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High-resolution transmission measurements for 54Cr+n
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Neutron total cross-section measurements on 54Cr up to a neutron energy of 2 MeV have been analyzed
to deduce resonance parameters as well as spins and parities. Neutron strength functions have been deduced,
based on data in the energy range 20–1000 keV, for s-, p-, and d-wave interactions and, in units of (10−4), are
2.8±0.9, 0.23±0.06, and 4.4±0.7, respectively. Corresponding level densities in units of keV−1are 0.025±0.003,
0.032±0.003, and 0.107±0.006, respectively. The distribution of nearest-neighbor spacings for s waves has been
compared to Poisson and Wigner predictions for both 54Cr and 52Cr. Hints are seen of greater chaotic behavior
in the case of the closed-neutron-shell 52Cr and of regular dynamics for 54Cr, suggestive of changes in chaoticity
of nuclear dynamics with shell closure.
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I. INTRODUCTION

Chromium has four stable isotopes (50, 52, 53, and 54)
with respective percentage abundances (4.345, 83.789, 9.501,
and 2.365). Neutron transmission measurements on all these
isotopes have been performed at the Oak Ridge Electron
Linear Accelerator (ORELA). Results for 52Cr and 54Cr, based
on measurements performed at the 80-m flight path, were
previously reported [1] in an investigation of the possible
parity dependence of level densities at excitations as high
as approximately 1 MeV. Oxide samples were used in both
cases. These measurements represented a significant increase
in energy resolution over previous studies, more than doubling
the energy range of the analysis. This resulted in a notable
revision of the strength function and level density values for s

and p waves. First determinations [2,3] of the s-wave strength,
based on low-resolution measurements up to a neutron energy
of 400 keV, are well below that predicted by Mughabghab
et al. [4] using a deformed optical model calculation. However,
the work of Smith et al. [5] yielded predictions of the
chromium s-wave strength function from spherical optical-,
dispersive spherical optical-, and vibrational coupled-channels
model calculations that were in reasonable agreement with
Mughabghab’s predictions. A summary of observed neutron
resonance energies and widths prior to Agrawal et al. [1] listed
only 31 total resonances up to a neutron energy of 400 keV [4].
The first ORELA data from the 80-m flight path extended the
analysis to 900 keV and a total of 15 s-wave resonances and 95
non-s-wave resonances were observed in 54Cr. In the present
study we have identified 34 additional resonances for a total
of 144 resonances (s: 23; p: 28; d: 93) in the energy range
20–950 keV.

The lightest and heaviest stable isotopes of chromium both
differ by two neutrons from the magic number of 28 in 52Cr.
This provides for possible correlations of resonance properties
with neutron shell structure near closed shells. In particular,
any significant differences in level spacing or resonance width
distributions could be suggestive of dynamically different

systems. Their mass numbers place the chromium isotopes
near the peak of the 3S giant resonance in a plot of the
s-wave neutron strength versus mass number and in the
minimum between the 2P and 3P peaks in a similar plot of
p-wave neutron strength functions. This fortuity enhances the
likelihood of obtaining a more complete set of pure s-wave
resonances in a study of the present type. This in turn buttresses
considerations of possible signatures of chaotic behavior in
complex quantum systems in studies of individual nuclei as
opposed to considerations of a whole body of available nuclear
data [6].

