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Dissipative hydrodynamics in 2 + 1 dimensions
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In 2 + 1 dimensions, we simulated the hydrodynamic evolution of quark-gluon plasma (QGP) fluid with
dissipation due to shear viscosity. Comparison of the evolution of ideal and viscous fluids, both initialized under
the same conditions, e.g., same equilibration time, energy density and velocity profile, reveals that the dissipative
fluid evolves slowly, cooling at a slower rate. Cooling slows even more at higher viscosities. The fluid velocities,
however, evolve faster in a dissipative fluid than in an ideal fluid. The transverse expansion is also enhanced
in dissipative evolution. For the same decoupling temperature, the freeze-out surface for a dissipative fluid is
more extended than that for an ideal fluid. Dissipation produces entropy as a result of which particle production
is increased. Particle production is increased as a result of the (i) the extension of the freeze-out surface and
(ii) the change of the equilibrium distribution function to a nonequilibrium one, the latter effect being prominent
at large transverse momentum. Compared to ideal fluid, transverse momentum distribution of pion production is
considerably enhanced. Enhancement is greater at high pT than at low pT . Pion production also increases with
viscosity; the greater the viscosity, the greater the pion production. Dissipation also modifies the elliptic flow,
which is reduced in viscous dynamics. Also, contrary to ideal dynamics where elliptic flow continues to increase
with transverse momentum, in viscous dynamics elliptic flow tends to saturate at large transverse momentum.
The analysis suggests that the initial conditions of the hot, dense matter produced in Au+Au collisions at the
Relativistic Heavy Ion Collider (RHIC), as extracted from ideal fluid analysis, can be changed significantly if the
QGP fluid is viscous.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) predicts that
under certain conditions (sufficiently high energy density and
temperature) ordinary hadronic matter (where quarks and
gluons are confined) can undergo a phase transition to a
deconfined matter, commonly known as quark-gluon plasma
(QGP). Nuclear physicists are trying to produce and detect
this new phase of matter at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory. Recent Au+Au
collisions at RHIC indicate that dense, color opaque medium
of deconfined matter is created in very central collisions [1–4].
It is now also understood that the quarks and gluons strongly
interact, giving rise to the notion of sQGP (strongly inter-
acting QGP). The experimental data have been successfully
analyzed in an ideal fluid dynamic model [5]. Hydrodynamic
evolution of ideal QGP, thermalized at τi = 0.6 fm, with a
central entropy density of 110 fm−3 or an energy density of
35 Gev/fm3, can explain a large amount of the RHIC data,
the pT spectra of identified particles, the elliptic flow, etc.
[5]. However, the experimental data do show deviation from
ideal behavior. The ideal fluid description works well in
almost central Au+Au collisions near midrapidity at top
RHIC energy, but gradually breaks down in more peripheral
collisions, at forward rapidity, or at lower collision energies [6],
indicating the onset of dissipative effects. To quantitatively
describe such deviations from ideal fluid dynamics requires
the numerical implementation of dissipative relativistic fluid
dynamics.

*Electronic address: akc@veccal.ernet.in

Eckart [7] and Landau and Lifshitz [8] formulated the
theory of dissipative relativistic fluid. Their theories are
called first-order theories and suffer from the problem of
causality; the signal can travel faster than light. First-order
theories assume that the entropy 4-current contains terms up
to linear order in dissipative quantities. This restriction results
in parabolic equations, which leads to a causality problem.
The causality problem is removed in the second-order theories
formulated by Israel and Stewart [9]. In second-order theories,
dissipative fluxes are treated as (extended) thermodynamic
variables and the linear relation between entropy 4-current
and dissipative quantities is extended to include quadratic
terms. The entropy 4-current contains terms up to second order
in dissipative forces. The resulting equations are hyperbolic
in nature and the causality problem is removed. Naturally
second order theories are more complicated. In addition to the
usual energy-momentum conservation equations, relaxation
equations for dissipative fluxes are required to be solved
simultaneously.

Though the theories of dissipative hydrodynamics [7–9]
have been known for more than 30 years, significant progress
toward their numerical implementation has only been made
very recently [10–14]. Earlier attempts were restricted to
simple one-dimensional Bjorken expansion [15]. Because the
hot dense matter produced in RHIC collisions undergoes large
transverse expansion, such models are not of much help in ex-
tracting the initial conditions of the fluid from the experiment.
Recently Teaney [10] solved the hydrodynamic equations
in a first-order dissipative theory. He used the blast wave
model and calculated the corrections to thermal distribution
functions considering shear viscosity only. Blast wave models
lack dynamics. The freeze-out surface is parametrized and one
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fits the freeze-out parameters with experimental observables.
Information about the initial conditions of the hot dense
matter is not available in blast wave models. In Refs. [12,13],
second-order theories for dissipative fluid are solved for QGP
fluid. Although the models are dynamic (energy-momentum
conservation equations are solved), energy-momentum con-
servation equations are solved in 1+1 dimensions, assuming
longitudinal boost-invariance and cylindrical symmetry. Thus
these models do not give any information on the most sensitive
experimental observable, the elliptic flow. In Ref. [14] explicit
equations describing the space-time evolution of non-ideal
relativistic fluid, undergoing boost-invariant longitudinal and
arbitrary transverse expansion, are given. Equations are written
for both first-order and second-order theories.

