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We present a phenomenological approach (EPOS), based on the parton model, but going much beyond by
incorporating elastic and inelastic parton ladder splitting. Based on this model, we try to understand proton-proton
and deuteron-gold (dAu) collisions, in particular the rapidity dependence of transverse momentum results in dAu
from all four experiments conducted on the BNL Relativistic Heavy Ion Collider.
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I. INTRODUCTION

Interesting new results have been observed in heavy ion
collisions at the BNL Relativistic Heavy Ion Collider (RHIC),
a large fraction of which are based on transverse momentum
spectra. High transverse momenta seem to be suppressed [1,2],
but not in the same way for different hadron species [3].

However, any quantitative expression of a suppression or
an enhancement needs a reference, and here one usually refers
to proton-proton scattering. The first problem, therefore, is
to understand sufficiently well proton-proton scattering. This
is not trivial. Experimentally, it is difficult to really access
the full inelastic cross section; the interaction triggers tend to
miss a large fraction of the events. Theoretically, proton-proton
scattering is far from being fully understood, in particular
concerning particle production at moderate.

A second problem arises due to the fact that unexpected
observations in heavy ion collisions provide unnecessary
evidence for the formation of a quark-gluon plasma. It may be
a phenomenon already present in proton-nucleus scattering.
This was the main reason for studying not only gold-gold
(AuAu) but also deuteron-gold (dAu) collisions at RHIC
[4–8], which produced quite interesting results: the strong
high-pt suppression in AuAu seems to be absent in dAu, so
we have clearly a final state effect.

Many features of dAu seem to be qualitatively understood
when employing the saturation model [9–12], a recombination
model [13], an improved parton model [14–16], and a multi-
phase model [17]. But what is really missing is a global and
quantitative investigation: Can we understand All the data
presented so far by All the experiments, for pp and dAu,
in a single approach ? This also gives us the opportunity to
cross-check the different experiments, which is not so obvious
to do directly.

The purpose of this paper is to present a phenomenological
approach (EPOS)—based on the parton model but going
much beyond it—and to try to understand p the transverse
momentum results in pp and dAu scattering from all four
RHIC experiments. All calculations in this paper are based on
EPOS version 1.09.

II. IMPROVED PARTON MODEL WITH REMNANTS

The new approach we are going to present is called EPOS,
which stands for Energy-conserving quantum mechanical
multiple scattering approach, based on Partons (parton lad-
ders), Off-shell remnants, and Splitting of parton ladders. We
will explain the different items in the following discussion;
parton ladder splitting will be discussed in a later section.

One may consider the simple parton model to be the basis
of hadron-hadron interaction models at high energies. It is well
known that the inclusive cross section is given as a convolution
of two parton distribution functions with an elementary parton-
parton interaction cross section. The latter one is obtained
from perturbative QCD; the parton distributions are deduced
from deep inelastic scattering. Although these distributions
are taken as black boxes, one should not forget that they
represent a dynamic process, namely, the successive emission
of partons (initial state spacelike cascade), which have to be
considered in a complete picture. In addition, the produced
partons are generally off-shell, giving rise again to parton
emissions (final state timelike cascade). All this is sketched
in Fig. 1, in which we also indicate that we refer to this whole
structure as a “parton ladder,” with a corresponding simple
symbol, to simplify further discussion.

Actually our parton ladder is meant to contain two parts
[18]: the hard one, as discussed above, and a soft one,
which is a purely phenomenological object, parametrized
in Regge pole fashion. Several parameters, that determine
the parametrization of the soft elementary interaction (soft
Pomeron) are essentially fixed to get the pp cross sections
right. The pQCD parameters determining the hard ladders
(soft virtuality cutoff, K factor, parton emission cutoff, and
parton-hadron coupling) are fixed to provide a reasonable
parton distribution function (which we calculate, it is not
input!).

Still the picture is not complete, since so far we have
considered only two interacting partons, one from the pro-
jectile and one from the target. These partons leave behind
colored projectile and target remnants, so the picture is
more complicated than simply projectile/target deceleration.
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FIG. 1. Elementary parton-parton scattering: the hard scattering
in the middle is preceded by parton emissions (initial state spacelike
cascade); these partons being usually off-shell, they emit more partons
(final state timelike cascade). For all this we use a symbolic parton
ladder.