The characteristics most easily and traditionally deduced
from high-resolution neutron total cross-section measurements
include the identification of the nuclear energy levels populated
in the compound nucleus and the distributions of these levels
and their associated widths. One of the measures used for
the levels distribution is the nearest-neighbor spacing (NNS).
An often-observed characteristic of the NNS distribution for
nuclear states is spectral nonuniformity. This has served as a
test of the ability of the Gaussian orthogonal ensemble (GOE)
of asymptotically large real symmetric random matrices to
predict such fluctuations, independent of the dynamics giving
rise to the energy levels. In the early days these comparisons
were through pure (same Jπ ) and complete (no missing levels)
sequences of nuclear levels of individual nuclei [7]. As seen
in that case, and generally, those NNS that are describable
by random matrix theory (RMT) are characterized by level
repulsion and spectral rigidity. The former reflects a tendency
of the levels to avoid clustering and the latter a tendency of the
spacings to be tightly distributed about their means, both im-
plying correlations between levels. More recently, with mount-
ing evidence that the GOE fluctuations are to be expected under
very general conditions, and in view of the GOE taking into
account no specific properties of the nuclear Hamiltonian, tests
involving broad collections of levels, from many nuclei and
several reaction types, still with the pure and complete require-
ments, have been used to further establish the applicability of
the GOE, with greater statistical significance [8].
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Wigner’s pioneering work [9] in relating RMT to departures
of nuclear energy levels from spectral uniformity has seen
renewed and ongoing interest over the ensuing decades
as similar patterns of behavior are seen in other complex
systems such as Rydberg levels of an H atom in a magnetic
field [10], elastomechanical eigenfrequencies of irregularly
shaped quartz blocks [11], fluctuations of conductance of a
small wire with magnetic field [12], and even in classically
chaotic quantum systems with few degrees of freedom. In
fact, the maturing of the field of RMT, with its attendant
successes, has led to the expectation that fluctuations in generic
quantum systems that follow RMT statistics of a suitably
chosen ensemble result from an underlying dynamics that
is chaotic. One expects, conversely, that when the classical
dynamics is regular and integrable, the level statistics will
follow the Poisson type. We raise the question of whether
we can use the NNS distribution of an individual nuclide
to reflect the underlying dynamics of a nuclear system. In
pursuit of this question we have data for isotopes of chromium
with neutron numbers at and beyond the magic number of
28. In the language of historical nuclear structure models,
one expects that the internal dynamics changes with shell
closure. Comparing the NNS distributions for these isotopes to
GOE and Poisson predictions could provide answers. This is
explored in the analysis to see if the distribution changes with
shell closure. In Sec. II, we provide the experimental details,
and in Sec. III we present the analysis of the data. In Secs. IV
and V we describe the results and the extent to which neutron
total cross section data on individual nuclei can signal chaotic
nuclear dynamics.

II. EXPERIMENT

Neutron transmission measurements on a sample of
54Cr2O3 were performed at the ORELA [13,14] facility using
the 200-m flight path. The 140-MeV pulsed electron beam pro-
vided 4-nsec neutron bursts with a continuous energy spectrum
produced by the photoneutron process in the tantalum target
and subsequent moderation in the 15-cm-diameter, beryllium-
clad, water-filled target housing. Measurements employed
the time-of-flight technique, using neutron pulses from the
ORELA. The neutron energy resolution function is expressible
by a combination in quadrature of the fluctuations in flight-path
length and the burst width and has been determined to have a
Gaussian shape with a full width at half maximum dE given
in the present measurements by(

dE

E

)
=

√
4 + 30E(MeV) × 10−4.

Collimators were used both before and after the sample to
select neutrons from only the Ta target. Overlap neutrons were
eliminated by a 0.3-g/cm2 10B filter. Gamma rays from the
Ta target were reduced by a 1.095-cm-thick uranium filter
16.5 cm in diameter. A 0.712-cm-thick Pb filter, placed 5 m
from the neutron source, covered the entire Ta target. Neutron
detection occurred 201.568 m from the Ta target.

The oxide sample had a weight of 19.9615 g with
percentage abundances of 95.40, 3.09, 0.18, and 1.33 of 54Cr,
52Cr, 50Cr, and 53Cr, respectively. The inverse Cr thickness of

the 54Cr2O3 sample was 18.48 b/atom. The measurements did
not provide for compensation for the oxygen in the sample,
but correction was made for its presence, in the analysis,
as discussed below. The sample was cycled, under computer
control, into and out of the beam at a position 9 m from the Ta
target with a cycle time of approximately 20 min and 14 min,
respectively. At this position, the neutron beam was collimated
to a diameter of 2.38 cm. Data were “dumped” daily and these
individual runs were combined and the resulting data were
corrected for dead time. A neutron monitor was placed in the
neutron beam of another flight path to permit compensation
for fluctuations in the neutron production rate during the 7-day
period over which 144 h of data were collected. Neutrons
were detected from the proton recoils as they traversed a
2.54-cm thickness of a 5.2 cm × 8.9 cm piece of NE110
scintillator. With the scintillator optically coupled to two RCA
8854 photomultiplier tubes the efficiency for the detection of
neutrons up to 2 MeV was approximately 70%. Additional
experimental details relating to the ORELA facility and its use
in measuring high-resolution neutron tranmissions are found in
technical reports [15]. More detailed discussions of corrections
for various backgrounds in ORELA data are discussed in
Ref. [16]. After these corrections, the transmission was com-
puted from the sample-in-to-sample-out ratio and normalized
to the corresponding neutron monitor counts. Before beginning
the resonance analysis, the transmission data were averaged to
reduce the number of data points in regions absent of structure
and thus speed calculations.