At the Variable Energy Cyclotron Centre, Kolkata, we
developed a numerical code (AZHYDRO-KOLKATA) to solve
both first-order and second-order dissipative hydrodynamics in
2 + 1 dimensions. In this article we present AZHYDRO-
KOLKATA results for first-order dissipative hydrodynamics.
Results for second-order dissipative hydrodynamics will be
presented in a later publication. As mentioned earlier, first-
order theories are acausal; the signal can travel faster than
light. In one dimension, first-order theories can be solved
analytically. Analytical solutions indicate that early in the
evolution, an unphysical reheating of the fluid can occur
[12,16]. Even though in the present simulation we do not find
any indication of early reheating, nevertheless we maintain
that second-order results, which do not have the unphysical
causality problem, are more reliable. In this paper we are
concerned mainly with the effect of viscosity on fluid evolution
and its effects on particle production, pT distribution, and
elliptic flow. No attempt is made to explain the experimental
data.

This article is organized as follows: In Sec. II, we describe
briefly the hydrodynamic equations needed for first-order
dissipative hydrodynamics. In Sec. III, we describe the
equation of state, the shear viscosity coefficient, and the initial
conditions used in the present study. With dissipation, the
equilibrium distribution function is changed. Corrections to
equilibrium distribution function because of nonequilibrium
effects are described in Sec. IV. We have studied particle (pion)
production in the model. The relevant equations for pion pro-
duction with the equilibrium distribution function and its cor-
rection due to nonequilibrium effects are discussed in Sec. V.
Results of the numerical simulations are shown in Sec. VI.
Finally, in Sec. VII, a summary is given and conclusions are
drawn.

II. FIRST-ORDER DISSIPATIVE FLUID DYNAMICS

Relativistic dissipative hydrodynamics and associated
equations in 2 + 1 dimensions have been discussed in detail
in Ref. [14]. Any fluid dynamical approach starts from the
conservation laws for the conserved charges and for energy
momentum. For a singly charged fluid, the conservation laws
are

∂µNµ = 0 (2.1)

∂µT µν = 0. (2.2)

It must also ensure the second law of thermodynamics

∂µSµ � 0, (2.3)

where Sµ is the entropy current.
In the present article we restrict ourselves to the central

rapidity region, where the QGP fluid is essentially baryon-free.
We thus neglect Eq. (2.1). To keep the calculations simple, we
consider the most important dissipative term, shear viscosity,
and neglect the other dissipative terms, e.g., heat conduction
and bulk viscosity. For a baryon-free fluid, the heat conduction
is zero. The bulk viscosity is zero for QGP (point particles).
The bulk viscosity will be nonzero in the hadronic phase but
presently we neglect it.

With the help of hydrodynamic 4-velocity uµ (normalized
as uµuµ = 1) and projector �µν = gµν − uµuν , with only
shear viscosity as the dissipative flux, in Landau’s frame, the
energy momentum tensor and the entropy 4-current, can be
decomposed as

T µν = T µν
eq + δT µν = ε uµuν − p�µν + πµν (2.4)

Sµ = Sµ
eq + δSµ = s uµ + �µ, (2.5)

where ε = uµT µνuν is the energy density; p is the local
pressure; πµν is the non-ideal part of the energy-momentum
tensor, the stress tensor due to shear viscosity; s = uµSµ is the
entropy density; and �µ is the entropy flux due to dissipation.

In the first-order theories, the shear stress tensor is written
as

πµν = 2η∇〈µuν〉, (2.6)

where η is the shear viscosity coefficient and ∇〈µuν〉 is a
traceless symmetric tensor defined as

∇〈µuν〉 = [
1
2 (�µσ�ντ + �νσ�µτ ) − 1

3�µν�στ
]
. (2.7)

Viscous pressure πµν is symmetric (πµν = πνµ), traceless
(πµ

µ = 0), and transverse to hydrodynamic velocity (uµπµν =
0). The 16-component πµν has only 5 independent com-
ponents. As mentioned in the beginning, we have solved
the equations with the assumption of longitudinal boost-
invariance. With boost-invariance the number of independent
shear stress tensors further reduces to 3.

Heavy ion collisions are best described in terms of proper
time τ = √

t2 − z2 and rapidity ηs = 1
2 ln t+z

t−z
(we use the

subscript s to distinguish spatial rapidity from the viscous
coefficient η). In (τ, x, y, ηs) coordinates, with longitudinal
boost-invariance, the hydrodynamic 4-velocity can be written
as

uµ = (uτ , ux, uy, uηs )

= (γ⊥, γ⊥vx, γ⊥vy, 0), (2.8)

with

γ⊥ = 1
/√

1 − v2
x − v2

y.