One may simply consider the remnants to be diquarks,
providing a string end, but this simple picture seems to be
excluded from the strange antibaryon results produced at the
CERN super proton synchrotron (SPS) [19].

We therefore adopt the following picture, as indicated in
Fig. 2: not only a quark but also a two-fold object takes
part directly in the interaction, being a quark-antiquark or a
quark-diquark, leaving behind a colorless remnant, which is
in general excited (off-shell). So we have finally three white
objects: the two off-shell remnants and the parton ladder
between the two active partons on either side (by parton
we mean quark, antiquark, diquark, or antidiquark). We also
refer to “inner contributions” (from parton ladders) and “outer
contributions” (from remnants), which reflect the fact that
the remnants produce particles mainly at large rapidities and
the parton ladders at central rapidities, see Fig. 3. Whereas the
outer contributions are essentially energy independent, apart
from a shift in rapidity, the inner contributions grows with
energy, central rapidities. But at RHIC energies, a substantial
remnant contribution remains at midrapidity.

We showed in Ref. [20] that the three-object picture as
discussed in this paper can solve the multi-strange baryon
problem of Ref. [19].

In practice, a couple of parameters determine remnant
properties. We assume the remnants to be off-shell with
probability pO , a mass distribution given as

prob ∝ M−2αO , (1)

within the kinematic allowed range of M, with parameter
values which are not necessarily the same for nondiffractive
and diffractive interactions (the latter ones defined as those
without parton ladders). We use currently for pO 0.75 (dif )
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FIG. 2. Complete picture, including remnants, which are an
important source of particle production at RHIC energies.
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FIG. 3. Inner contributions from the parton ladder (full lines) and
outer contributions from the remnants (dashed lines) to the rapidity
distribution of hadrons (artist’s view). LHC indicates energies reached
by the CERN Large Hadron Collider.

and 0.95 (nondif ), and for αO 0.75 (dif ) and 1.1 (nondif ).
Those excitation exponents may give rise to quite high mass
remnants; RHIC and SPS data seem to support this. High mass
remnants will be treated as strings.

Even inclusive measurements often require more informa-
tion than just inclusive cross sections, for example, via trigger
conditions. In any case, for detailed comparisons we need an
event generator, which obviously requires information about
exclusive cross sections (the widely used pQCD generators
are not event generators in this sense, they are generators of
inclusive spectra, and a Monte Carlo event is not a physical
event). This problem has been known for many years; the
solution is Gribov’s multiple scattering theory, which has been
employed by many authors. This formulation is equivalent to
using the eikonal formula to obtain exclusive cross sections
from knowledge of the inclusive one.

Recently we indicated inconsistencies in this approach,
proposing an “energy-conserving multiple scattering treat-
ment” [18]. The main idea is simple: in the case of multiple
scattering, when calculating partial cross sections for double,
triple, . . . scattering, one has to explicitly account for the fact
that the total energy has to be shared among the individual
elementary interactions.

A consistent quantum mechanical formulation of multiple
scattering requires consideration not only of the (open)
parton ladders, discussed so far, but also of closed ladders,
representing elastic scattering, see Fig. 4. Closed ladders do
not contribute to particle production, but they are crucial
since they affect substantially the calculations of partial cross

parton

ladder

parton

ladder

closedopen

FIG. 4. Two elements of the multiple scattering theory: open
ladders, representing inelastic interactions, and closed ladders,
representing elastic interactions.
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sections. Actually, closed ladders simply lead to large numbers
of interfering contributions for the same final state, all of which
have to be summed up to obtain the corresponding partial cross
sections. This multiple scattering approach, described in detail
in [18], allows us to compute partial cross sections, as, for ex-
ample, the cross section of having n parallel ladders involved,
with ladder end light cone momentum fractions x+

1 , x−
1 , . . . ,

x+
n , x−

n , and the corresponding transverse momenta �pt1
+, �pt1

−,
. . . , �ptn

+, �ptn
− (“+” and “−” refer to, respectively, projectile

and target side). It is a unique feature of our approach to
consider explicitly energy-momentum sharing at this level
(the “E” in the name EPOS). We can do the complicated
calculations of partial cross sections, since we fit the result of
a numerical calculation of a squared amplitude corresponding
to a (open) parton ladder of energy

√
s, using a simple form

αsβ , which allows us then to perform analytical calculations.
The partial cross sections are formulated in impact param-

eter (b) space, real cross sections (in mb) are obtained after
b integration. These partial cross sections can be interpreted
as probability distributions, enabling us to use Monte Carlo
techniques. Since we are dealing with multidimensional
probability distributions, we have to employ very sophisticated
Markov chain techniques to generate configurations.