III. ANALYSIS

Because the oxygen in the sample was not compensated in
the transmission measurements, its presence in the computed
cross section is unmistakable at those energies where large
resonances occur in oxygen, as seen at 434 keV in Fig. 1. We
have compensated for the presence of oxygen, in the analysis,
by including in the parameter file resonance parameters for

FIG. 1. Total neutron cross section for n+54Cr. The solid line
gives the R-matrix representation of the data based on our deduced
resonance parameters.
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all the spin groups and resonances necessary to describe the
total cross section of 16O. These resonance parameters have
been accurately determined [17] from an R-matrix analysis
of a careful measurement of the 16O total cross section and
held fixed during the R-matrix analysis we used to deduce the
energies and widths of the resonances due to 54Cr. Despite
the high quality of the oxygen measurement and analysis, this
method of compensation increases the uncertainty of deduced
54Cr resonance widths but only in the vicinity of significant
oxygen resonances.

The averaged transmission data were analyzed using the
Reich-Moore formulation of the R-matrix theory [18]. The
full character of the data cannot be represented from just
the R-matrix parameters of resonances that are visible in
the energy region of analysis. This is due to the fact that
other unobserved resonances outside the region bear an
imprint on the spectrum. These so-called external resonances
provide a general background contribution and also impact the
resonance-resonance interference asymmetry. These contribu-
tions have been parametrized, for each spin group, through
a logarithmic R function that captures these background and
interference influences while at the same time permitting ease
of comparison with predictions of an optical model. It is also
possible to use so-called dummy resonances that individually
provide for the collective influence of many external reso-
nances. The resonance set for the oxygen resonances [17], in
fact, uses this approach and are a part of the total parameter file
in the present study. For representing the influences of external
resonances, we use the logarithmic R-function description for
chromium and dummy resonances for oxygen.

We have used a fixed channel radius of 5.48 fm for
all the chromium spin groups and 3.79 fm for oxygen. In
the fitting process calculated transmission resonances are
resolution broadened and converted to cross section for
Doppler broadening before comparison with the data. An
effective nuclear temperature of 300 K has been used in the
Doppler broadening. From Fig. 1 we see a number of relatively
broad resonances having an asymmetry characterizing the
s-wave interaction. These are generally unambiguous by their
peak height, width and shape, but in some instances broad
p1/2 resonances may appear as s waves because of their same
peak height, as in the case of the broad resonance just below
400 keV in Fig. 1. A notable s-wave resonance is seen at
600 keV, whose width of 100 keV is six times that of any other
54Cr resonance in the entire spectrum.

We have partitioned all resonances into spin and parity
groups up to and including 5

2

+
on the basis of χ2 comparisons

of fitted results for different assumed Jπ . This has been
accomplished through the spin group variation feature of
the code RSAP [19] that invokes the program SAMMY [18]
sequentially for each assumed spin and parity. Although there
may be ambiguity in the spin assignment of narrow resonances
within a p- or d-wave parity group, the parity assignments are
more definite. This is a result of the very different shapes
of resonances having differing orbital angular momentum.
Although s1/2 and p1/2 resonances have the same maximum
peak height, their shapes (or asymmetries) can be and usually
are very different. The same can be said for p3/2 and d3/2.
This is illustrated later, for s- and p-wave resonances, in

discussions regarding the purity of our s-wave sample. A more
complete description of the R-matrix fitting of neutron total
cross-section data from ORELA is seen in Ref. [20], Sec. III
B, and Fig. 4 in particular.