Explicit equations for energy-momentum conservation
in the (τ, x, y, ηs) coordinate system were developed in
Ref. [14]. Here we rewrite the results in a form suitable
for numerical algorithm. The energy-momentum conservation
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equations are

∂τ (T̃ ττ ) + ∂x(T̃ ττ vx) + ∂y(T̃ ττ vy) = − (p + τ 2πηη), (2.9)

∂τ (T̃ τx) + ∂x(T̃ τxvx) + ∂y(T̃ τxvy)

= −∂x(p̃ + π̃ xx − π̃ τxvx) − ∂y(π̃ xy − π̃ τxvy), (2.10)

∂τ (T̃ τy) + ∂x(T̃ τyvx) + ∂y(T̃ τyvy)

= −∂x(π̃ xy − π̃ τyvx) − ∂y(p̃ + π̃ yy − π̃ τyvy), (2.11)

where vx = T τx/T ττ and vy = T τy/T ττ . We have used the
notation “tilde” to represent quantities multiplied by the factor
τ, p̃ = τp and similarly T̃ ij = τT ij. We note that, unlike in
ideal fluid, in viscous fluid dynamics conservation equations
contain additional pressure gradients containing the dissipative
fluxes. Both T τx and T τy components of energy-momentum
tensors now evolve under the influence of additional pressure
gradients.

In first-order theory, the shear stress tensor components
required in the preceding equations are

πτx = 2η

[
−1

2
∂xγ⊥ + 1

2
∂τ (γ⊥vx)

−1

2
D

(
γ 2

⊥vx

) + θ

3
γ 2

⊥vx

]
, (2.12)

πτx = 2η

[
−1

2
∂yγ⊥ + 1

2
∂τ (γ⊥vy)

−1

2
D(γ 2

⊥vy) + θ

3
γ 2

⊥vy

]
, (2.13)

πττ = 2η

[
θ

3
(γ 2

⊥ − 1) + ∂τ γ⊥ − 1

2
D(γ 2

⊥)

]
, (2.14)

πηη = 2η

[
1

τ 2

(
θ

3
− γ⊥

τ

)]
, (2.15)

πxx = 2η

[
−∂x(γ⊥vx) − 1

2
D(γ 2

⊥)

+ θ

3

(
1 + γ 2

⊥v2
x

)]
, and (2.16)

πyy = 2η

[
−∂x(γ⊥vy) − 1

2
D(γ 2

⊥) + θ

3

(
1 + γ 2

⊥v2
y

)]
,

(2.17)

where D = uµ∂µ is the convective time derivative,

D = γ⊥(∂τ + vx∂x + vy∂y), (2.18)

and θ is the local expansion rate, given by

θ = γ⊥
τ

+ ∂τ γ⊥ + ∂x(vxγ⊥) + ∂y(vyγ⊥). (2.19)

Given an equation of state, if energy density (ε) and fluid
velocity (vx and vy) distributions at any time τi are known,
Eqs. (2.9)–(2.10) can be integrated to obtain ε, vx , and vy

at the next time step τi+1. Whereas for ideal hydrodynamics
this procedure works perfectly, viscous hydrodynamics poses
a problem in that shear stress tensor components contain
time derivatives, ∂τ γ⊥, ∂τu

x, ∂τu
x , etc. Thus, at time step τi

one needs the still unknown time derivatives. Numerically, the
time derivatives at step τi could be obtained if the velocities
at time steps τi and τi+1 were known. One possible way to

circumvent the problem is to use the time derivatives of the
previous step; i.e., use the velocities at time steps τi−1 and τi

to calculate the derivatives at time step τi [13]. In first-order
theories, this problem is circumvented by calculating the time
derivatives from the ideal equations of motion

Duµ = ∇µp

ε + p
, (2.20)

Dε = −(ε + p)∇µuµ. (2.21)

With the help of these two equations all the time derivatives
can be expressed entirely in terms of spatial gradients [10,17].
First-order theories are restricted to contain terms at most
linear in dissipative quantities. Neglect of viscous terms
can contribute only in second-order corrections, which are
neglected in first-order theories.