Computing partial cross sections and generating the corre-
sponding configurations are only half the story. Suppose we
have a double scattering (two ladders) in pp scattering, with
ladder end momenta obtained as described above. How do we
obtain the corresponding partons which “make” the ladders,
and how do we finally obtain the hadrons?

Let us first discuss the generation of partons. This is based
on exactly the same formulas used to compute partial cross
sections, since all these formulas may serve as probability
distributions [18]. We obtain not only the probabilities for soft
versus hard scattering, but also the probability distribution for
parton generation in the case of hard scattering. Using the same
formulas for partial cross sections and parton generation is
again a unique feature of our approach. In other models, energy
sharing is only considered in the case of particle production,
not for partial cross sections.

Finally, we have to deal with the difficult question
of how these partons will be transformed into observable
hadrons. Lacking a fundamental understanding, we content
ourselves with a simple parametrization of hadron production,
employing the relativistic string model. It is believed that
the successive parton emission procedure provides finally a
longitudinal (one-dimensional) color field, and the relativistic
string is the most simple one-dimensional covariant object.
String fragmentation uses just some highly plausible symmetry
arguments, all the unknown details are hidden in a few simple
parameters. Technically, the procedure consists of two steps:
given the partons, strings are formed; then, these strings
“fragment” into hadrons. In the following, we sketch the main
ideas, for details see Ref. [18].

A string is a two-dimensional surface x(σ, τ ) in Minkowski
space. Postulating a simple (Nambu-Goto) action, one obtains
a simple wave equation, and the string x(σ, τ ) can be
expressed completely in terms of its initial velocity g(σ ) =
∂x/∂τ (σ, τ = 0). Here, we consider only strings with a
piecewise constant function g, which are called kinky strings.

So the string is characterized by a sequence of σ intervals
[σk, σk+1] and the corresponding constant values (say vk) of
g in these intervals. Such an interval with the corresponding
constant value of g is referred to as a kink.

Now we are in a position to map partons onto strings. A
parton ladder may be identified with sequences of partons of
the type q − g − g − ... − g − q̄, with soft “end partons” q
and q̄, and hard inner gluons g. The mapping is done in the
following way: we identify such a sequence with a kinky string
by requiring “parton = kink”, which means that we identify
the partons of the above sequence with the kinks of a kinky
string, such that the lengths of the σ intervals are given by
the parton energies, and the kink velocities are just the parton
velocities. As discussed earlier, the string evolution is then
completely given by these initial conditions [18], expressed in
terms of parton momenta.

Hadron production is finally realized via string breaking,
such that string fragments are identified with hadrons. Here,
we employ the so-called area law hypothesis: the string
breaks within an infinitesimal area dA on its surface with a
probability proportional to this area, dP = pBdA, where pB

is the fundamental parameter of the procedure. An elegant
realization is employed, in which we make use of the particular
dynamics of strings with piecewise constant initial conditions
[18].

Although longitudinal momenta are much more important
than transverse ones, the latter cannot be ignored. Suggested by
the uncertainty principle, a transverse momentum is generated
at each breaking, which means that four-vectors pt and
−pt are assigned to the string ends at both sides of the
break point. We choose the absolute value k = | �pt | of the
transverse momentum according to the distribution f (k) ∝
exp(−k/2p̄t ), with a parameter p̄t .

A string as a whole has some flavor, carried by the partons
at its two extremities. Additional flavor is created at each break
point in the form of a quark-antiquark or a diquark-antidiquark
pair of a certain flavor. The corresponding probabilities are
1 − pD and pD , the latter being a free parameter of the model.
We introduce a parameter pS , which gives the relative weight
of u to d to s flavor production as 1 : 1 : pS .

Having determined the break points and the associated
flavors, we can easily compute the four-momenta (and thus the
masses) and flavors of the string segments, which we identify
with corresponding hadrons or resonances.