IV. RESULTS

We have observed a total of 330 resonances up to a neutron
energy of 2 MeV. Previous transmission studies did not resolve
resonances above 900 keV. Agrawal et al. [1] reported 110
resonances up to that energy. The present analysis reveals 131
over the same energy range. The present work has sufficient
resolution to enable distinction between p-wave and d-wave
resonances. The work of Agrawal et al., however, treated
non-s-wave resonances as being due to p-wave interactions
and speculated on a parity dependence in level densities. We
find that approximately 70% of the resonances observed up to
900 keV actually result from d-wave interactions. We thus
present average results (strength functions and level densities)
for s-, p-, and d-wave interactions. Due to the decreased
certainty of our parity groupings above 1 MeV, we report the
results of our analysis for both of these upper energy limits,
with the 2 MeV results in braces.

A. s waves

We observed a total of 25 {55} resonances over the
respective energy ranges, compared to the 15 seen by Agrawal
et al. up to 900 keV. These resonances are clearly distinguished
by their asymmetry resulting from resonance-resonance and
resonance-potential scattering interference. Examples are seen
in Fig. 1 at 120, 280, and 330 keV. Small s-wave resonances
in proximity to larger ones, like those at 350 and 670 keV,
manifest a different asymmetry due to resonance-resonance
interference. The s-wave group is thus the purest of the three.

Histogram plots of the cumulative reduced neutron width
and the cumulative number of resonances, with linear fits,
are shown in Fig. 2. The slopes of linear fits to these plots
represent the strength function and level density, respectively.

FIG. 2. Cumulative reduced widths and cumulative number of
resonances for n+54Cr s waves. The slopes represent the s-wave
strength and level density, respectively.
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One can see from the strength plot that somewhat different
slopes obtain for different energy segments, being relatively
low (∼2.0 × 10−4) in the ranges 0–600 keV and 1250–
2000 keV and ∼3.0 × 10−4 in the intervening region. Because
these values are within the uncertainties, we have shown only
the fit to the entire energy range. Despite the pronounced
increase in cumulative reduced width near 600 keV, a doorway
state hypothesis does not seem justified when viewed in the
context of the whole. In fact the values, over either of the energy
ranges, are consistent with that of Agrawal et al. despite the
much smaller number of observed resonances in that study.
The strength functions for the 25 {55} resonances (in units of
10−4) are 2.8±0.9 {2.5±0.5} and the level densities (in units
of keV−1) are 0.025±0.003 {0.027±0.002}. The presented
uncertainties are not associated with missing or misassigned
levels but are reflective of the statistical errors associated with
the determination of the mean reduced neutron width and the
mean level spacing [21]. The values of each parameter, over the
two energy ranges, are within uncertainties and least-squares
fits over the two energy ranges are almost indistinguish-
able, for both plots. Although the Jπ assignments above
1000 keV are less certain than those below, our conclusions
would not be changed if only considering the more assured Jπ

values. Due to the resonances at 434, 667, 881, and 889 keV
that were not reported by Agrawal et al., our level density,
based on resonances up to 1000 keV, is 32% greater. The
value reported by Mughabghab, based on resonances up to
400 keV, was lower than Agrawal by 58%. Both of these
differences are greater than the reported uncertainties. The
resonance parameters for indentified s-waves are shown in
Table I. Resonance parameters for other partial waves will be
transmitted to the National Nuclear Data Center at Brookhaven
National Laboratory.

TABLE I. s-wave resonance parameters (energy and neutron
width) deduced from neutron total cross sections for n+54Cr. [In
our notation 22.987(5) means 22.987±0.005.]

En (keV) �n (keV) En (keV) �n (keV) En (keV) �n (keV)