III. EQUATION OF STATE, VISCOSITY COEFFICIENT
AND INITIAL CONDITIONS

A. Equation of state

One of the most important inputs of a hydrodynamic model
is the equation of state. Through this input macroscopic
hydrodynamic models make contact with the microscopic
world. In the present calculation we use the equation of state,
EOS-Q, developed in Ref. [5]. It is a two-phase equation
of state. The hadronic phase of EOS-Q is modeled as a
non-interacting gas of hadronic resonance. As the temperature
is increased, larger and larger fractions of available energy
go into production of heavier and heavier resonances. This
results in a soft equation of state, with small speed of sound,
c2
s ≈ 0.15. With increasing temperature, the available volume

is filled up with resonances and the hadronic states start to
overlap, and microscopic degrees of freedom are changed
from hadrons to deconfined quarks and gluons. The QGP
phase is modeled as a non-interacting quark (u, d, and s)
and gluons, confined by a bag pressure B. The corresponding
equation of state, p = 1

3e − 4
3B, is stiff with a speed of sound

c2
s = 1

3 . The two phases are matched by Maxwell construction
at the critical temperature Tc = 164 MeV, adjusting the bag
pressure B1/4 = 230 MeV. As discussed in Ref. [5], ideal
hydrodynamics explains a large amount of RHIC Au+Au data
with EOS-Q.

B. Shear viscosity coefficient

The shear viscosity coefficient (η) of dense QGP or
resonance hadron gas is quite uncertain. In a perturbative
regime, the shear viscosity of QGP is estimated [18,19] as

η = 86.473
1

g4

T 3

log g−1
. (3.1)

With entropy of QGP, s = 37π2

15 T 3 and αs ≈ 0.5, the ratio
of viscosity over the entropy in the perturbative regime is
estimated as (η

s

)
pert

≈ 0.135. (3.2)
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However, QGP produced in nuclear collisions is non-
perturbative. It is strongly interacting QGP. Recently, using
the ADS/CFT correspondence [20,21], the shear viscosity
of a strongly coupled gauze theory, N = 4 SUSY YM, was
evaluated, η = π

8 N2
c T 3, and the entropy was given by s =

π2

2 N2
c T 3. Thus in the strongly coupled field theory

(η

s

)
ADS/CFT

= 1

4π
≈ 0.08, (3.3)

which is approximately two times smaller than the perturbative
estimate. In the present article, we treat the shear viscosity as a
parameter of the model. To demonstrate the effect of viscosity
on flow and subsequent particle production, we use both the
perturbative and the ADS/CFT estimate of viscosity.

First-order theories are acausal. As mentioned earlier,
unphysical effects, such as reheating of the fluid, can occur
early in the evolution. In one dimension the energy-momentum
conservation equation can be solved analytically. If the initial
fluid temperature is Ti at initial time τi , for constant η/s, the
fluid temperature at time τ can be obtained as [16]

T (τ ) = Ti

(τi

τ

)1/3
[

1 + 2

3τiTi

η

s

(
1 −

(τi

τ

)2/3
)]

. (3.4)

For early times, τ < τmax,

τmax = τi

(
1

3
+ s

η

τiTi

2

)−3/2

, (3.5)

the solution shows an unphysical reheating. The unphysical
reheating is minimized if τmax is small or η/s � τiTi . As is
explained below, we used an initial time, τi = 0.6 fm/c, and
an initial temperature of the fluid, Ti = 0.35 GeV. For both
the values of viscosity, η/s � τiTi , the unphysical reheating
is minimized.

Shear viscosity can also be expressed in terms of sound
attenuation length, �s , defined as

�s =
4η

3

sT
. (3.6)

�s is equivalent to the mean free path and for a valid
hydrodynamic description �s/τ � 1; i.e., the mean free path
is much less than the system size. With the present choice
of equilibration time and temperature, for both the ADS/CFT
and the perturbative estimate of viscosity, at initial time, �s/τ

is much less than unity and hydrodynamics remains a valid
description. At a later time the validity condition becomes
even better.

C. Initial conditions

As discussed earlier, ideal hydrodynamics has been very
successful in explaining a large amount of data in RHIC
200A GeV Au+Au collisions [5]. In the present demonstrative
calculations, we use initial conditions similar to those used
in Ref. [5]. Details of the initial conditions can be found in
Ref. [5]. Note that in Ref. [5], the initial transverse energy
is parametrized geometrically. At an impact parameter �b,
transverse distribution of wounded nucleons NWN(x, y, �b)
and of binary NN collisions NBC(x, y, �b) are calculated in a

Glauber model. A collision at impact parameter �b is assumed
to contain 25% hard scattering (proportional to the number of
binary collisions) and 75% soft scattering (proportional to the
number of wounded nucleons). The transverse energy density
profile at impact parameter �b is then obtained as

ε(x, y, �b) = ε0(0.75 × NWN(x, y, �b) + 0.25 × NBC(x, y, �b)).
(3.7)

The parameter ε0 and the initial equilibration time τi are
fixed to reproduce the experimental transverse momentum
distribution of pions in central Au+Au collisions. STAR and
PHENIX data are fitted to obtain an initial equilibrium time
of τi = 0.6 fm and a central entropy density of s = 110 fm−3.
This corresponds to energy density of the fluid as 25 GeV/fm3

or an initial temperature of 350 MeV. Apart from the initial
energy density, the initial velocity distribution is also required
in hydrodynamic calculations. In the present calculation it is
assumed that the at the initial time τi fluid velocities are zero,
vx(x, y) = vy(x, y) = 0.