As discussed above, there are four important fragmentation
parameters: the break probability (per unit space-time area)
pB , which determines whether a string breaks earlier or later;
the diquark break probability pD; the strange break probability
pS ; and the mean transverse momentum p̄t of a break, with
obvious consequences for baryon and strangeness production,
and the pt of the produced hadrons. We use three sets of these
parameters for the three types of strings: soft, kinky (hard)
and, remnant strings. We do not really use the full freedom of
these parameters, but one single set would not work if we are
interested in high precision. Surprisingly pS is 0.14 for soft
and 0.06 for kinky and remnant strings. Maybe this reflects the
fact that soft strings may have low masses, where strangeness
is suppressed, and which needs some compensation. The
parameter pD is 0.06 for soft and remnant strings and 0.09
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FIG. 5. Basic parton-parton interaction in nucleus-nucleus colli-
sions: a projectile parton always interacts with exactly one parton on
the other side either elastically (closed parton ladder) or inelastically
(open parton ladder).

for kinky strings. For pB , we use 0.53 (soft), 0.30 (kinky), and
0.77 (remnant).

III. SPLITTING OF PARTON LADDERS

Let us first consider very asymmetric nucleus-nucleus
collisions, such as proton-nucleus or deuteron-nucleus. The
formalism developed earlier for pp can be generalized to these
nuclear collisions, as long as one assumes that a projectile
parton always interacts with exactly one parton on the other
side, elastically or inelastically (realized via closed or open
parton ladders), see Fig. 5. We employ the same techniques as
those developed in the previous section. The calculations are
complicated and require sophisticated numerical techniques,
but they can be done. The corresponding results for dAu will
be discussed later.

In the case of protons (or deuterons) colliding with heavy
nuclei (such as gold), there is a complication that has to be
taken into account. Suppose an inelastic interaction involves
an open parton ladder, between a projectile and some target
parton. The fact that these two partons interact implies that they
are close in impact parameter (transverse coordinate). Since
we have a heavy target, many target partons are available, and
there is a good chance of finding one among them being close
in impact parameter to the two interacting partons. In this case,
it may be quite probable that a parton from the ladder interacts
with this second target parton, inelastically or elastically, as
shown in Fig. 6.

As mentioned earlier, “ladder” is a symbolic notation,
covering soft contributions as well as “real” perturbative parton

projectile
partons

target
partons

projectile
partons

target
partons

FIG. 6. Inelastic and elastic “rescattering” of a parton from the
parton ladder with a second target parton. We talk about (inelastic
and elastic) splitting of a parton ladder.

ladders. Even the latter ones are in general coupled to projectile
and target via soft pieces [18]. In the case of soft ones, we
still talk about partons, but they are nonperturbative partons.
We expect that ladder splitting occurs more likely in the soft
regions, and that the parallel legs after the splitting are more
likely soft.

Let us first discuss the effects of elastic splitting. The
squared amplitude for an elementary inelastic interaction
involving two partons with light cone momentum shares
x+ = 2p+/

√
s and x− = 2p−/

√
s can be parametrized quite

accurately as [18]

α (x+)β(x−)β, (2)

with two parameters α and β depending on the squared
energy s and the impact parameter b (

√
s is the proton-proton

c.m. system energy). Any addition of an elastic contribution
(closed ladder), be it in parallel or via splitting, provides an
interference term, which contributes negatively to (partial)
cross sections. So an additional elastic leg, even though it
does not affect particle production, provides screening. Model
calculations show that adding elastic splittings to the basic
diagrams modifies the corresponding squared amplitude as

α (x+)β(x−)β+ε, (3)

and therefore the whole effect can be summarized by a
simple positive exponent ε, which suppresses small light cone
momenta. So the existence of many target partons effectively
screens small x contributions, which agrees qualitatively with
the concept of saturation. But this is only part of the whole
story; several other aspects have to be considered.

An additional effect is the transport of transverse momen-
tum via an attached closed ladder, as shown in Fig. 7. Such
a transport we use already in the basic parton model, when
it comes to diffractive scattering, realized via a closed ladder.
Here, some transverse momentum transfer is needed to explain
the transverse momentum spectra of protons at large x (in the
diffractive region). In the case of diffractive target excitation,
the projectile gets simply a pt kick. We should have the same
phenomenon in the case of elastic splitting: the ladder parton
involved in the interaction should get a pt kick in the ame way
as the proton in diffractive scattering.