22.987(5) 0.56(2) 902.8(5) 0.23(3) 1392.5(9) 0.27(5)
119.23(3) 5.09(4) 908.0(5) 3.0(2) 1429(1) 0.7(1)
131.46(4) 0.31(1) 915.6(5) 0.22(3) 1434(1) 1.9(2)
176.46(5) 2.06(2) 941.6(5) 0.33(5) 1448(1) 0.43(8)
283.4(1) 11.1(1) 961.0(6) 1.0(1) 1453(1) 0.9(1)
329.6(1) 12.3(1) 977.7(6) 10.6(3) 1491(1) 25(1)
352.8(1) 0.44(2) 1003.9(6) 38.3(7) 1510(1) 0.7(1)
434.4(2) 12.0(2) 1037.5(6) 26.0(5) 1523(1) 1.1(2)
487.6(2) 18.1(2) 1065.9(6) 0.46(6) 1562(1) 1.3(2)
567.8(3) 0.47(6) 1091.7(7) 0.29(4) 1718(1) 1.6(3)
596.3(3) 102(1) 1107.5(7) 0.21(4) 1764(1) 4.8(8)
663.1(3) 3.9(1) 1117.1(7) 2.4(2) 1794(1) 4.0(6)
667.5(3) 2.1(2) 1140.3(7) 0.31(6) 1801(1) 1.1(2)
741.0(4) 3.4(2) 1161.3(7) 55(1) 1858(1) 28(3)
753.8(4) 5.2(2) 1231.4(8) 6.6(4) 1902.9(9) 1.1(2)
793.0(4) 0.10(2) 1274.0(8) 0.18(4) 1903(1) 18(2)
811.6(4) 0.39(4) 1305.8(9) 5.6(4) 1930(2) 3.4(6)
881.2(5) 0.10(2) 1369.5(9) 14.2(7) 1989(2) 6.6(9)
889.8(5) 1.07(8)

FIG. 3. Cumulative reduced widths and cumulative number of
resonances for n+54Cr p waves. The slope of the former gives (2λ

+ 1) times the strength and that of the latter gives the level density.
Marked changes are noted in the strength and level density at a neutron
energy of 1 MeV.

B. p waves

Agreement with earlier results ends with the discussion of
s waves, due to Agrawal’s previously mentioned assignment
of negative parity to all other resonances. In the present
analysis there is sufficient difference, at these energies, in
the character of the resonance-potential scattering interference
that, for p and d waves, distinctive asymmetry differences
result. As a result we have identified 31 {72} resonances
that correspond to p-wave interaction. In Fig. 3 it is clear
that a sharp, sixfold increase in the cumulative reduced width
occurs at 1000 keV. The line segments represent least-squares
fits to the data in the two corresponding energy ranges. The
strengths corresponding to these lines can be deduced from
the slopes, reduced by the factor 2λ + 1, where λ is the orbital
angular momentum quantum number. Unlike the case for s

waves where there are several step increases in the cumulative
reduced neutron width but yet the average results are almost
the same for the two energy ranges, the p waves present a
sustained increase of strength, possibly related to intermediate
nuclear structure in the 55Cr nucleus at this excitation energy.
Agrawal reported a similar dramatic increase in strength, but
with the step occurring at 350 keV instead of the 1000 keV
observed here. However, the similarity must be accidental
because the former work lumped all non-s-wave resonances in
the p-wave category. The p-wave strength function deduced
from these resonances accords with expectations based on
spherical optical model predictions [22]. 54Cr is in the mass
region where the s-wave strengths are near a maximum of
3–4 × 10−4 and the p-wave strengths are a factor of 10
smaller. Our values of 0.23±0.06 {0.89±0.16}×10−4 differ
from the s-wave values by factors of 12 and 3, respectively.
The level densities for p-waves are 0.032±0.003 {0.040±
0.002} keV−1. From Fig. 3 it can be seen that the slope of the
level density plot over the energy range 1000 to 2000 keV is
double that up to 1000 keV, the abrupt change occurring at
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FIG. 4. R-matrix fit to a region containing s- and p-wave
resonances at the experimental detection limit, showing that the
s-wave sample does not contain spurious p waves.

the same energy as in the strength plot. This may strengthen
support for nuclear structure effects for the p-wave interaction.