In dissipative hydrodynamics, additionally, the initial con-
ditions for the dissipative fluxes must be specified. In the
present article we assume that by the equilibration time τi ,
the dissipative fluxes have attained their longitudinal boost-
invariant values.

πτx = 0 (3.8)

πτx = 0 (3.9)

πττ = 0 (3.10)

τ 2πηη = −4η/τi (3.11)

πxx = 2η/τi (3.12)

πyy = 2η/τi (3.13)

IV. NONEQUILIBRIUM DISTRIBUTION FUNCTION

With dissipation the system is not in equilibrium and the
equilibrium distribution function

f (0)(x, p) = 1

exp[β(uµpµ − µ)] ± 1
, (4.1)

with inverse temperature β = 1/T and chemical potential µ,
can no longer describe the system. In a highly nonequilibrium
system, the distribution function is unknown. If the system
is slightly off-equilibrium, then it is possible to calculate
correction to the equilibrium distribution function due to
(small) nonequilibrium effects. The slightly off-equilibrium
distribution function can be approximated as

F (x, p) = f (0)(x, p)[1 + φ(x, p)], (4.2)

φ(x, p) is the deviation from the equilibrium distribution
function f (0). With shear viscosity as the only dissipative
forces φ(x, p) can be locally approximated by a quadratic
function of 4-momentum,

φ(x, p) = εµνp
µpν. (4.3)

Without any loss of generality εµν can be written as

εµν = Cπµν, C = β2

2(ε + p)
, (4.4)
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completely specifying the nonequilibrium distribution func-
tion.

V. PARTICLE SPECTRA

With the nonequilibrium distribution function thus speci-
fied, it can be used to calculate the particle spectra from the
freeze-out surface. In the standard Cooper-Frye prescription,
particle distribution is obtained as

E
dN

d3p
= dN

dyd2pT

=
∫

�

d�µpµf (x, p). (5.1)

In (τ, x, y, ηs) coordinate, the freeze-out surface is
parametrized as

�µ = (τf (x, y) cos hηs, x, y, τf (x, y) sin hηs). (5.2)

and the normal vector on the hyper surface is

d�µ =
(

cos hηs,− ∂τf

∂xf

,−∂τf

∂yf

,− sin hηs

)
τf dxdydηs.

(5.3)
At the fluid position (τ, x, y, ηs) the particle 4-momenta are
parametrized as

pµ = (mT cos h(ηs − Y ), px, py,mT sin h(ηs − Y )). (5.4)

The volume element pµd�µ becomes

pµd�µ = (mT cos h(η − Y ) − �pT . �∇T τf )τf dxdydη. (5.5)

The equilibrium distribution function involves the term
pµuµ/T which can be evaluated as

pµuµ

T
= γ (mT cos h(η − Y ) − �vT . �pT − µ/γ )

T
. (5.6)

The nonequilibrium distribution function requires the sum
pµpνπµν

pµpνπ
µν = a1 cos h2(η − Y ) + a2 cos h(η − Y ) + a3,

(5.7)
with

a1 = m2
T (πττ + τ 2πηη) (5.8)

a2 = −2mT (pxπ
τx + pyπ

τy) (5.9)

a3 = p2
xπ

xx + p2
yπ

yy + 2pxpyπ
xy − m2

T τ 2πηη. (5.10)

Inserting all the relevant formulas in Eq. (5.1) and integrating
over spatial rapidity one obtains

dN

dyd2pT

= dN eq

dyd2pT

+ dNneq

dyd2pT

, (5.11)

with

dN eq

dyd2pT

= g

(2π )3

∫
dxdyτf [mT K1(nβ) − pT

�∇T τf K0(nβ)]

(5.12)
dNneq

dyd2pT

= g

(2π )3

∫
dxdyτf

[
mT

{
a1

4
K3(nβ) + a2

2
K2(nβ)

+
(

3a1

4
+ a3 + 1

)
K1(nβ) + a2

2
K0(nβ)

}

− �pT . �∇T τf

{a1

2
K2(nβ) + a2K1(nβ)

+
(a1

2
+ a3 + 1

)
K0(nβ)

}]
, (5.13)

where K0,K1,K2, and K3 are the modified Bessel functions.
We also show results for elliptic flow v2. It is defined as

V2 =
∫ 2π

0
dN

dyd2pT
cos(2φ)dφ∫ 2π

0
dN

dyd2pT
dφ

. (5.14)

VI. RESULTS

A. Evolution of the viscous fluid

The energy-momentum conservation equations (2.9)–
(2.11) are solved using the SHASTA-FCT algorithm. We
have made extensive changes to the publicly available code
AZHYDRO (described in [5]) for simulation of ideal fluid.
The modified code, called AZHYDRO-KOLKATA, simulates the
evolution of dissipative fluid in both first- and second-order
theory. In this section we present results obtained using
AZHYDRO-KOLKATA for the first-order theory of dissipative
fluid. Below we show the results obtain in a Au+Au colli-
sion at impact parameter b = 6.8 fm, which approximately
corresponds to 16%–24% centrality Au+Au collisions. With
the same initial conditions, we solve the energy-momentum
conservation equations for ideal fluid and viscous fluid.