Let us turn to inelastic splitting, Fig. 8. Consider the
example shown in the figure. The upper part has only an
ordinary parton ladder, so we expect normal hadronization.
However, the lower part has two parallel ladders which are

projectile
partons

target
partons

pt

FIG. 7. Transport of transverse momentum via an attached closed
ladder.
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ �= j . We assume the form

ZT (i, j ) = z0 exp
( − b2

ij /2b0
2
)

+
∑

target nucleons
j ′ �=j

z′
0 exp

( − b2
ij ′/2b0

2
)
, (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

�pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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TABLE I. Best fit values for splitting parameters. Included in the
fit are data not shown in this paper.

Coefficient Corresponding variable Value

sM Minimum squared screening energy (25 GeV)2

wM Defines minimum for z′
0 6.000

wZ Global Z coefficient 0.080
wB Impact parameter width coefficient 1.160
aS Soft screening exponent 2.000
aH Hard screening exponent 1.000
aT Transverse momentum transport 0.025
aB Break parameter 0.070
aD Diquark break probability 0.110
aS Strange break probability 0.140
aP Average break transverse momentum 0.150

also compare the experimental energy dependence of cross
sections [22], hadron multiplicities [23], and (pseudo)rapidity
distributions [24,25] in pp or pp̄. The best fit parameters are
shown in Table I.

V. RESULTS FOR PROTON-PROTON

Ladder splitting is quite important for pp at very high ener-
gies, where cross sections and multiplicities are considerably
suppressed because of screening. At RHIC energies, however,
the effects are small: the total cross section is reduced by 5%,
the multiplicity by 10%. Concerning the transverse momentum
spectra to be discussed in detail in the following, the effect is
hardly visible.

When comparing charged particle pt spectra in pp from
the different RHIC experiments, one has to keep in mind
that STAR collaboration refers to non-single-diffractive (NSD)
events rather than inelastic ones. To demonstrate the difference
between the two, we show in Fig. 9 the UA5 [26] Collaboration
pseudorapidity distributions for NSD and inelastic events,
together with EPOS simulations. For the simulation of NSD
events, we use simply the same requirement as used in the
experiment (coincidence of charged particles in a forward and
backward pseudorapidity interval).

FIG. 9. Pseudorapidity distribution for inelastic and NSD events
in pp̄ collisions at 200 GeV. Lines are EPOS results; the points are
data [26]. Dotted line represents the inner contribution to the inelastic
distribution (many particles are coming from remnants).

FIG. 10. Ratio of NSDBBC differential yield to inelastic differen-
tial yield, in pp collisions, for pions (π ), kaons (K ), and protons ( p).

In the case of STAR, one could also define NSD as the
events accepted by the beam beam counter (BBC). What is
actually done is somewhat different. The differential cross
section according to BBC is multiplied by 30/26, in order to
correspond to what Pythia defines to be non-single-diffractive,
corresponding to 30 mb. Then, again based on Pythia, it is
argued that the inelastic differential yield for inelastic events
is obtained essentially (with a small correction at small pt ) by
multiplying by 30/42 (just the ratio of the cross sections), since
single-diffractive (SD) events do not contribute to particle
production. So, the originally measured differential yield and
the inelastic one differ essentially by a factor of 42/30 =
1.4. This is not quite what EPOS calculations provide when
simulating NSD events with the BBC trigger condition and
comparing with inelastic events. As seen in Fig. 10, the ratio
of the NSDBBC differential yield to the inelastic differential
yield, rather than being 1.4, differs considerably as a function
of pt and also depends on the particle species.

In Fig. 11, we show pt spectra (differential yields) for NSD
events, compared to STAR data [27], and for inelastic events,
compared to PHENIX data [6,28]. Simulation and data agree
within 15% (over 6 orders of magnitude).

When studying (later) dAu collisions, there will be
plenty of discussion concerning the pseudorapidity depen-
dence of certain effects. It is therefore necessary to first
check the pseudorapidity dependence of pt spectra for pp.

FIG. 11. Differential yields in pp collisions as a function of pt

for (from top to bottom) charged particles (over 2) for NSD events,
charged particles (over 2) for inelastic events, and neutral pions for
inelastic events. Lines are EPOS simulations; points are data from
STAR [27] and PHENIX [6,28]. The two agree within 15% (over six
orders of magnitude).
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FIG. 12. Inelastic differential yields in pp collisions as a function
of pt for (from top to bottom) charged particles (over 2) at η = 0 and
η = 1; negative particles at η = 2.2 and η = 3.2 (always displaced
by factors of 10). Lines are EPOS simulations; points are data [7].
We also plot (dashed) the simulation curve at η = 0, multiplied by
0.1, 0.01, and 0.001, to serve as reference.