It is worthy of note that the numbers of s- and p-wave
resonances do not accord with statistical expectations. One
explanation is that the s-wave sample has been poisoned with
misassigned p waves. For the p:s ratio to accord with the
expected 3:1 statistical ratio, 11 of the s-wave assignments
would have to be wrong, assuming all d-wave assignments
are correct. The unlikelihood of this “poisoning” hypothesis
is seen in Fig. 4, where we show a region containing both s-
and p-wave resonances that are among the smallest we can
observe. The R-matrix fits [see inset] corresponding to s- and
p-wave assumptions for the resonance at 882 keV show clearly
by the solid and dashed lines, respectively, that if we can see
a resonance we can conclusively distinguish its parity. It is
clear that this s-wave and the p-wave resonance at 866 keV,
which are at our detection limit, require different resonance
asymmetries to fit the data. This increases the confidence that
the s-wave population is pure. The other possible explanation
for the p:s ratio is that if we have missed some s-wave
resonances, we have missed considerably more p waves.
That possibility has been explored using the Fuketa-Harvey
method [23] of estimating missed resonances in neutron total
cross-section data, as applied in Ref. [24]. We do find more
missed p waves but not enough more to bring the ratio to the
expected value. We find at most 2 s waves and 9 p waves could
have been missed, corresponding to a p:s ratio of 1.5:1. The
impact of missed resonances on the calculated strength is less
than 0.5% for the p-wave strength and negligible for s waves.
The impact upon level spacings is 8% for s waves and 23%
for p waves.

C. d waves

The d-wave interaction has the greatest strength of the three
partial waves in addition to revealing more resonances than the
other two interactions combined, having totals of 97 {203}.
The trends for the cumulative number of resonances in the
two energy ranges are indistinguishable so only that for the

FIG. 5. Cumulative reduced widths and cumulative number of
resonances for n+54Cr d waves. The slope of the former gives
(2λ + 1) times the strength and that of the latter gives the d-wave
level density.

entire energy range is plotted in Fig. 5. The level densities
over the defined energy ranges are 0.107±0.006 {0.105±
0.004} keV−1. The linearity of level density over the entire
range gives added confidence in the assignment of resonances
to that spin group. For the cumulative reduced width plot we
have shown separate least squares fits to the two energy regions
to show the diminution of strength above 1000 keV, at the point
where we saw a notable increase of strength for the p-wave
group over that energy range. As in the case of p waves,
the strength function is deduced from the slope, reduced by
the factor 2λ + 1, where λ is the orbital angular momentum
quantum number. The evaluated d-wave strengths are 4.4±0.7
{3.8±0.4}×10−4, in agreement with Mughabghab [22] and
50% greater than the strength for s waves.

D. R functions

In addition to the level spacings and strength functions,
the resonance analysis enables us to deduce the parameters
of the external R functions. This is possible through fitting
of the resonance-potential scattering interferences for each
individual partial wave. This interference is manifest in the
resonance asymmetry for the larger resonances. In general
the extent of asymmetry diminishes with increasing angular
momentum quantum number. The R function, for a given
partial wave, is a linearly increasing function of neutron energy
and is an alternative means of accounting for the contributions,
within the analyzed region, due to resonances outside the
analyzed energy range. The alternative to this approach is
to use dummy resonances whose energies are outside the
analyzed region. The former approach has the advantage of
simplifying comparisons with optical model calculations of
average properties of the interaction. The R function has the
form,

R�J (E) = α�J + β�J E − s̃�J ln

(
Eup − E

E − Elo

)
,

where s̃ is the external strength and α and β are constants
determined by the least-squares analysis. We find that the
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TABLE II. Average resonance parameters for n+54Cr, based on
the analysis up to 1000 keV. The average level spacings, D̄, do
not include corrections for missed resonances discussed above in
Sec. IV B. In our notation, 40(4) is equivalent to 40±4; 2.8(9) is
equivalent to 2.8±0.9.

�J Num D̄�J S�
J (×10−4) α

�J
β�J s̃�J

(keV) (MeV)−1

s 1
2

25 40(4) 2.8(9) 0.111(5) 0.08(1) 0.13(4)
p 1

2
10 102(18) 0.3(2) −0.65(4) 1.9(2) 0.029(9)

p 3
2

21 37(4) 0.20(7) −1.0(1) 1.2(1) 0.016(4)
d 3

2
51 18(1) 6(1) −0.63(8) 0.32(6) 0.16(3)

d 5
2

46 19(2) 3.7(8) 0.002 0.0 0.16(3)

p 31 31(3) 0.23(6)
d 97 9.3(5) 4.4(7)

external strengths needed are energy independent and have
taken the values to be equal to the strengths in the analyzed
region, for each partial wave. This external R function then
becomes an additive term in the total R function of the
R-matrix formalism. This approach has been discussed more
extensively elsewhere [25]. The parameters deduced for each
partial wave are presented in Table II.