In Fig. 1, we show the constant energy density contour plot
in the x-y plane after an evolution of 5 fm. The black lines
represent ideal fluid evolution. The red and blue lines represent
viscous fluid with ADS/CFT (η/s = 0.08) and perturbative
(η/s = 0.135) estimates of viscosity. Constant energy density
contours, as depicted in Fig. 1, indicate that with viscosity fluid
cools slowly. Cooling gets slower as viscosity increases. Thus
at any point in the x-y plane, the viscous fluid temperature
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0.23
0.40

0.56

0.73

FIG. 1. (Color online). Contour plots of energy density at (proper)
time τ = 5.6 fm. The black lines represent ideal fluid (η/s = 0). The
red and blue lines represent, respectively, viscous fluid with ADS/CFT
(η/s = 0.08) and perturbative (η/s = 0.135) estimates of viscosity.

044904-5



A. K. CHAUDHURI PHYSICAL REVIEW C 74, 044904 (2006)

-10 -5 0 5 10

-10

-5

0

5

10
Au+Au@b=6.8 fm:τ=5.2 fm

Y
 (

fm
)

X (fm)

-0.57 -0.34

-0.11

0.11

0.34 0.57

FIG. 2. (Color online). Contour plots of x component of fluid
velocity vx at τ = 5.6 fm. The black lines represent ideal fluid
(η/s = 0). The red and blue lines represent viscous fluid with
ADS/CFT and perturbative estimates of viscosity, η/s = 0.08 and
0.135, respectively.

is higher than that of the ideal fluid. The results are in
accordance with our expectations. So for dissipative fluid, the
ideal equation of motion, Eq. (2.21), is changed to

Dε = −(ε + p)∇µuµ + πµν∇〈µuν〉. (6.1)

Because of viscosity, the evolution of energy density is slowed
down.

In Fig. 2, we show the constant vx contour plot in the x-y
plane again at τ = 5.6 fm. As before the black lines represent
the ideal fluid evolution. The red and blue lines represent
viscous fluid with η/s = 0.08 and 0.135, respectively. In the
central region of the fluid, the viscous fluid has more velocity
than its ideal counterpart. With viscosity, while the energy
density evolves slowly, the fluid velocity evolves faster. The
contour plot of the y component of fluid velocity also indicates
similar results.

To obtain an idea of the transverse expansion of viscous
fluid, as opposed to ideal fluid, in Fig. 3 we show the constant
temperature contours in the τ -x plane, at a fixed value of
y = 0 fm. Transverse expansion is substantially enhanced in a
viscous fluid. The greater the viscosity is, the greater transverse
expansion. The plot also indicates that at late time, fluid at
x = y = 0 behaves similarly to the ideal fluid.

First order dissipative theories are acausal. As mentioned
earlier, acausality can lead to unphysical behavior such as
reheating of the fluid in the early stage of evolution [12,16]. Do
we see any reheating? In Fig. 4, the evolution of temperature
in viscous dynamics with a perturbative estimate of viscosity
(η/s = 0.135) is shown. We have shown the temperature at two
positions of the fluid, x = y = 0 (the solid line) and x = 0,
y = 3 fm (the dashed line). In both positions of the fluid, with
time, as the fluid expands the temperature decreases (as it
should be). We find no evidence of reheating. Reheating is not
seen also with the ADS/CFT estimate of viscosity.
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FIG. 3. (Color online). Contour plots of temperature at y = 0 fm
in the x-τ plane. The black lines represent ideal fluid (η/s = 0). The
red and blue lines represent viscous fluid with η/s = 0.08 and 0.135,
respectively.

In Fig. 5, we show shear stress tensors πττ (x, y = 0),
τ 2πηη(x, y = 0), πxx(x, y = 0), and πyy(x, y = 0) as a func-
tion of x. η/s = 0.135. The solid, long-dashed, dashed, and
short-dashed lines are for times 0.6, 2.2, 3.2, and 4.2 fm,
respectively. Initially at τ = 0.6 fm, πττ is zero. As the fluid
evolves, πττ increases rapidly to a maximum and then de-
creases. By 4 fm of evolution, it decreases to very small values.
We also note that πττ is never very large. The viscous pressures
τ 2πηη, πxx , and πyy are nonzero at initial time τi = 0.6 fm.
As the fluid evolves, these viscous fluxes rapidly decrease to
very small values.
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FIG. 4. Evolution of the temperature in viscous dynamics with a
perturbative estimate of viscosity, η/s = 0.135. The solid and dashed
lines represent fluid at x = y = 0 and x = 0, y = 3 fm, respectively.
The x = 0, y = 3 fm curve is plotted using the right-side scale.
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FIG. 5. Shear stress tensors πττ (x, y = 0), τ 2πηη(x, y = 0),
πxx(x, y = 0), and πyy(x, y = 0) at τ = 0.6, 2.2, 3.2, and 4.2 fm.
The solid, long-dashed, dashed, and short-dashed lines are for times
0.6, 2.2, 3.2, and 4.2 fm, respectively.