In Fig. 12, we plot inelastic differential yields as a function of
pt , at different pseudorapidities; η = 0, η = 1, η = 2.2, and
η = 3.2. We show EPOS simulations compared to BRAHMS
data [7]. We also plot (dashed line) the simulation curve at
η = 0, multiplied by 0.1, 0.01, and 0.001, to have a reference
for the results at the other pseudorapidities. The spectra clearly
get softer with increasing η.

VI. RESULTS FOR DEUTERON-GOLD

All screening effects are linear in Z, so it is worthwhile to
first investigate Z. In very asymmetric collisions such as dAu,
the projectile Z is essentially zero, whereas the target Z differs
considerably from zero. As shown in Fig. 13 (and obvious
from the definition), ZT increases linearly with the number of
collisions. So Z is essentially a centrality measure. In Fig. 14,
we show the Z distribution for the different centrality classes.
In this way, one understands easily how the different centrality
classes are affected by the splitting effects.

In the following, we define centrality via the impact param-
eter variable. A more correct definition (when comparing with
experiments) via multiplicities in given rapidity intervals has
been tested and gives the same results.

FIG. 13. Target Z as a function of centrality, expressed in terms
of the number of binary collisions, for dAu.

FIG. 14. Z distribution for different centrality classes.

Although we are mainly interested here in transverse
momentum spectra, we still show first of all the pseudorapidity
spectra, which finally determine the normalization of the
pt spectra. In Fig. 15, we show pseudorapidity spectra in
minimum bias dAu collisions: EPOS simulations, compared to
data from PHOBOS [29], STAR [4], and BRAHMS [30]. We
also show different contributions to the simulated distribution.
We distinguish inner and outer (projectile and target) contri-
butions, where the outer contributions are meant to contain the
multiple ladders, originating from ladder splittings, treated in
a collective way, as discussed above. The inner contribution
comes from ordinary ladders in the middle. The asymmetry of
the distribution is clearly due to the target remnant contribution
(the projectile contribution, not shown, is very small). In
Figs. 16 and 17, we show pseudorapidity spectra for central
and peripheral dAu collisions.

Let us now turn to pt spectra. One of the first observations
concerning pt spectra in dAu collisions was the fact that not
only does the nuclear modification factor show a nontrivial
behavior, but also this behavior seems to be strongly pseudo-
rapidity dependent, even when varying η by only one unit. We
will investigate this question in the following discussion.

In Fig. 18, we show transverse momentum spectra of
charged particles in dAu collisions at different central-
ities and at different pseudorapidities. The four figures
represent minimum bias, central (0%–20%), mid-central
(20%–40%), and peripheral (40%–100%) collisions. For
each figure, spectra for four pseudorapidity intervals are

FIG. 15. Pseudorapidity spectra of charged particles in minimum
bias dAu collisions. Lines are EPOS simulations; points are data
from PHOBOS [29] (circles), STAR [4] (triangles), BRAHMS [30]
(squares). We also show the inner and outer target contributions to
the simulated distribution.
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FIG. 16. Pseudorapidity spectra of charged particles for central
dAu collisions. Solid lines are EPOS simulations for 0%–20%; dashed
lines, for 0%–30%. Points are data from PHOBOS [31] (0%–20%,
circles), STAR [4] (0%–20%, triangles), BRAHMS [30] (0%–30%,
squares).

shown: [−1,−0.5], [−0.5, 0], [0, 0.5], and [0.5, 1]. We sim-
ply refer to the corresponding mean values, η = −0.75, η =
−0.25, η = 0.25, and η = 0.75. For better visibility, the
different curves have been displaced by factors of 10. Solid
lines are EPOS simulations, points are data [4], both agree
within 10%–20%. Although looking directly at spectra does
not really allow us to see systematic differences between the
different curves, it is still useful to first check that the absolute
curves agree, before investigating ratios.