V. HINTS OF QUANTUM CHAOTICITY IN THE
CR COMPOUND NUCLEUS

Whether nuclear energy level spectra display uniformity
may suggest whether the associated dynamics is regular or
chaotic. In general, the spectra of nuclear levels with the same
quantum numbers have been found to display fluctuations from
uniformity, with the spacing of adjacent levels being tightly
grouped about the mean and manifesting repulsion effects.
Distributions for the NNS for a broad collection of low-lying
nuclear levels having well-established quantum numbers have
been generally well described [26] by the Wigner distribution,

P (s) = A · s · e−π(s2/4),

which can be derived from the GOE of random-matrix theory.
Such is also expected to be the case for quantum systems
for which the underlying dynamics are chaotic. Conversely, if
the underlying dynamics are nonchaotic, the NNS distribution
should more nearly reflect the character of independent random
variables of a Poisson sample. One expects therefore that the
statistics of energy level spacings will be typically described
either by random matrix theory, when the classical limit is
chaotic, or by a Poisson process when the classical dynamics
are regular, i.e., completely integrable. Therefore nuclear level
fluctuations such as these are understood and interpreted
in the framework of random-matrix theories. The Wigner
representation of a NNS distribution for 166Er is seen in Fig. 6,
where the number, of a total of 172 levels, populated by s-wave
neutron interaction with 166Er nuclei is plotted as a function
of the spacing, s, normalized by the average spacing. 166Er
was chosen because of the large and pure (same Jπ ) sample
of levels [27] available and the fact that the nucleus is not
near a magic number for either type of nucleon. The peak in
the distribution manifests the rigidity (nonuniformity) of the

FIG. 6. s-wave NNS distribution representing a large pure sample
of level spacings. The agreement of the Wigner distribution with the
166Er data suggests an underlying chaoticity in the nuclear dynamics.

distribution and the repulsion between levels is seen in the low
number of small spacings observed.

The Wigner fit represents the distribution well. It is clear
from the figure that the small number of levels with small
spacings would not be well represented by the Poisson
distribution, suggesting complexity in the nuclear dynamics
of 166Er—a complexity consistent with the chaoticity in the
fluctuation properties of the compound nucleus model. We
previously reported [28] on results of an R-matrix analysis of
the total neutron cross section for n+52Cr, where we identified
28 s-wave resonances. In Fig. 7 we present results of a
similar comparison of Wigner and Poisson representations
of the NNS distribution for the case of this nucleus with a
magic number of neutrons. This distribution too is seen to
be best described by the statistics of random matrix theory.

FIG. 7. Nearest-neighbor spacing distribution for the closed-
neutron shell of 52Cr. The χ 2 values suggest a Wigner distribution for
the 28 NNS.
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FIG. 8. Nearest-neighbor spacing distribution for the case of two
neutrons outside a closed neutron shell in 54Cr. The χ 2 values suggest
a Poisson distribution for the 24 NNS.

For the case of 54Cr we find the opposite to be true as
seen in Fig. 8, where the distribution of the NNS for the
25 resonances observed in the n+54Cr reaction is better
described by the Poisson distribution of the form,

P (s) = A · e−s ,

where A is the parameter adjusted to fit the distribution. This
statistic characterizes the behavior of systems whose equations
of motion are integrable. One can ask whether for individual
nuclei the spectral nonuniformity can be used as an indicator of
chaoticity, because of the cases presented, the one with single
or independent particle character reflects a Poissonian NNS
distribution.

As mentioned, the purity of the sample is of critical
importance. For the cases of chromium, this is aided by the
wide disparity of the strength functions for s- and p-wave
neutrons in the region, A = 50, ensuring a reduced likelihood
of p-wave contamination of the s-wave sample. In addition,
the tendency for s and d waves to manifest asymmetric
resonances or not, respectively, further assures the purity of the
sample of s-wave resonances. Similar study of other chromium
isotopes or other nuclei having several stable isotopes would
shed additional light on the question of any connection
of NNS distributions of individual nuclei with quantum
chaoticity.
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