Viscosity generates entropy. In the model entropy genera-
tion due to dissipation can be calculated as

∂µSµ = πµνπµν

2ηT
. (6.2)

The evolution of spatially average entropy is shown in Fig. 6.
Entropy generation saturates after ∼2 fm of evolution. It is
expected. As seen in Fig. 5, viscous fluxes rapidly decrease
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FIG. 6. Evolution of average entropy with proper time for two
values of η/s.

and by 2 fm of evolution, the viscous fluxes are decreased
sufficiently and do not contribute significantly to the entropy.

B. Particle spectra

In these exploratory calculations we do not attempt to fit
experimental data. We just exhibit the effect of viscosity on
(i) the transverse momentum distribution and (ii) the elliptic
flow of pions. Viscosity influences the particle production
by (i) changing the freeze-out surface (freeze-out surface is
extended) and (ii) introducing a correction to the equilib-
rium distribution function. Nonequilibrium correction to the
equilibrium distribution function depends, quadratically on the
momentum and linearly on the viscous fluxes.

In Fig. 7, we show the transverse momentum distribution
of pions obtained in the Cooper-Frye formalism. Freeze-out
temperature is TF = 0.158 GeV. In this calculation, resonance
contribution to pion spectra is neglected. Pion production is
increased in viscous dynamics. We also note that the effect of
viscosity is more prominent at large pT than at low pT . pT

spectra of pions are flattened with viscosity. Particle production
increases if viscosity increases. With the ADS/CFT estimate
of viscosity, η/s = 0.08, at pT = 3 GeV, pion production is
increased by a factor 3, whereas with the perturbative estimate
of viscosity, η/s = 0.135, the production is increased by a
factor of 5. The increase is even greater at larger pT .

We obtained the nonequilibrium distribution as a correction
to the equilibrium distribution function. It is implied that
nonequilibrium effects are small and the ratio

dNneq

dN eq
=

dNneq

dyd2pT

dN eq

dyd2pT

(6.3)

is less than 1. In Fig. 8, the ratio is shown as a function of
pT . With the ADS/CFT estimate of viscosity, η/s = 0.08,
the nonequilibrium correction to particle production becomes
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FIG. 7. PT distribution of pions. The solid line represents the
ideal fluid. The long-dashed and medium-dashed lines represent the
viscous fluid with ADS/CFT (η/s = 0.08) and perturbative (η/s =
0.135) estimates of viscosity. The nonequilibrium correction to the
equilibrium distribution function is included.
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FIG. 8. Ratio of correction to particle production due to nonequi-
librium distribution to equilibrium distribution function.

comparable to the equilibrium contribution beyond pT =
5 GeV. However, with the perturbative estimate, η/s = 0.135,
the nonequilibrium correction becomes comparable to or
exceeds the equilibrium contribution at pT = 4.5 GeV. Thus
with the perturbative estimate of viscosity, the hydrodynamic
description breaks down above pT ∼ 4.5 GeV. The blast
wave model analysis [10], however, indicated that viscous
dynamics get invalidated beyond pT ∼1.7 GeV. The results
are not contradictory. In the blast wave model, at the freeze-
out, the viscosity is quite large and the sound attenuation
length �s is ∼1.4 fm. In the present simulation, even for
the perturbative estimate of viscosity, the sound attenuation
length at the freeze-out is �s ∼ 0.2 fm, seven times smaller
than the sound attenuation length used in the blast wave
analysis. Naturally, nonequilibrium corrections to equilibrium
distribution function remain small over an extended pT range.

We also calculated the elliptic flow in the model. Being a ra-
tio, elliptic flow is very sensitive to the model. Experimentally,
elliptic flow saturates at large pT . It is known that ideal fluid
does not explain the saturation of elliptic flow. In contrast to
experiment, with ideal fluid elliptic flow continues to increase
with pT . In Fig. 9, we compare the elliptic flow in ideal
and viscous fluids. The solid line represents v2 for the ideal
fluid. The long-dashed and medium-dashed lines represent the
viscous fluid with ADS/CFT (η/s = 0.08) and perturbative
(η/s = 0.135) estimated viscosities, respectively. Elliptic flow
decreases with viscosity. As viscosity increases, elliptic flow
is also reduced. We also note that for both ADS/CFT and
perturbative estimates of viscosity, elliptic flow indicates
saturation at large pT . The result is very encouraging, as
experimentally elliptic flow also tends to saturate at large pT .