To observe any anomalous behavior, one usually plots
ratios, such as the nuclear modification factor (ratio RAA

of the nucleus-nucleus spectrum to the proton-proton result,
divided by the number of binary collisions). The disadvantage
is that the corresponding pp spectrum has to be known, with
a sufficient precision. An alternative procedure is the use of
ratios Rcp of central to peripheral results, each divided by the
coresponding number of binary collisions. In Fig. 19, we show
the Rcp ratios at the four pseudorapidities used before. Here,
central refers to 0%–20% and peripheral to 40–100%. We
also show the corresponding EPOS results, with parton ladder
splitting turned off. These curves are cut off at pt = 3 GeV/c,
to avoid the strong statistical fluctuations that spoil the figure.

FIG. 17. Pseudorapidity spectra of charged particles for periph-
eral dAu collisions. Solid lines are EPOS simulations for 40%–100%;
dashed lines, for 60%–80%. Points are data from PHOBOS [31]
(60%–80%, circles), STAR [4] (40%–100%, triangles), BRAHMS
[30] (60%–80%, squares).

The no-parton-ladder-splitting curve stays well below 1 in the
shown range. It will finally reach 1 at large pt . The full EPOS
simulations show quite a different behavior; Rcp increases
strongly between 1 and 2 GeV/c, to stay constant (or decrease)
beyond. The statistical fluctuations do not really allow very
precise predictions beyond 4 GeV/c. The strong increase
between 1 and 2 GeV/c is due to collective hadronization on the
target side, which leads to an increased transverse momentum
production. As seen is Fig. 15, target-side hadronization
extends even to forward pseudorapidities, so it is quite visible
in the whole η range [−1,1]. The effect is simply somewhat
stronger at backward compared to forward rapidity, since target
hadronization contributes more. But the difference is not very
big. The increase of Rcp with pt is partly also due to the
momentum transfer from the elastic splitting, which should
affect equally backward and forward pseudorapidities. The
variation of the shape of Rcp with pseudorapidity is quite
small; the main modification is actually an overall factor due
to the fact that the particle density increases toward smaller
pseudorapidities, as seen from Fig. 15.

A direct way to investigate the pseudorapidity dependence
of spectra is provided by the ratio of spectra at backward to
forward pseudorapidities, like η = −0.75/ η = 0.75, as shown
in Fig. 20. Here, one observes a slight increase between 0 and
2 GeV/c. This means that the Rcp at backward pseudorapidity
increases a bit more than the one at forward pseudorapidity,
which we understand since there is somewhat more target side
collective hadronization at backward pseudorapidity.

We now consider an even larger pseudorapidity variation:
we investigate how the nuclear modification factors vary in
the pseudorapidity range 0 to 3.2. Before comparing them to
data, we show the results of full EPOS simulations, as well
as those with parton ladder splitting turned off. In Fig. 21,
we show the nuclear modification factors for charged particles
in minimum bias dAu collisions at different pseudorapidities.
Whereas the no-splitting curves hardly change with pt and
decrease with pseudorapidity, the full calculations show, of
course, the same decrease with pseudorapidity; but all curves
increase substantially with pt between 1 and 3 GeV/c. This
confirms the observation made earlier by studying the variation
in the η range −1 to 1.

In the following, we will compare the simulations with
data from all four RHIC experiments. In Fig. 22, we collect all
published data on charged particle nuclear modification factors
in minimum bias dAu collisions at (or close to) η = 0, together
with the corresponding simulations. We show minimum bias
results at η = 0 from STAR [5], at η = 0.4 from PHOBOS [8],
0%–88% centrality results at η = 0 from PHENIX [6], and
minimum bias data at η = 0 from BRAHMS [7]. We also show
minimum bias EPOS simulations at η = 0 and η = 0.4, not
feed-down corrected minimum bias simulations, and 0%–88%
centrality results at η = 0. We first of all observe that the
different simulation results are quite close to each other;
so changing slightly the pseudorapidity, using the centrality
definition, or making feed down corrections does not affect
the final result too much. The variation in the experimental
data is much larger. On the upper end, we have the STAR
data; but based on the above discussion on pp results, we
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FIG. 18. Transverse momentum spectra of charged particles in dAu collisions at different centralities and at different pseudorapidities.
The four figures represent minimum bias, central (0%–20%), midcentral (20%–40%), and peripheral (40%–100%) collisions. For each figure,
from top to bottom: η = −0.75, η = −0.25, η = 0.25, η = 0.75. Lines are EPOS simulations; points are data [4]. Different curves have been
displaced by factors of 10.

expect that the pp reference spectrum is 10%–20% too low,
which means RdAu is 10%–20% too high. The corresponding
reduction would bring the STAR data down to the EPOS
simulation curve (full line), and they would agree with the
PHENIX, and the PHOBOS data. BRAHMS is on the lower

end, but within the error bars compatible with the simulation
curve.

