparticles with masses larger than m > 3 T

and a Casimir-weighted Coulomb strength of the order of
〈C αs〉 ≈ 1, which is strong. Lattice measured potentials in
this temperature range give �U/T between 20 at Tc and 5 at
1.2Tc, indicating the dominance of the potential energy over
the thermal energy.

In this paper, we have suggested that the long-wavelength
properties of the QGP in the (1–1.5) Tc range may be modeled
by a classical and nonrelativistic gas of massive quasi-particles
interacting via strong but classical color charges. This model
(cQGP) was studied using molecular dynamics simulations.

Our results show the existence of several phases ranging
from a gas phase at weak coupling, through a liquid phase
at intermediate coupling, and finally a crystal-like phase at
strong coupling with antiferromagnetic-like color ordering.
The transition from liquid to crystal is best seen in the
density-density correlation function or its static counterpart,
the structure function. At large Coulomb coupling the excess
energy per particle approaches the Madelung energy for a
crystal.

We have used numerical analysis to extract a number of
transport coefficients, including the quasiparticle diffusion
constant, the shear viscosity, and relaxation time. Although
quantum mechanics is important in the sQGP in the forma-
tion of the underlying quasiparticles (dispersion laws) and
the running of the coupling, we have suggested that the
ensuing quasiparticle interaction and dynamics are essentially
Coulombic and classical at strong coupling. For this, the cQGP
results are generic at intermediate and strong coupling. We
have given qualitative arguments for how to relate the cQGP
transport results to those of interest in the sQGP by identifying
the pertinent length scales. We have found that the sQGP
corresponds to � ≈ 3, which is liquid-like and has a viscosity
η/s ≈ 1/3T .

In subsequent papers, we will provide more insights into
the cQGP results presented here for the bulk thermodynamics,
two-particle correlations, and transport properties.
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