As discussed earlier, ideal fluid dynamics can explain a
large volume of data in Au+Au collisions at RHIC. Our present
knowledge about the hot dense matter produced in central
Au+Au collisions is obtained from the ideal fluid analysis.
As shown in the present article, QGP fluid, even with the
ADS/CFT estimate of viscosity η/s = 0.08, generates enough
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FIG. 9. Elliptic flow as a function of transverse momentum. The
solid line represents the ideal fluid. The long-dashed and medium-
dashed lines represents the viscous fluid with η/s = 0.08 and 0.135,
respectively. Nonequilibrium correction to equilibrium distribution
function is included.

entropy to enhance particle production by a factor of 3 at pT =
3 GeV. Naturally, if QGP fluid is viscous, initial conditions
as required to explain RHIC data with ideal fluid dynamics
will overpredict the experimental pT distribution. Viscous
fluid dynamics require an initial temperature much lower than
that of an ideal fluid to explain the same pT spectra. As an
example, in Fig. 10, we compare the pion spectra obtained
in viscous dynamics with the ADS/CFT estimate of viscosity
(η/s = 0.08), initialized with entropy densities of 110, 80,
and 60 fm−3, with the pion spectra obtained in ideal fluid
dynamics, initialized with an entropy density of 110 fm−3. For
all the fluids, the initial time is τi = 0.6 fm and the freeze-out
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FIG. 10. The solid circles represent the pT distribution obtained
in ideal fluid dynamics, with initial entropy density s = 110 fm−3.
The solid, long dashed, and dashed lines represent viscous fluid with
the ADS/CFT estimate of viscosity, η/s = 0.08, initialized at entropy
density s = 60, 80, and 110 fm−3, respectively. Nonequilibrium
correction to equilibrium distribution function is included.
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temperature is 158 MeV. The viscous fluid initialized with
entropy density between 60 and 80 fm−3 compares well with
the pion spectra from ideal fluid initialized at much higher
entropy density. To produce the same pion spectra the ideal
fluid requires an initial temperature of 350 MeV while the
viscous fluid requires a much lower temperature between 270
and 290 MeV. The ideal fluid dynamics can overestimate the
initial temperature of fluid produced in Au+Au collisions at
RHIC by 20%–30%.

VII. SUMMARY AND CONCLUSIONS

We studied the boost-invariant hydrodynamic evolution
of QGP fluid with dissipation due to shear viscosity. In
this study we employed the first-order theory of dissipative
relativistic fluid. First-order theories suffer from the problem
of causality; the signal can travel faster than light. Unphysical
effects, such as reheating of the fluid, can occur early in the
evolution. However, for a fluid like QGP, where viscosity is
small, with the appropriate initial conditions the effects of
causality violation can be minimized. In this model study, we
considered two values of viscosity, the ADS/CFT motivated
value, η/s ≈ 0.08, and the perturbatively estimated viscosity,
η/s ≈ 0.135. Both the ideal and the viscous fluids are
initialized similarly. At the initial time τi = 0.6 fm, the initial
central entropy density is 110 fm−3, with the transverse
profile taken from a Glauber model calculation. Viscous
hydrodynamics requires initial conditions for the shear stress
tensor components. It is assumed that at the equilibration time,
the shear stress tensor components have reached their boost-
invariant values. The initial conditions of the fluid are such that,
for both the values of viscosity (η/s = 0.08 and 0.135), the
condition of validity of viscous hydrodynamics, �s/τ � 1, is
satisfied all through the evolution. Explicit simulation of ideal

and viscous fluids confirms that the energy density of a viscous
fluid evolves more slowly than its ideal counterpart. The fluid
velocities, however, evolve faster in viscous dynamics than in
ideal dynamics. Transverse expansion is also greater in viscous
dynamics. For a similar freeze-out condition, the freeze-out
surface is extended in viscous fluid.

We also studied the effect of viscosity on particle produc-
tion. Viscosity generates entropy, which leads to enhanced
particle production. Particle production is increased because
of (i) the extended freeze-out surface and (ii) the nonequilib-
rium correction to the equilibrium distribution function. The
nonequilibrium correction to the equilibrium distribution func-
tion is a dominating factor influencing the particle production
at large pT . With the ADS/CFT (perturbative) estimate of
viscosity, at pT = 3 GeV, pion production is increased by a
factor of 3 (5). The increase is even more at large pT . While
viscosity enhances particle production, it reduces the elliptic
flow. At pT = 3 GeV, for the ADS/CFT (perturbative) estimate
of viscosity, the elliptic flow is reduced by a factor of 2 (3).
We also find that at large pT the elliptic flow tends to saturate.

To conclude, the present study shows that viscosity, even if
small, can be very important in the analysis of RHIC Au+Au
collisions. The currently accepted initial temperature of hot
dense matter produced in RHIC Au+Au collisions, obtained
from ideal fluid analysis, can be changed by 20% or more with
dissipative dynamics.
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