In Fig. 23, we consider charged particle nuclear mod-
ification factors in minimum bias dAu collisions at (or
close to) η = 1, together with the corresponding simulations.

FIG. 19. Rcp ratios for charged particles at
different pseudorapidities. Solid lines are EPOS
simulations; points are data [4]. Dotted lines are
EPOS simulations with parton ladder splitting
turned off.
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FIG. 20. Ratio of charged particle spectra at backward to forward
pseudorapidities (η = −0.75/η = 0.75), in minimum bias dAu col-
lisions. Solid line is EPOS simulation; points are data [4]. Dotted line
is EPOS simulation, with parton ladder splitting turned off.

We show minimum bias data at η = 0.8 from PHOBOS [8]
and at η = 1 from BRAHMS [7]. We also show minimum bias
EPOS simulations at η = 1 and η = 0.8; they are very close
to each other. The data are somewhat lower, but the curves
are within the error bars. A systematic difference may again
be due to the pp reference. To investigate this, we also plot a
“mixed” RdAu: the nuclear spectrum is taken from BRAHMS,
but we use the EPOS pp reference. The result (squares) now
exceeds the simulation curve.

In Fig. 24, we finally compare EPOS simulations with
data from BRAHMS [7] at η = 2.2 and η = 3.2. Data and
simulations agree quite well.

VII. SUMMARY

In this paper, we presented a phenomenological approach,
called EPOS, that is based on the parton model but goes much
beyond it by considering elastic and inelastic parton ladder
splitting.

The main effect (at least concerning the observables
investigated in this paper) is due to the fact that inelastic
splitting (bifurcation of parton ladders) leads to a modified
hadronization process, a “collective hadronization” of mul-

FIG. 21. Nuclear modification factors RdAu for charged particles
(C/2, positive plus negative particles over 2) or negative particles (C-)
in minimum bias dAu collisions, at different pseudorapidities. Solid
lines are full EPOS simulations; dotted lines are EPOS with parton
ladder splitting turned off.

FIG. 22. Nuclear modification factors RdAu for charged particles
in minimum bias dAu collisions at (or close to) η = 0. Lines are full
EPOS simulations: minimum bias at η = 0 (full), at η = 0.4 (dashed-
dotted), not feed-down corrected (dotted), 0%–88% centrality, at
η = 0 (dashed). Points are minimum bias data at η = 0 from STAR
[5] (rhombs), at η = 0.4 from PHOBOS [8] (squares), 0%–88%
centrality data at η = 0 from PHENIX [6] (circles), and minimum
bias results at η = 0 from BRAHMS [7] (triangles).

tiple, parallel parton ladders, on the target side, in the case
of dAu collisions. This is the equivalent of string fusion, if
one uses the language of strings. But contrary to the usual
string fusion picture, here we do not have complete ladders
that behave collectively, but only the bifurcated ones on the
target side.

Concerning pt spectra, the main effect of collective
hadronization is a pt broadening. This is certainly what is
needed; but real evidence for our picture can only come from a
very detailed comparison with all corresponding data currently
available. For this purpose, we considered all published
nuclear modification factor data concerning charged particles,
from all four RHIC experiments. We investigated in detail

FIG. 23. Nuclear modification factors RdAu for charged particles
in minimum bias dAu collisions at (or close to) η = 1. Lines are
full EPOS simulations: minimum bias at η = 1 (full), at η = 0.8
(dashed). Points are minimum bias data at η = 0.8 from PHOBOS [8]
(rhombs), at η = 1 from BRAHMS [7] (circles). Squares represent
RdAu calculated from the BRAHMS dAu pt spectrum and the pp
simulation result.
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FIG. 24. Nuclear modification factors RdAu for negative particles in minimum bias dAu collisions at η = 2.2 (left) and η = 3.2 (right).
Lines are full EPOS simulations; points are data from BRAHMS [7].

the rapidity dependence of nuclear effects, and we found a
slightly decreasing broadening with increasing pseudorapidity,
in perfect agreement with the data.
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